
Optimization Toolbox™
User's Guide

R2022a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Optimization Toolbox™ User's Guide
© COPYRIGHT 1990–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
November 1990 First printing
December 1996 Second printing For MATLAB® 5
January 1999 Third printing For Version 2 (Release 11)
September 2000 Fourth printing For Version 2.1 (Release 12)
June 2001 Online only Revised for Version 2.1.1 (Release 12.1)
September 2003 Online only Revised for Version 2.3 (Release 13SP1)
June 2004 Fifth printing Revised for Version 3.0 (Release 14)
October 2004 Online only Revised for Version 3.0.1 (Release 14SP1)
March 2005 Online only Revised for Version 3.0.2 (Release 14SP2)
September 2005 Online only Revised for Version 3.0.3 (Release 14SP3)
March 2006 Online only Revised for Version 3.0.4 (Release 2006a)
September 2006 Sixth printing Revised for Version 3.1 (Release 2006b)
March 2007 Seventh printing Revised for Version 3.1.1 (Release 2007a)
September 2007 Eighth printing Revised for Version 3.1.2 (Release 2007b)
March 2008 Online only Revised for Version 4.0 (Release 2008a)
October 2008 Online only Revised for Version 4.1 (Release 2008b)
March 2009 Online only Revised for Version 4.2 (Release 2009a)
September 2009 Online only Revised for Version 4.3 (Release 2009b)
March 2010 Online only Revised for Version 5.0 (Release 2010a)
September 2010 Online only Revised for Version 5.1 (Release 2010b)
April 2011 Online only Revised for Version 6.0 (Release 2011a)
September 2011 Online only Revised for Version 6.1 (Release 2011b)
March 2012 Online only Revised for Version 6.2 (Release 2012a)
September 2012 Online only Revised for Version 6.2.1 (Release 2012b)
March 2013 Online only Revised for Version 6.3 (Release 2013a)
September 2013 Online only Revised for Version 6.4 (Release 2013b)
March 2014 Online only Revised for Version 7.0 (Release 2014a)
October 2014 Online only Revised for Version 7.1 (Release 2014b)
March 2015 Online only Revised for Version 7.2 (Release 2015a)
September 2015 Online only Revised for Version 7.3 (Release 2015b)
March 2016 Online only Revised for Version 7.4 (Release 2016a)
September 2016 Online only Revised for Version 7.5 (Release 2016b)
March 2017 Online only Revised for Version 7.6 (Release 2017a)
September 2017 Online only Revised for Version 8.0 (Release 2017b)
March 2018 Online only Revised for Version 8.1 (Release 2018a)
September 2018 Online only Revised for Version 8.2 (Release 2018b)
March 2019 Online only Revised for Version 8.3 (Release 2019a)
September 2019 Online only Revised for Version 8.4 (Release 2019b)
March 2020 Online only Revised for Version 8.5 (Release 2020a)
September 2020 Online only Revised for Version 9.0 (Release 2020b)
March 2021 Online only Revised for Version 9.1 (Release 2021a)
September 2021 Online only Revised for Version 9.2 (Release 2021b)
March 2022 Online only Revised for Version 9.3 (Release 2022a)

Acknowledgments

Acknowledgments . xxii

Getting Started
1

Optimization Toolbox Product Description . 1-2

First Choose Problem-Based or Solver-Based Approach 1-3

Solve a Constrained Nonlinear Problem, Problem-Based 1-5

Solve a Constrained Nonlinear Problem, Solver-Based 1-11
Typical Optimization Problem . 1-11
Problem Formulation: Rosenbrock's Function . 1-11
Define and Solve Problem Using Optimize Live Editor Task 1-12
Define and Solve Problem at Command Line . 1-16
Interpret Result . 1-19

Set Up a Linear Program, Solver-Based . 1-21
Convert a Problem to Solver Form . 1-21
Model Description . 1-21
Solution Method . 1-22
Bibliography . 1-27

Set Up a Linear Program, Problem-Based . 1-28
Convert Problem to Solver Form . 1-28
Model Description . 1-28
First Solution Method: Create Optimization Variable for Each Problem

Variable . 1-29
Second Solution Method: Create One Optimization Variable and Indices

. 1-31
Bibliography . 1-33

Get Started with Solver-Based Optimize Live Editor Task 1-34

Get Started with Problem-Based Optimize Live Editor Task 1-38

Use Solver-Based Optimize Live Editor Task Effectively 1-41
Organize the Task Effectively . 1-41
Place Optimization Variables in One Vector and Data in Other Variables

. 1-42

v

Contents

Specify Problem Type to Obtain Recommended Solver 1-43
Ways to Run the Task . 1-43
View Solver Progress . 1-45
View Equivalent Code . 1-45

Setting Up an Optimization
2

Optimization Theory Overview . 2-2

Optimization Toolbox Solvers . 2-3

Optimization Decision Table . 2-4

Choosing the Algorithm . 2-6
fmincon Algorithms . 2-6
fsolve Algorithms . 2-7
fminunc Algorithms . 2-7
Least Squares Algorithms . 2-8
Linear Programming Algorithms . 2-9
Quadratic Programming Algorithms . 2-9
Large-Scale vs. Medium-Scale Algorithms . 2-10
Potential Inaccuracy with Interior-Point Algorithms 2-10

Problems Handled by Optimization Toolbox Functions 2-12

Complex Numbers in Optimization Toolbox Solvers 2-14

Types of Objective Functions . 2-16

Writing Scalar Objective Functions . 2-17
Function Files . 2-17
Anonymous Function Objectives . 2-18
Including Gradients and Hessians . 2-19

Writing Vector and Matrix Objective Functions . 2-26
What Are Vector and Matrix Objective Functions? 2-26
Jacobians of Vector Functions . 2-26
Jacobians of Matrix Functions . 2-27
Jacobians with Matrix-Valued Independent Variables 2-27

Writing Objective Functions for Linear or Quadratic Problems 2-29

Maximizing an Objective . 2-30

Matrix Arguments . 2-31

Types of Constraints . 2-32

Iterations Can Violate Constraints . 2-33
Intermediate Iterations can Violate Constraints 2-33
Algorithms That Satisfy Bound Constraints . 2-33

vi Contents

Solvers and Algorithms That Can Violate Bound Constraints 2-33

Bound Constraints . 2-34

Linear Constraints . 2-35
What Are Linear Constraints? . 2-35
Linear Inequality Constraints . 2-35
Linear Equality Constraints . 2-36

Nonlinear Constraints . 2-37
Including Gradients in Constraint Functions . 2-38
Anonymous Nonlinear Constraint Functions . 2-38

Or Instead of And Constraints . 2-41

How to Use All Types of Constraints . 2-45

Objective and Nonlinear Constraints in the Same Function 2-48

Objective and Constraints Having a Common Function in Serial or
Parallel, Problem-Based . 2-52

Passing Extra Parameters . 2-57
Extra Parameters, Fixed Variables, or Data . 2-57
Anonymous Functions . 2-57
Nested Functions . 2-58
Global Variables . 2-59

What Are Options? . 2-60

Options in Common Use: Tuning and Troubleshooting 2-61

Set and Change Options . 2-62

Choose Between optimoptions and optimset . 2-63

View Options . 2-66

Tolerances and Stopping Criteria . 2-68

Tolerance Details . 2-70

Checking Validity of Gradients or Jacobians . 2-73
Check Gradient or Jacobian in Objective Function 2-73
How to Check Derivatives . 2-73
Example: Checking Derivatives of Objective and Constraint Functions . . 2-73

Bibliography . 2-76

vii

Examining Results
3

Current Point and Function Value . 3-2

Exit Flags and Exit Messages . 3-3
Exit Flags . 3-3
Exit Messages . 3-4
Enhanced Exit Messages . 3-4
Exit Message Options . 3-7

Iterations and Function Counts . 3-9

First-Order Optimality Measure . 3-11
What Is First-Order Optimality Measure? . 3-11
Stopping Rules Related to First-Order Optimality 3-11
Unconstrained Optimality . 3-11
Constrained Optimality Theory . 3-12
Constrained Optimality in Solver Form . 3-13

Iterative Display . 3-14
Introduction . 3-14
Common Headings . 3-14
Function-Specific Headings . 3-15

Output Structures . 3-21

Lagrange Multiplier Structures . 3-22

Hessian Output . 3-24
fminunc Hessian . 3-24
fmincon Hessian . 3-24

Plot Functions . 3-27
Plot an Optimization During Execution . 3-27
Use a Plot Function . 3-27

Output Functions for Optimization Toolbox . 3-30

Steps to Take After Running a Solver
4

Overview of Next Steps . 4-2

When the Solver Fails . 4-3
Too Many Iterations or Function Evaluations . 4-3
Converged to an Infeasible Point . 4-6
Problem Unbounded . 4-7
fsolve Could Not Solve Equation . 4-8

viii Contents

Solver Takes Too Long . 4-9
Enable Iterative Display . 4-9
Use Appropriate Tolerances . 4-9
Use a Plot Function . 4-9
Use 'lbfgs' HessianApproximation Option . 4-10
Enable CheckGradients . 4-10
Use Inf Instead of a Large, Arbitrary Bound . 4-10
Use an Output Function . 4-10
Try Different Algorithm Options . 4-10
Use a Sparse Solver or a Multiply Function . 4-11
Use Parallel Computing . 4-11

When the Solver Might Have Succeeded . 4-12
Final Point Equals Initial Point . 4-12
Local Minimum Possible . 4-12

When the Solver Succeeds . 4-18
What Can Be Wrong If The Solver Succeeds? . 4-18
1. Change the Initial Point . 4-18
2. Check Nearby Points . 4-19
3. Check your Objective and Constraint Functions 4-20

Local vs. Global Optima . 4-22
Why the Solver Does Not Find the Smallest Minimum 4-22
Searching for a Smaller Minimum . 4-22
Basins of Attraction . 4-23

Optimizing a Simulation or Ordinary Differential Equation 4-26
What Is Optimizing a Simulation or ODE? . 4-26
Potential Problems and Solutions . 4-26
Bibliography . 4-30

Nonlinear algorithms and examples
5

Unconstrained Nonlinear Optimization Algorithms 5-2
Unconstrained Optimization Definition . 5-2
fminunc trust-region Algorithm . 5-2
fminunc quasi-newton Algorithm . 5-4

fminsearch Algorithm . 5-9

Unconstrained Minimization Using fminunc . 5-11

Minimization with Gradient and Hessian . 5-13

Minimization with Gradient and Hessian Sparsity Pattern 5-16

Constrained Nonlinear Optimization Algorithms 5-19
Constrained Optimization Definition . 5-19
fmincon Trust Region Reflective Algorithm . 5-19
fmincon Active Set Algorithm . 5-22

ix

fmincon SQP Algorithm . 5-29
fmincon Interior Point Algorithm . 5-30
fminbnd Algorithm . 5-36
fseminf Problem Formulation and Algorithm . 5-36

Smooth Formulations of Nonsmooth Functions . 5-39

Tutorial for Optimization Toolbox . 5-42

Banana Function Minimization . 5-55

Minimizing an Expensive Optimization Problem Using Parallel Computing
Toolbox . 5-62

Nonlinear Inequality Constraints . 5-67

Nonlinear Constraints with Gradients . 5-69

fmincon Interior-Point Algorithm with Analytic Hessian 5-72

Linear or Quadratic Objective with Quadratic Constraints 5-77

Nonlinear Equality and Inequality Constraints . 5-81

Optimize Live Editor Task with fmincon Solver . 5-83
Start Optimize Live Editor Task . 5-83
Enter Problem Data . 5-85
Run Solver and Examine Results . 5-87

Minimization with Bound Constraints and Banded Preconditioner 5-90

Minimization with Linear Equality Constraints, Trust-Region Reflective
Algorithm . 5-96

Minimization with Dense Structured Hessian, Linear Equalities 5-99
Hessian Multiply Function for Lower Memory . 5-99
Step 1: Write a file brownvv.m that computes the objective function, the

gradient, and the sparse part of the Hessian. 5-100
Step 2: Write a function to compute Hessian-matrix products for H given a

matrix Y. 5-100
Step 3: Call a nonlinear minimization routine with a starting point and

linear equality constraints. 5-100
Preconditioning . 5-102

Calculate Gradients and Hessians Using Symbolic Math Toolbox 5-103

Using Symbolic Mathematics with Optimization Toolbox Solvers 5-114

Obtain Best Feasible Point . 5-123

Solve Nonlinear Problem with Many Variables . 5-130

Code Generation in fmincon Background . 5-135
What Is Code Generation? . 5-135

x Contents

Code Generation Requirements . 5-135
Generated Code Not Multithreaded . 5-136

Code Generation for Optimization Basics . 5-138
Generate Code for fmincon . 5-138
Modify Example for Efficiency . 5-138

Static Memory Allocation for fmincon Code Generation 5-142

Optimization Code Generation for Real-Time Applications 5-144
Time Limits on Generated Code . 5-144
Match the Target Environment . 5-144
Set Coder Configuration . 5-144
Benchmark the Solver . 5-145
Set Initial Point . 5-145
Set Options Appropriately . 5-145
Global Minimum . 5-146

One-Dimensional Semi-Infinite Constraints . 5-147

Two-Dimensional Semi-Infinite Constraint . 5-150

Analyzing the Effect of Uncertainty Using Semi-Infinite Programming
. 5-153

Nonlinear Problem-Based
6

Rational Objective Function, Problem-Based . 6-2

Solve Constrained Nonlinear Optimization, Problem-Based 6-4

Convert Nonlinear Function to Optimization Expression 6-8

Constrained Electrostatic Nonlinear Optimization, Problem-Based 6-14

Problem-Based Nonlinear Minimization with Linear Constraints 6-19

Effect of Automatic Differentiation in Problem-Based Optimization . . . 6-23

Supply Derivatives in Problem-Based Workflow . 6-26
Why Include Derivatives? . 6-26
Automatic Differentiation Applied to Optimization 6-26
Create Optimization Problem . 6-26
Convert Problem to Solver-Based Form . 6-27
Calculate Derivatives and Keep Track of Variables 6-27
Edit the Objective and Constraint Files . 6-28
Run Problem With and Without Gradients . 6-29
Include Hessian . 6-31

Obtain Generated Function Details . 6-34

xi

Output Function for Problem-Based Optimization 6-37

Obtain Solution Using Feasibility Mode . 6-42

Integer Constraints in Nonlinear Problem-Based Optimization 6-46

Solve Nonlinear Feasibility Problem, Problem-Based 6-47

Feasibility Using Problem-Based Optimize Live Editor Task 6-51

Multiobjective Algorithms and Examples
7

Multiobjective Optimization Algorithms . 7-2
Multiobjective Optimization Definition . 7-2
Algorithms . 7-3

Compare fminimax and fminunc . 7-7

Using fminimax with a Simulink Model . 7-9

Signal Processing Using fgoalattain . 7-13
Step 1: Write a file filtmin.m . 7-13
Step 2: Invoke optimization routine . 7-13

Generate and Plot Pareto Front . 7-16

Multi-Objective Goal Attainment Optimization . 7-19

Minimax Optimization . 7-25

Linear Programming and Mixed-Integer Linear Programming
8

Linear Programming Algorithms . 8-2
Linear Programming Definition . 8-2
Interior-Point linprog Algorithm . 8-2
Interior-Point-Legacy Linear Programming . 8-6
Dual-Simplex Algorithm . 8-9

Typical Linear Programming Problem . 8-13

Maximize Long-Term Investments Using Linear Programming: Solver-
Based . 8-15

Maximize Long-Term Investments Using Linear Programming: Problem-
Based . 8-26

xii Contents

Create Multiperiod Inventory Model in Problem-Based Framework 8-36

Mixed-Integer Linear Programming Algorithms 8-43
Mixed-Integer Linear Programming Definition . 8-43
intlinprog Algorithm . 8-43

Tuning Integer Linear Programming . 8-52
Change Options to Improve the Solution Process 8-52
Some “Integer” Solutions Are Not Integers . 8-53
Large Components Not Integer Valued . 8-53
Large Coefficients Disallowed . 8-53

Mixed-Integer Linear Programming Basics: Solver-Based 8-54

Factory, Warehouse, Sales Allocation Model: Solver-Based 8-57

Traveling Salesman Problem: Solver-Based . 8-66

Optimal Dispatch of Power Generators: Solver-Based 8-72

Mixed-Integer Quadratic Programming Portfolio Optimization: Solver-
Based . 8-82

Solve Sudoku Puzzles Via Integer Programming: Solver-Based 8-89

Office Assignments by Binary Integer Programming: Solver-Based 8-96

Cutting Stock Problem: Solver-Based . 8-103

Mixed-Integer Linear Programming Basics: Problem-Based 8-108

Factory, Warehouse, Sales Allocation Model: Problem-Based 8-111

Traveling Salesman Problem: Problem-Based . 8-119

Optimal Dispatch of Power Generators: Problem-Based 8-125

Office Assignments by Binary Integer Programming: Problem-Based 8-134

Mixed-Integer Quadratic Programming Portfolio Optimization: Problem-
Based . 8-139

Cutting Stock Problem: Problem-Based . 8-146

Solve Sudoku Puzzles Via Integer Programming: Problem-Based 8-151

Minimize Makespan in Parallel Processing . 8-157

Investigate Linear Infeasibilities . 8-161

Integer and Logical Modeling . 8-171
Big-M Formulation . 8-171
Basic Problem: Reservoir Flows . 8-171
Express Logical Constraints Using Binary Variables 8-172

xiii

Express Logical Constraints Using Real Functions and Binary Indicator
Variables . 8-173

Combine Logical Constraints to Create New Formulas 8-173
Example: Fixed Cost . 8-174
Example: OR Constraints . 8-174
Further Reading . 8-175

Problem-Based Optimization
9

Problem-Based Optimization Workflow . 9-2

Problem-Based Workflow for Solving Equations . 9-4

Optimization Expressions . 9-6
What Are Optimization Expressions? . 9-6
Expressions for Objective Functions . 9-6
Expressions for Constraints and Equations . 9-7
Optimization Variables Have Handle Behavior . 9-9

Pass Extra Parameters in Problem-Based Approach 9-11

Review or Modify Optimization Problems . 9-14
Review Problem Using show or write . 9-14
Change Default Solver or Options . 9-14
Correct a Misspecified Problem . 9-16
Duplicate Variable Name . 9-19

Named Index for Optimization Variables . 9-20
Create Named Indices . 9-20
Use Named Indices . 9-21
View Solution with Index Variables . 9-22

Examine Optimization Solution . 9-25
Obtain Numeric Solution . 9-25
Examine Solution Quality . 9-26
Infeasible Solution . 9-26
Solution Takes Too Long . 9-27

Create Efficient Optimization Problems . 9-28

Separate Optimization Model from Data . 9-31

Problem-Based Optimization Algorithms . 9-33

Variables with Duplicate Names Disallowed . 9-35

Expression Contains Inf or NaN . 9-36

Automatic Differentiation Background . 9-37
What Is Automatic Differentiation? . 9-37
Forward Mode . 9-37

xiv Contents

Reverse Mode . 9-39
Automatic Differentiation in Optimization Toolbox 9-41

Supported Operations for Optimization Variables and Expressions 9-43
Notation for Supported Operations . 9-43
Operations Returning Optimization Expressions 9-43
Operations Returning Optimization Variables . 9-45
Operations on Optimization Expressions . 9-45
Operations Returning Constraint Expressions . 9-46
Some Undocumented Operations Work on Optimization Variables and

Expressions . 9-46
Unsupported Functions and Operations Require fcn2optimexpr 9-46

Create Initial Point for Optimization with Named Index Variables 9-47

Initialize Optimization Expressions . 9-54
Error in Expression . 9-54
Modify Function To Accept an Initial Array . 9-55
Rewrite Function to Initialize Expressions Appropriately 9-56
Avoid fcn2optimexpr Conversion . 9-57

Use Problem-Based Optimize Live Editor Task Effectively 9-59
How the Problem-Based Optimize Live Editor Task Works 9-59
What Does Select task mode Do? . 9-59
Leave Autorun On in Define Problem Mode . 9-59

Quadratic Programming
10

Quadratic Programming Algorithms . 10-2
Quadratic Programming Definition . 10-2
interior-point-convex quadprog Algorithm . 10-2
trust-region-reflective quadprog Algorithm . 10-7
active-set quadprog Algorithm . 10-11

Second-Order Cone Programming Algorithm . 10-16
Definition of Second-Order Cone Programming 10-16
coneprog Algorithm . 10-16

Quadratic Minimization with Bound Constraints 10-23

Quadratic Minimization with Dense, Structured Hessian 10-26
Take advantage of a structured Hessian . 10-26
Step 1: Decide what part of H to pass to quadprog as the first argument.

. 10-26
Step 2: Write a function to compute Hessian-matrix products for H. . . . 10-26
Step 3: Call a quadratic minimization routine with a starting point. . . . 10-27
Preconditioning . 10-28

Large Sparse Quadratic Program with Interior Point Algorithm 10-30

Bound-Constrained Quadratic Programming, Solver-Based 10-33

xv

Quadratic Programming for Portfolio Optimization Problems, Solver-
Based . 10-37

Quadratic Programming with Bound Constraints: Problem-Based 10-43

Large Sparse Quadratic Program, Problem-Based 10-46

Bound-Constrained Quadratic Programming, Problem-Based 10-49

Quadratic Programming for Portfolio Optimization, Problem-Based . . 10-53

Code Generation for quadprog Background . 10-60
What Is Code Generation? . 10-60
Code Generation Requirements . 10-60
Generated Code Not Multithreaded . 10-61

Generate Code for quadprog . 10-62
First Steps in quadprog Code Generation . 10-62
Modify Example for Efficiency . 10-63

Quadratic Programming with Many Linear Constraints 10-66

Warm Start quadprog . 10-68

Warm Start Best Practices . 10-71
Use Warm Start in MATLAB . 10-71
Use Warm Start in Code Generation with Static Memory Management

. 10-71

Convert Quadratic Constraints to Second-Order Cone Constraints . . . 10-73

Convert Quadratic Programming Problem to Second-Order Cone Program
. 10-75

Write Constraints for Problem-Based Cone Programming 10-79

Minimize Energy of Piecewise Linear Mass-Spring System Using Cone
Programming, Solver-Based . 10-81

Minimize Energy of Piecewise Linear Mass-Spring System Using Cone
Programming, Problem-Based . 10-86

Compare Speeds of coneprog Algorithms . 10-90

Discretized Optimal Trajectory, Problem-Based 10-94

Least Squares
11

Least-Squares (Model Fitting) Algorithms . 11-2
Least Squares Definition . 11-2

xvi Contents

Linear Least Squares: Interior-Point or Active-Set 11-2
Trust-Region-Reflective Least Squares . 11-3
Levenberg-Marquardt Method . 11-6

Nonlinear Data-Fitting . 11-10

lsqnonlin with a Simulink Model . 11-18

Nonlinear Least Squares Without and Including Jacobian 11-22

Nonnegative Linear Least Squares, Solver-Based 11-25

Optimize Live Editor Task with lsqlin Solver . 11-28
Set Up and Solve the Problem Using Optimize 11-28

Jacobian Multiply Function with Linear Least Squares 11-31

Large-Scale Constrained Linear Least-Squares, Solver-Based 11-35

Shortest Distance to a Plane . 11-39

Nonnegative Linear Least Squares, Problem-Based 11-41

Large-Scale Constrained Linear Least-Squares, Problem-Based 11-45

Nonlinear Curve Fitting with lsqcurvefit . 11-49

Fit a Model to Complex-Valued Data . 11-51

Fit an Ordinary Differential Equation (ODE) . 11-55

Nonlinear Least-Squares, Problem-Based . 11-63

Fit ODE, Problem-Based . 11-78

Nonlinear Data-Fitting Using Several Problem-Based Approaches . . . 11-88

Write Objective Function for Problem-Based Least Squares 11-96

Code Generation in Linear Least Squares: Background 11-98
What Is Code Generation? . 11-98
Requirements for Code Generation . 11-98
Generated Code Not Multithreaded . 11-99

Generate Code for lsqlin . 11-100
Linear Least-Squares Problem to Solve . 11-100
Solve Using lsqlin . 11-100
Code Generation Steps . 11-101

Code Generation in Nonlinear Least Squares: Background 11-103
What Is Code Generation? . 11-103
Requirements for Code Generation . 11-103
Generated Code Not Multithreaded . 11-104

xvii

Generate Code for lsqcurvefit or lsqnonlin . 11-105
Data and Model for Least Squares . 11-105
Solve Generating Code for lsqcurvefit . 11-105
Solve Generating Code for lsqnonlin . 11-106

Systems of Equations
12

Equation Solving Algorithms . 12-2
Equation Solving Definition . 12-2
Trust-Region Algorithm . 12-2
Trust-Region-Dogleg Algorithm . 12-4
Levenberg-Marquardt Method . 12-5
fzero Algorithm . 12-6
\ Algorithm . 12-6

Solve Nonlinear System Without and Including Jacobian 12-7

Large Sparse System of Nonlinear Equations with Jacobian 12-10

Large System of Nonlinear Equations with Jacobian Sparsity Pattern
. 12-14

Nonlinear Systems with Constraints . 12-17

Solve Nonlinear System of Equations, Problem-Based 12-21

Solve Nonlinear System of Polynomials, Problem-Based 12-23

Follow Equation Solution as a Parameter Changes 12-25

Nonlinear System of Equations with Constraints, Problem-Based 12-32

Code Generation in Nonlinear Equation Solving: Background 12-36
What Is Code Generation? . 12-36
Requirements for Code Generation . 12-36
Generated Code Not Multithreaded . 12-37

Generate Code for fsolve . 12-38
Equation to Solve . 12-38
Code Generation Steps . 12-38

Parallel Computing for Optimization
13

What Is Parallel Computing in Optimization Toolbox? 13-2
Parallel Optimization Functionality . 13-2
Parallel Estimation of Gradients . 13-2
Nested Parallel Functions . 13-3

xviii Contents

Using Parallel Computing in Optimization Toolbox 13-5
Using Parallel Computing with Multicore Processors 13-5
Using Parallel Computing with a Multiprocessor Network 13-5
Testing Parallel Computations . 13-6

Minimizing an Expensive Optimization Problem Using Parallel Computing
Toolbox . 13-8

Improving Performance with Parallel Computing 13-13
Factors That Affect Speed . 13-13
Factors That Affect Results . 13-13
Searching for Global Optima . 13-14

Argument and Options Reference
14

Function Input Arguments . 14-2

Function Output Arguments . 14-4

Optimization Options Reference . 14-6
Optimization Options . 14-6
Hidden Options . 14-18

Current and Legacy Option Names . 14-23

Output Function and Plot Function Syntax . 14-28
What Are Output Functions and Plot Functions? 14-28
Structure of the Output Function or Plot Function 14-29
Fields in optimValues . 14-29
States of the Algorithm . 14-34
Stop Flag . 14-34

intlinprog Output Function and Plot Function Syntax 14-36
What Are Output Functions and Plot Functions? 14-36
Custom Function Syntax . 14-36
optimValues Structure . 14-37

Functions
15

xix

Acknowledgments

xxi

Acknowledgments
MathWorks® would like to acknowledge the following contributors to Optimization Toolbox
algorithms.

Thomas F. Coleman researched and contributed algorithms for constrained and unconstrained
minimization, nonlinear least squares and curve fitting, constrained linear least squares, quadratic
programming, and nonlinear equations.

Dr. Coleman is Professor of Combinatorics and Optimization at the University of Waterloo.

Yin Zhang researched and contributed the large-scale linear programming algorithm.

Dr. Zhang is Professor of Computational and Applied Mathematics at Rice University.

Acknowledgments

xxii

Getting Started

• “Optimization Toolbox Product Description” on page 1-2
• “First Choose Problem-Based or Solver-Based Approach” on page 1-3
• “Solve a Constrained Nonlinear Problem, Problem-Based” on page 1-5
• “Solve a Constrained Nonlinear Problem, Solver-Based” on page 1-11
• “Set Up a Linear Program, Solver-Based” on page 1-21
• “Set Up a Linear Program, Problem-Based” on page 1-28
• “Get Started with Solver-Based Optimize Live Editor Task” on page 1-34
• “Get Started with Problem-Based Optimize Live Editor Task” on page 1-38
• “Use Solver-Based Optimize Live Editor Task Effectively” on page 1-41

1

Optimization Toolbox Product Description
Solve linear, quadratic, conic, integer, and nonlinear optimization problems

Optimization Toolbox provides functions for finding parameters that minimize or maximize objectives
while satisfying constraints. The toolbox includes solvers for linear programming (LP), mixed-integer
linear programming (MILP), quadratic programming (QP), second-order cone programming (SOCP),
nonlinear programming (NLP), constrained linear least squares, nonlinear least squares, and
nonlinear equations.

You can define your optimization problem with functions and matrices or by specifying variable
expressions that reflect the underlying mathematics. You can use automatic differentiation of
objective and constraint functions for faster and more accurate solutions.

You can use the toolbox solvers to find optimal solutions to continuous and discrete problems,
perform tradeoff analyses, and incorporate optimization methods into algorithms and applications.
The toolbox lets you perform design optimization tasks, including parameter estimation, component
selection, and parameter tuning. It enables you to find optimal solutions in applications such as
portfolio optimization, energy management and trading, and production planning.

1 Getting Started

1-2

First Choose Problem-Based or Solver-Based Approach
Optimization Toolbox has two approaches to solving optimization problems or equations: problem-
based and solver-based. Before you start to solve a problem, you must first choose the appropriate
approach.

This table summarizes the main differences between the two approaches.

Approaches Characteristics
“Problem-Based Optimization Setup” Easier to create and debug

Provides a visual interface; see Optimize Live Editor task
Represents the objective and constraints symbolically
Requires translation from problem form to matrix form, potentially resulting in a
longer solution time
Automatically calculates and uses gradients of objective and nonlinear constraint
functions in many cases, but does not calculate Hessians; see “Automatic
Differentiation” on page 15-520
See the steps in “Problem-Based Optimization Workflow” on page 9-2 or “Problem-
Based Workflow for Solving Equations” on page 9-4
Basic linear example: “Mixed-Integer Linear Programming Basics: Problem-Based” on
page 8-108 or the video Solve a Mixed-Integer Linear Programming Problem using
Optimization Modeling

Basic nonlinear example: “Solve a Constrained Nonlinear Problem, Problem-Based”
on page 1-5

Basic equation-solving example: “Solve Nonlinear System of Equations, Problem-
Based” on page 12-21

“Solver-Based Optimization Problem
Setup”

Harder to create and debug
Provides a visual interface; see Optimize Live Editor task
Represents the objective and constraints as functions or matrices
Does not require translation from problem form to matrix form, potentially resulting
in a shorter solution time
Allows direct inclusion of gradient or Hessian, but does not calculate them
automatically
Allows use of a Hessian multiply function or Jacobian multiply function to save
memory in large problems

See “Quadratic Minimization with Dense, Structured Hessian” on page 10-26 or
“Jacobian Multiply Function with Linear Least Squares” on page 11-31
See the steps in “Solver-Based Optimization Problem Setup”

 First Choose Problem-Based or Solver-Based Approach

1-3

https://www.mathworks.com/videos/mathematical-modeling-with-optimization-part-3-problem-based-mixed-integer-linear-programming-1500392000631.html
https://www.mathworks.com/videos/mathematical-modeling-with-optimization-part-3-problem-based-mixed-integer-linear-programming-1500392000631.html

Approaches Characteristics
Basic linear example: “Mixed-Integer Linear Programming Basics: Solver-Based” on
page 8-54

Basic nonlinear example: “Solve a Constrained Nonlinear Problem, Solver-Based” on
page 1-11

Basic equation-solving examples: “Examples” on page 15-0

See Also
Optimize

More About
• “Problem-Based Optimization Setup”
• “Solver-Based Optimization Problem Setup”

1 Getting Started

1-4

Solve a Constrained Nonlinear Problem, Problem-Based
Typical Optimization Problem

This example shows how to solve a constrained nonlinear optimization problem using the problem-
based approach. The example demonstrates the typical work flow: create an objective function,
create constraints, solve the problem, and examine the results.

Note:

If your objective function or nonlinear constraints are not composed of elementary functions, you
must convert the nonlinear functions to optimization expressions using fcn2optimexpr. See the last
part of this example, Alternative Formulation Using fcn2optimexpr on page 1-0 , or “Convert
Nonlinear Function to Optimization Expression” on page 6-8.

For the solver-based approach to this problem, see “Solve a Constrained Nonlinear Problem, Solver-
Based” on page 1-11.

Problem Formulation: Rosenbrock's Function

Consider the problem of minimizing Rosenbrock's function

f (x) = 100 x2− x1
2 2 + (1− x1)2,

over the unit disk, meaning the disk of radius 1 centered at the origin. In other words, find x that
minimizes the function f (x) over the set x1

2 + x2
2 ≤ 1. This problem is a minimization of a nonlinear

function subject to a nonlinear constraint.

Rosenbrock's function is a standard test function in optimization. It has a unique minimum value of 0
attained at the point [1,1]. Finding the minimum is a challenge for some algorithms because the
function has a shallow minimum inside a deeply curved valley. The solution for this problem is not at
the point [1,1] because that point does not satisfy the constraint.

This figure shows two views of Rosenbrock's function in the unit disk. The vertical axis is log-scaled;
in other words, the plot shows log(1 + f (x)). Contour lines lie beneath the surface plot.

rosenbrock = @(x)100*(x(:,2) - x(:,1).^2).^2 + (1 - x(:,1)).^2; % Vectorized function

figure1 = figure('Position',[1 200 600 300]);
colormap('gray');
axis square;
R = 0:.002:1;
TH = 2*pi*(0:.002:1);
X = R'*cos(TH);
Y = R'*sin(TH);
Z = log(1 + rosenbrock([X(:),Y(:)]));
Z = reshape(Z,size(X));

% Create subplot
subplot1 = subplot(1,2,1,'Parent',figure1);
view([124 34]);
grid('on');
hold on;

% Create surface

 Solve a Constrained Nonlinear Problem, Problem-Based

1-5

surf(X,Y,Z,'Parent',subplot1,'LineStyle','none');

% Create contour
contour(X,Y,Z,'Parent',subplot1);

% Create subplot
subplot2 = subplot(1,2,2,'Parent',figure1);
view([234 34]);
grid('on');
hold on

% Create surface
surf(X,Y,Z,'Parent',subplot2,'LineStyle','none');

% Create contour
contour(X,Y,Z,'Parent',subplot2);

% Create textarrow
annotation(figure1,'textarrow',[0.4 0.31],...
 [0.055 0.16],...
 'String',{'Minimum at (0.7864,0.6177)'});

% Create arrow
annotation(figure1,'arrow',[0.59 0.62],...
 [0.065 0.34]);

title("Rosenbrock's Function: Two Views")

hold off

The rosenbrock function handle calculates Rosenbrock's function at any number of 2-D points at
once. This “Vectorization” speeds the plotting of the function, and can be useful in other contexts for
speeding evaluation of a function at multiple points.

1 Getting Started

1-6

The function f (x) is called the objective function. The objective function is the function you want to
minimize. The inequality x1

2 + x2
2 ≤ 1 is called a constraint. Constraints limit the set of x over which a

solver searches for a minimum. You can have any number of constraints, which are inequalities or
equations.

Define Problem Using Optimization Variables

The problem-based approach to optimization uses optimization variables to define objective and
constraints. There are two approaches for creating expressions using these variables:

• For polynomial or rational functions, write expressions directly in the variables.
• For other types of functions, convert functions to optimization expressions using fcn2optimexpr.

See Alternative Formulation Using fcn2optimexpr at the end of this example.

For this problem, both the objective function and the nonlinear constraint are polynomials, so you can
write the expressions directly in terms of optimization variables. Create a 2-D optimization variable
named 'x'.

x = optimvar('x',1,2);

Create the objective function as a polynomial in the optimization variable.

obj = 100*(x(2) - x(1)^2)^2 + (1 - x(1))^2;

Create an optimization problem named prob having obj as the objective function.

prob = optimproblem('Objective',obj);

Create the nonlinear constraint as a polynomial in the optimization variable.

nlcons = x(1)^2 + x(2)^2 <= 1;

Include the nonlinear constraint in the problem.

prob.Constraints.circlecons = nlcons;

Review the problem.

show(prob)

 OptimizationProblem :

 Solve for:
 x

 minimize :
 ((100 .* (x(2) - x(1).^2).^2) + (1 - x(1)).^2)

 subject to circlecons:
 (x(1).^2 + x(2).^2) <= 1

Solve Problem

To solve the optimization problem, call solve. The problem needs an initial point, which is a
structure giving the initial value of the optimization variable. Create the initial point structure x0
having an x-value of [0 0].

 Solve a Constrained Nonlinear Problem, Problem-Based

1-7

x0.x = [0 0];
[sol,fval,exitflag,output] = solve(prob,x0)

Solving problem using fmincon.

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

sol = struct with fields:
 x: [0.7864 0.6177]

fval = 0.0457

exitflag =
 OptimalSolution

output = struct with fields:
 iterations: 24
 funcCount: 34
 constrviolation: 0
 stepsize: 6.9161e-06
 algorithm: 'interior-point'
 firstorderopt: 2.1625e-08
 cgiterations: 4
 message: 'Local minimum found that satisfies the constraints....'
 bestfeasible: [1x1 struct]
 objectivederivative: "reverse-AD"
 constraintderivative: "closed-form"
 solver: 'fmincon'

Examine Solution

The solution shows exitflag = OptimalSolution. This exit flag indicates that the solution is a
local optimum. For information on trying to find a better solution, see “When the Solver Succeeds” on
page 4-18.

The exit message indicates that the solution satisfies the constraints. You can check that the solution
is indeed feasible in several ways.

• Check the reported infeasibility in the constrviolation field of the output structure.

infeas = output.constrviolation

infeas = 0

An infeasibility of 0 indicates that the solution is feasible.

• Compute the infeasibility at the solution.

infeas = infeasibility(nlcons,sol)

infeas = 0

Again, an infeasibility of 0 indicates that the solution is feasible.

1 Getting Started

1-8

• Compute the norm of x to ensure that it is less than or equal to 1.

nx = norm(sol.x)

nx = 1.0000

The output structure gives more information on the solution process, such as the number of
iterations (24), the solver (fmincon), and the number of function evaluations (84). For more
information on these statistics, see “Tolerances and Stopping Criteria” on page 2-68.

Alternative Formulation Using fcn2optimexpr

For more complex expressions, write function files for the objective or constraint functions, and
convert them to optimization expressions using fcn2optimexpr. For example, the basis of the
nonlinear constraint function is in the disk.m file:

type disk

function radsqr = disk(x)

radsqr = x(1)^2 + x(2)^2;

Convert this function file to an optimization expression.

radsqexpr = fcn2optimexpr(@disk,x);

Furthermore, you can also convert the rosenbrock function handle, which was defined at the
beginning of the plotting routine, into an optimization expression.

rosenexpr = fcn2optimexpr(rosenbrock,x);

Create an optimization problem using these converted optimization expressions.

convprob = optimproblem('Objective',rosenexpr,'Constraints',radsqexpr <= 1);

View the new problem.

show(convprob)

 OptimizationProblem :

 Solve for:
 x

 minimize :
 ((100 .* (x(2) - x(1).^2).^2) + (1 - x(1)).^2)

 subject to :
 (x(1).^2 + x(2).^2) <= 1

Solve the new problem. The solution is essentially the same as before.

[sol,fval,exitflag,output] = solve(convprob,x0)

Solving problem using fmincon.

Local minimum found that satisfies the constraints.

 Solve a Constrained Nonlinear Problem, Problem-Based

1-9

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

sol = struct with fields:
 x: [0.7864 0.6177]

fval = 0.0457

exitflag =
 OptimalSolution

output = struct with fields:
 iterations: 24
 funcCount: 34
 constrviolation: 0
 stepsize: 6.9161e-06
 algorithm: 'interior-point'
 firstorderopt: 2.1625e-08
 cgiterations: 4
 message: 'Local minimum found that satisfies the constraints....'
 bestfeasible: [1x1 struct]
 objectivederivative: "reverse-AD"
 constraintderivative: "closed-form"
 solver: 'fmincon'

For the list of supported functions, see “Supported Operations for Optimization Variables and
Expressions” on page 9-43.

See Also

More About
• “Solve a Constrained Nonlinear Problem, Solver-Based” on page 1-11
• “First Choose Problem-Based or Solver-Based Approach” on page 1-3

1 Getting Started

1-10

Solve a Constrained Nonlinear Problem, Solver-Based
In this section...
“Typical Optimization Problem” on page 1-11
“Problem Formulation: Rosenbrock's Function” on page 1-11
“Define and Solve Problem Using Optimize Live Editor Task” on page 1-12
“Define and Solve Problem at Command Line” on page 1-16
“Interpret Result” on page 1-19

Typical Optimization Problem
This example shows how to solve a constrained nonlinear problem using an Optimization Toolbox
solver. The example demonstrates the typical workflow: create an objective function, create
constraints, solve the problem, and examine the results.

This example provides two approaches to solving the problem. One uses the Optimize Live Editor
task, a visual approach. The other uses the MATLAB® command line, a text-based approach. You can
also solve this type of problem using the problem-based approach; see “Solve a Constrained
Nonlinear Problem, Problem-Based” on page 1-5.

Problem Formulation: Rosenbrock's Function
The problem is to minimize Rosenbrock's function

f (x) = 100 x2− x1
2 2 + (1− x1)2,

over the unit disk, that is, the disk of radius 1 centered at the origin. In other words, find x that
minimizes the function f(x) over the set x1

2 + x2
2 ≤ 1. This problem is a minimization of a nonlinear

function with a nonlinear constraint.

Note Rosenbrock's function is a standard test function in optimization. It has a unique minimum
value of 0 attained at the point [1,1]. Finding the minimum is a challenge for some algorithms
because the function has a shallow minimum inside a deeply curved valley. The solution for this
problem is not at the point [1,1] because that point does not satisfy the constraint.

This figure shows two views of Rosenbrock's function in the unit disk. The vertical axis is log-scaled;
in other words, the plot shows log(1+f(x)). Contour lines lie beneath the surface plot.

 Solve a Constrained Nonlinear Problem, Solver-Based

1-11

Rosenbrock's Function, Log-Scaled: Two Views

The function f(x) is called the objective function. The objective function is the function you want to
minimize. The inequality x1

2 + x2
2 ≤ 1 is called a constraint. Constraints limit the set of x over which a

solver searches for a minimum. You can have any number of constraints, which are inequalities or
equalities.

All Optimization Toolbox optimization functions minimize an objective function. To maximize a
function f, apply an optimization routine to minimize –f. For more details about maximizing, see
“Maximizing an Objective” on page 2-30.

Define and Solve Problem Using Optimize Live Editor Task
The Optimize Live Editor task lets you set up and solve the problem using a visual approach.

1 Create a new live script by clicking the New Live Script button on the File section of the Home
tab.

2 Insert an Optimize Live Editor task. Click the Insert tab and then, in the Code section, select
Task > Optimize.

1 Getting Started

1-12

3 In the Specify problem type section of the task, select Objective > Nonlinear and
Constraints > Nonlinear. The task selects the solver fmincon - Constrained nonlinear
minimization.

4 Include Rosenbrock's function as the objective function. In the Select problem data section of
the task, select Objective function > Local function and then click the New... button. A new
local function appears in a section below the task.

function f = objectiveFcn(optimInput)
% Example:
% Minimize Rosenbrock's function
% f = 100*(y - x^2)^2 + (1 - x)^2

% Edit the lines below with your calculation
x = optimInput(1);
y = optimInput(2);
f = 100*(y - x^2)^2 + (1 - x)^2;
end

This function implements Rosenbrock's function.
5 In the Select problem data section of the task, select Objective function > objectiveFcn.
6 Place the initial point x0 = [0;0] into the MATLAB workspace. Insert a new section above the

Optimize task by clicking the task, then clicking the Section Break button on the Insert tab. In
the new section above the task, enter the following code for the initial point.

x0 = [0;0];
7 Run the section by pressing Ctrl+Enter. This action places x0 into the workspace.
8 In the Select problem data section of the task, select Initial point (x0) > x0.

 Solve a Constrained Nonlinear Problem, Solver-Based

1-13

9 In the Select problem data section, select Constraints > Nonlinear > Local function and
then click the New... button. A new local function appears below the previous local function.

10 Edit the new local function as follows.

function [c,ceq] = unitdisk(x)
c = x(1)^2 + x(2)^2 - 1;
ceq = [];
end

11 In the Select problem data section, select unitdisk as the constraint function.

12 To monitor the solver progress, in the Display progress section of the task, select Text display
> Each iteration. Also, select Objective value and feasibility for the plot.

13 To run the solver, click the options button ⁝ at the top right of the task window, and select Run
Section. The plot appears in a separate figure window and in the output area.

1 Getting Started

1-14

The output area shows a table of iterations, discussed in “Interpret Result” on page 1-19.
14 To find the solution, look at the top of the task.

The solver places the variables solution and objectiveValue in the workspace. View their
values by inserting a new section break below the task and entering these lines.

15 Run the section by pressing Ctrl+Enter.

 Solve a Constrained Nonlinear Problem, Solver-Based

1-15

To understand the fmincon process for obtaining the result, see “Interpret Result” on page 1-
19.

16 To display the code that Optimize generates to solve the problem, click the options button ⁝ at
the top right of the task window, and select Controls and Code.

At the bottom of the task, the following code appears.

% Set nondefault solver options
options = optimoptions('fmincon','Display','iter','PlotFcn',...
 'optimplotfvalconstr');

% Solve
[solution,objectiveValue] = fmincon(@objectiveFcn,x0,[],[],[],[],[],[],...
 @unitdisk,options);

This code is the code you use to solve the problem at the command line, as described next.

Define and Solve Problem at Command Line
The first step in solving an optimization problem at the command line is to choose a solver. Consult
the “Optimization Decision Table” on page 2-4. For a problem with a nonlinear objective function
and a nonlinear constraint, generally you use the fmincon solver.

Consult the fmincon function reference page. The solver syntax is as follows.

[x,fval] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)

The fun and nonlcon inputs represent the objective function and nonlinear constraint functions,
respectively.

Express your problem as follows:

1 Define the objective function in the MATLAB language, as a function file or anonymous function.
This example uses a function file.

2 Define the constraints as a separate file or anonymous function.

A function file is a text file that contains MATLAB commands and has the extension .m. Create a
function file in any text editor, or use the built-in MATLAB Editor as in this example.

1 Getting Started

1-16

1 At the command line, enter:

edit rosenbrock
2 In the MATLAB Editor, enter:

%% ROSENBROCK(x) expects a two-column matrix and returns a column vector
% The output is the Rosenbrock function, which has a minimum at
% (1,1) of value 0, and is strictly positive everywhere else.

function f = rosenbrock(x)

f = 100*(x(:,2) - x(:,1).^2).^2 + (1 - x(:,1)).^2;

Note rosenbrock is a vectorized function that can compute values for several points at once.
See “Vectorization”. A vectorized function is best for plotting. For a nonvectorized version, enter:

%% ROSENBROCK1(x) expects a two-element vector and returns a scalar
% The output is the Rosenbrock function, which has a minimum at
% (1,1) of value 0, and is strictly positive everywhere else.

function f = rosenbrock1(x)

f = 100*(x(2) - x(1)^2)^2 + (1 - x(1))^2;

3 Save the file with the name rosenbrock.m.

Constraint functions have the form c(x) ≤ 0 or ceq(x) = 0. The constraint x1
2 + x2

2 ≤ 1 is not in the
form that the solver handles. To have the correct syntax, reformulate the constraint as
x1

2 + x2
2− 1 ≤ 0.

The syntax for nonlinear constraints returns both equality and inequality constraints. This example
includes only an inequality constraint, so you must pass an empty array [] as the equality constraint
function ceq.

With these considerations in mind, write a function file for the nonlinear constraint.

1 Create a file named unitdisk.m containing the following code:

function [c,ceq] = unitdisk(x)
c = x(1)^2 + x(2)^2 - 1;
ceq = [];

2 Save the file unitdisk.m.

Now that you have defined the objective and constraint functions, create the other fmincon inputs.

1 Create options for fmincon to use the 'optimplotfvalconstr' plot function and to return
iterative display.

options = optimoptions('fmincon',...
 'PlotFcn','optimplotfvalconstr',...
 'Display','iter');

2 Create the initial point.

x0 = [0 0];
3 Create empty entries for the constraints that this example does not use.

 Solve a Constrained Nonlinear Problem, Solver-Based

1-17

A = [];
b = [];
Aeq = [];
beq = [];
lb = [];
ub = [];

Solve the problem by calling fmincon.

[x,fval] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)

 First-order Norm of
 Iter F-count f(x) Feasibility optimality step
 0 3 1.000000e+00 0.000e+00 2.000e+00
 1 13 7.753537e-01 0.000e+00 6.250e+00 1.768e-01
 2 18 6.519648e-01 0.000e+00 9.048e+00 1.679e-01
 3 21 5.543209e-01 0.000e+00 8.033e+00 1.203e-01
 4 24 2.985207e-01 0.000e+00 1.790e+00 9.328e-02
 5 27 2.653799e-01 0.000e+00 2.788e+00 5.723e-02
 6 30 1.897216e-01 0.000e+00 2.311e+00 1.147e-01
 7 33 1.513701e-01 0.000e+00 9.706e-01 5.764e-02
 8 36 1.153330e-01 0.000e+00 1.127e+00 8.169e-02
 9 39 1.198058e-01 0.000e+00 1.000e-01 1.522e-02
 10 42 8.910052e-02 0.000e+00 8.378e-01 8.301e-02
 11 45 6.771960e-02 0.000e+00 1.365e+00 7.149e-02
 12 48 6.437664e-02 0.000e+00 1.146e-01 5.701e-03
 13 51 6.329037e-02 0.000e+00 1.883e-02 3.774e-03
 14 54 5.161934e-02 0.000e+00 3.016e-01 4.464e-02
 15 57 4.964194e-02 0.000e+00 7.913e-02 7.894e-03
 16 60 4.955404e-02 0.000e+00 5.462e-03 4.185e-04
 17 63 4.954839e-02 0.000e+00 3.993e-03 2.208e-05
 18 66 4.658289e-02 0.000e+00 1.318e-02 1.255e-02
 19 69 4.647011e-02 0.000e+00 8.006e-04 4.940e-04
 20 72 4.569141e-02 0.000e+00 3.136e-03 3.379e-03
 21 75 4.568281e-02 0.000e+00 6.440e-05 3.974e-05
 22 78 4.568281e-02 0.000e+00 8.000e-06 1.084e-07
 23 81 4.567641e-02 0.000e+00 1.601e-06 2.793e-05
 24 84 4.567482e-02 0.000e+00 2.023e-08 6.916e-06

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

x =

 0.7864 0.6177

fval =

 0.0457

1 Getting Started

1-18

The exit message tells you that the search for a constrained optimum ended because the derivative of
the objective function is nearly 0 in directions allowed by the constraint, and that the constraint is
satisfied to the required accuracy. Several phrases in the message contain links to more information
about the terms used in the message. For more details about these links, see “Enhanced Exit
Messages” on page 3-4.

Interpret Result
The iteration table in both the Live Editor task output area and the MATLAB Command Window
shows how MATLAB searched for the minimum value of Rosenbrock's function in the unit disk. Your
table can differ, depending on toolbox version and computing platform. The following description
applies to the table shown in this example.

• The first column, labeled Iter, is the iteration number from 0 to 24. fmincon took 24 iterations
to converge.

• The second column, labeled F-count, reports the cumulative number of times Rosenbrock's
function was evaluated. The final row shows an F-count of 84, indicating that fmincon evaluated
Rosenbrock's function 84 times in the process of finding a minimum.

• The third column, labeled f(x), displays the value of the objective function. The final value,
4.567482e-2, is the minimum reported in the Optimize run, and at the end of the exit message
in the Command Window.

• The fourth column, Feasibility, is 0 for all iterations. This column shows the value of the
constraint function unitdisk at each iteration where the constraint is positive. Because the value
of unitdisk was negative in all iterations, every iteration satisfied the constraint.

 Solve a Constrained Nonlinear Problem, Solver-Based

1-19

The other columns of the iteration table are described in “Iterative Display” on page 3-14.

See Also
fmincon | Optimize

More About
• “Solve a Constrained Nonlinear Problem, Problem-Based” on page 1-5
• “First Choose Problem-Based or Solver-Based Approach” on page 1-3
• “Get Started with Solver-Based Optimize Live Editor Task” on page 1-34
• “Use Solver-Based Optimize Live Editor Task Effectively” on page 1-41
• “Solver-Based Optimization Problem Setup”
• How to Use the Optimize Live Editor Task

1 Getting Started

1-20

https://www.mathworks.com/videos/how-to-use-the-optimize-live-editor-task-1594660384855.html

Set Up a Linear Program, Solver-Based
In this section...
“Convert a Problem to Solver Form” on page 1-21
“Model Description” on page 1-21
“Solution Method” on page 1-22
“Bibliography” on page 1-27

Convert a Problem to Solver Form
This example shows how to convert a problem from mathematical form into Optimization Toolbox
solver syntax using the solver-based approach. While the problem is a linear program, the techniques
apply to all solvers.

The variables and expressions in the problem represent a model of operating a chemical plant, from
an example in Edgar and Himmelblau [1]. There are two videos that describe the problem.

• Mathematical Modeling with Optimization, Part 1 shows the problem in pictorial form. It shows
how to generate the mathematical expressions of “Model Description” on page 1-21 from the
picture.

• Optimization Modeling, Part 2: Converting to Solver Form describes how to convert these
mathematical expressions into Optimization Toolbox solver syntax. This video shows how to solve
the problem, and how to interpret the results.

The remainder of this example is concerned solely with transforming the problem to solver syntax.
The example closely follows the video Optimization Modeling, Part 2: Converting to Solver Form. The
main difference between the video and the example is that this example shows how to use named
variables, or index variables, which are similar to hash keys. This difference is in “Combine Variables
Into One Vector” on page 1-23.

Model Description
The video Mathematical Modeling with Optimization, Part 1 suggests that one way to convert a
problem into mathematical form is to:

1 Get an overall idea of the problem
2 Identify the goal (maximizing or minimizing something)
3 Identify (name) variables
4 Identify constraints
5 Determine which variables you can control
6 Specify all quantities in mathematical notation
7 Check the model for completeness and correctness

For the meaning of the variables in this section, see the video Mathematical Modeling with
Optimization, Part 1.

The optimization problem is to minimize the objective function, subject to all the other expressions as
constraints.

The objective function is:

 Set Up a Linear Program, Solver-Based

1-21

https://www.mathworks.com/videos/mathematical-modeling-with-optimization-part-1-101559.html
https://www.mathworks.com/videos/optimization-modeling-2-converting-to-solver-form-101560.html
https://www.mathworks.com/videos/optimization-modeling-2-converting-to-solver-form-101560.html
https://www.mathworks.com/videos/mathematical-modeling-with-optimization-part-1-101559.html
https://www.mathworks.com/videos/mathematical-modeling-with-optimization-part-1-101559.html
https://www.mathworks.com/videos/mathematical-modeling-with-optimization-part-1-101559.html

0.002614 HPS + 0.0239 PP + 0.009825 EP.

The constraints are:

2500 ≤ P1 ≤ 6250
I1 ≤ 192,000
C ≤ 62,000
I1 - HE1 ≤ 132,000
I1 = LE1 + HE1 + C
1359.8 I1 = 1267.8 HE1 + 1251.4 LE1 + 192 C + 3413 P1
3000 ≤ P2 ≤ 9000
I2 ≤ 244,000
LE2 ≤ 142,000
I2 = LE2 + HE2
1359.8 I2 = 1267.8 HE2 + 1251.4 LE2 + 3413 P2
HPS = I1 + I2 + BF1
HPS = C + MPS + LPS
LPS = LE1 + LE2 + BF2
MPS = HE1 + HE2 + BF1 - BF2
P1 + P2 + PP ≥ 24,550
EP + PP ≥ 12,000
MPS ≥ 271,536
LPS ≥ 100,623
All variables are positive.

Solution Method
To solve the optimization problem, take the following steps.

1. “Choose a Solver” on page 1-22
2. “Combine Variables Into One Vector” on page 1-23
3. “Write Bound Constraints” on page 1-24
4. “Write Linear Inequality Constraints” on page 1-25
5. “Write Linear Equality Constraints” on page 1-25
6. “Write the Objective” on page 1-26
7. “Solve the Problem with linprog” on page 1-26
8. “Examine the Solution” on page 1-27

The steps are also shown in the video Optimization Modeling, Part 2: Converting to Solver Form.

Choose a Solver

To find the appropriate solver for this problem, consult the “Optimization Decision Table” on page 2-
4. The table asks you to categorize your problem by type of objective function and types of
constraints. For this problem, the objective function is linear, and the constraints are linear. The
decision table recommends using the linprog solver.

As you see in “Problems Handled by Optimization Toolbox Functions” on page 2-12 or the linprog
function reference page, the linprog solver solves problems of the form

1 Getting Started

1-22

https://www.mathworks.com/videos/optimization-modeling-2-converting-to-solver-form-101560.html

min
x

f Tx such that
A ⋅ x ≤ b,

Aeq ⋅ x = beq,
lb ≤ x ≤ ub .

 (1-1)

• fTx means a row vector of constants f multiplying a column vector of variables x. In other words,

fTx = f(1)x(1) + f(2)x(2) + ... + f(n)x(n),

where n is the length of f.
• A x ≤ b represents linear inequalities. A is a k-by-n matrix, where k is the number of inequalities

and n is the number of variables (size of x). b is a vector of length k. For more information, see
“Linear Inequality Constraints” on page 2-35.

• Aeq x = beq represents linear equalities. Aeq is an m-by-n matrix, where m is the number of
equalities and n is the number of variables (size of x). beq is a vector of length m. For more
information, see “Linear Equality Constraints” on page 2-36.

• lb ≤ x ≤ ub means each element in the vector x must be greater than the corresponding element
of lb, and must be smaller than the corresponding element of ub. For more information, see
“Bound Constraints” on page 2-34.

The syntax of the linprog solver, as shown in its function reference page, is

[x fval] = linprog(f,A,b,Aeq,beq,lb,ub);

The inputs to the linprog solver are the matrices and vectors in “Equation 1-1”.

Combine Variables Into One Vector

There are 16 variables in the equations of “Model Description” on page 1-21. Put these variables into
one vector. The name of the vector of variables is x in “Equation 1-1”. Decide on an order, and
construct the components of x out of the variables.

The following code constructs the vector using a cell array of names for the variables.

variables = {'I1','I2','HE1','HE2','LE1','LE2','C','BF1',...
 'BF2','HPS','MPS','LPS','P1','P2','PP','EP'};
N = length(variables);
% create variables for indexing
for v = 1:N
 eval([variables{v},' = ', num2str(v),';']);
end

Executing these commands creates the following named variables in your workspace:

 Set Up a Linear Program, Solver-Based

1-23

These named variables represent index numbers for the components of x. You do not have to create
named variables. The video Optimization Modeling, Part 2: Converting to Solver Form shows how to
solve the problem simply using the index numbers of the components of x.

Write Bound Constraints

There are four variables with lower bounds, and six with upper bounds in the equations of “Model
Description” on page 1-21. The lower bounds:

P1 ≥ 2500
P2 ≥ 3000
MPS ≥ 271,536
LPS ≥ 100,623.

Also, all the variables are positive, which means they have a lower bound of zero.

Create the lower bound vector lb as a vector of 0, then add the four other lower bounds.

lb = zeros(size(variables));
lb([P1,P2,MPS,LPS]) = ...
 [2500,3000,271536,100623];

The variables with upper bounds are:

P1 ≤ 6250
P2 ≤ 9000
I1 ≤ 192,000
I2 ≤ 244,000
C ≤ 62,000

1 Getting Started

1-24

https://www.mathworks.com/videos/optimization-modeling-2-converting-to-solver-form-101560.html

LE2 ≤ 142000.

Create the upper bound vector as a vector of Inf, then add the six upper bounds.

ub = Inf(size(variables));
ub([P1,P2,I1,I2,C,LE2]) = ...
 [6250,9000,192000,244000,62000,142000];

Write Linear Inequality Constraints

There are three linear inequalities in the equations of “Model Description” on page 1-21:

I1 - HE1 ≤ 132,000
EP + PP ≥ 12,000
P1 + P2 + PP ≥ 24,550.

In order to have the equations in the form A x≤b, put all the variables on the left side of the
inequality. All these equations already have that form. Ensure that each inequality is in “less than”
form by multiplying through by –1 wherever appropriate:

I1 - HE1 ≤ 132,000
-EP - PP ≤ -12,000
-P1 - P2 - PP ≤ -24,550.

In your MATLAB workspace, create the A matrix as a 3-by-16 zero matrix, corresponding to 3 linear
inequalities in 16 variables. Create the b vector with three components.

A = zeros(3,16);
A(1,I1) = 1; A(1,HE1) = -1; b(1) = 132000;
A(2,EP) = -1; A(2,PP) = -1; b(2) = -12000;
A(3,[P1,P2,PP]) = [-1,-1,-1];
b(3) = -24550;

Write Linear Equality Constraints

There are eight linear equations in the equations of “Model Description” on page 1-21:

I2 = LE2 + HE2
LPS = LE1 + LE2 + BF2
HPS = I1 + I2 + BF1
HPS = C + MPS + LPS
I1 = LE1 + HE1 + C
MPS = HE1 + HE2 + BF1 - BF2
1359.8 I1 = 1267.8 HE1 + 1251.4 LE1 + 192 C + 3413 P1
1359.8 I2 = 1267.8 HE2 + 1251.4 LE2 + 3413 P2.

In order to have the equations in the form Aeq x=beq, put all the variables on one side of the
equation. The equations become:

LE2 + HE2 - I2 = 0
LE1 + LE2 + BF2 - LPS = 0
I1 + I2 + BF1 - HPS = 0
C + MPS + LPS - HPS = 0
LE1 + HE1 + C - I1 = 0
HE1 + HE2 + BF1 - BF2 - MPS = 0

 Set Up a Linear Program, Solver-Based

1-25

1267.8 HE1 + 1251.4 LE1 + 192 C + 3413 P1 - 1359.8 I1 = 0
1267.8 HE2 + 1251.4 LE2 + 3413 P2 - 1359.8 I2 = 0.

Now write the Aeq matrix and beq vector corresponding to these equations. In your MATLAB
workspace, create the Aeq matrix as an 8-by-16 zero matrix, corresponding to 8 linear equations in
16 variables. Create the beq vector with eight components, all zero.

Aeq = zeros(8,16); beq = zeros(8,1);
Aeq(1,[LE2,HE2,I2]) = [1,1,-1];
Aeq(2,[LE1,LE2,BF2,LPS]) = [1,1,1,-1];
Aeq(3,[I1,I2,BF1,HPS]) = [1,1,1,-1];
Aeq(4,[C,MPS,LPS,HPS]) = [1,1,1,-1];
Aeq(5,[LE1,HE1,C,I1]) = [1,1,1,-1];
Aeq(6,[HE1,HE2,BF1,BF2,MPS]) = [1,1,1,-1,-1];
Aeq(7,[HE1,LE1,C,P1,I1]) = [1267.8,1251.4,192,3413,-1359.8];
Aeq(8,[HE2,LE2,P2,I2]) = [1267.8,1251.4,3413,-1359.8];

Write the Objective

The objective function is

fTx = 0.002614 HPS + 0.0239 PP + 0.009825 EP.

Write this expression as a vector f of multipliers of the x vector:

f = zeros(size(variables));
f([HPS PP EP]) = [0.002614 0.0239 0.009825];

Solve the Problem with linprog

You now have inputs required by the linprog solver. Call the solver and print the outputs in
formatted form:

options = optimoptions('linprog','Algorithm','dual-simplex');
[x fval] = linprog(f,A,b,Aeq,beq,lb,ub,options);
for d = 1:N
 fprintf('%12.2f \t%s\n',x(d),variables{d})
end
fval

The result:

Optimal solution found.
 136328.74 I1
 244000.00 I2
 128159.00 HE1
 143377.00 HE2
 0.00 LE1
 100623.00 LE2
 8169.74 C
 0.00 BF1
 0.00 BF2
 380328.74 HPS
 271536.00 MPS
 100623.00 LPS
 6250.00 P1
 7060.71 P2
 11239.29 PP

1 Getting Started

1-26

 760.71 EP

fval =
 1.2703e+03

Examine the Solution

The fval output gives the smallest value of the objective function at any feasible point.

The solution vector x is the point where the objective function has the smallest value. Notice that:

• BF1, BF2, and LE1 are 0, their lower bounds.
• I2 is 244,000, its upper bound.
• The nonzero components of the f vector are

• HPS — 380,328.74
• PP — 11,239.29
• EP — 760.71

The video Optimization Modeling, Part 2: Converting to Solver Form gives interpretations of these
characteristics in terms of the original problem.

Bibliography

[1] Edgar, Thomas F., and David M. Himmelblau. Optimization of Chemical Processes. McGraw-Hill,
New York, 1988.

See Also

More About
• “Set Up a Linear Program, Problem-Based” on page 1-28
• “Solver-Based Optimization Problem Setup”

 Set Up a Linear Program, Solver-Based

1-27

https://www.mathworks.com/videos/optimization-modeling-2-converting-to-solver-form-101560.html

Set Up a Linear Program, Problem-Based
In this section...
“Convert Problem to Solver Form” on page 1-28
“Model Description” on page 1-28
“First Solution Method: Create Optimization Variable for Each Problem Variable” on page 1-29
“Second Solution Method: Create One Optimization Variable and Indices” on page 1-31
“Bibliography” on page 1-33

Convert Problem to Solver Form
This example shows how to convert a linear problem from mathematical form into Optimization
Toolbox solver syntax using the problem-based approach.

The variables and expressions in the problem represent a model of operating a chemical plant, from
an example in Edgar and Himmelblau [1]. Two associated videos describe the problem.

• Mathematical Modeling with Optimization, Part 1 presents the problem in pictorial form, showing
how to generate the mathematical expressions of the “Model Description” on page 1-28.

• Optimization Modeling, Part 2: Problem-Based Solution of a Mathematical Model describes how to
convert these mathematical expressions into Optimization Toolbox solver syntax. This video shows
how to solve the problem, and how to interpret the results.

This example, which closely follows the Part 2 video, focuses on transforming the problem to solver
syntax.

Model Description
The Part 1 video suggests the following approach for converting a problem into mathematical form:

1 Get an overall idea of the problem.
2 Identify the goal (maximizing or minimizing something).
3 Identify (name) the variables.
4 Identify the constraints.
5 Determine which variables you can control.
6 Specify all quantities in mathematical notation.
7 Check the model for completeness and correctness.

For the meaning of the variables in this section, see the Part 1 video.

The optimization problem is to minimize the objective function, subject to all the other expressions as
constraints.

The objective function is:

0.002614 HPS + 0.0239 PP + 0.009825 EP.

The constraints are:

2500 ≤ P1 ≤ 6250

1 Getting Started

1-28

https://www.mathworks.com/videos/mathematical-modeling-with-optimization-part-1-101559.html
https://www.mathworks.com/videos/mathematical-modeling-with-optimization-part-2a-problem-based-linear-programming-1500391996125.html

I1 ≤ 192,000
C ≤ 62,000
I1 - HE1 ≤ 132,000
I1 = LE1 + HE1 + C
1359.8 I1 = 1267.8 HE1 + 1251.4 LE1 + 192 C + 3413 P1
3000 ≤ P2 ≤ 9000
I2 ≤ 244,000
LE2 ≤ 142,000
I2 = LE2 + HE2
1359.8 I2 = 1267.8 HE2 + 1251.4 LE2 + 3413 P2
HPS = I1 + I2 + BF1
HPS = C + MPS + LPS
LPS = LE1 + LE2 + BF2
MPS = HE1 + HE2 + BF1 - BF2
P1 + P2 + PP ≥ 24,550
EP + PP ≥ 12,000
MPS ≥ 271,536
LPS ≥ 100,623
All variables are positive.

First Solution Method: Create Optimization Variable for Each Problem
Variable
The first solution method involves creating an optimization variable for each problem variable. As you
create the variables, include their bounds.

P1 = optimvar('P1','LowerBound',2500,'UpperBound',6250);
P2 = optimvar('P2','LowerBound',3000,'UpperBound',9000);
I1 = optimvar('I1','LowerBound',0,'UpperBound',192000);
I2 = optimvar('I2','LowerBound',0,'UpperBound',244000);
C = optimvar('C','LowerBound',0,'UpperBound',62000);
LE1 = optimvar('LE1','LowerBound',0);
LE2 = optimvar('LE2','LowerBound',0,'UpperBound',142000);
HE1 = optimvar('HE1','LowerBound',0);
HE2 = optimvar('HE2','LowerBound',0);
HPS = optimvar('HPS','LowerBound',0);
MPS = optimvar('MPS','LowerBound',271536);
LPS = optimvar('LPS','LowerBound',100623);
BF1 = optimvar('BF1','LowerBound',0);
BF2 = optimvar('BF2','LowerBound',0);
EP = optimvar('EP','LowerBound',0);
PP = optimvar('PP','LowerBound',0);

Create Problem and Objective

Create an optimization problem container. Include the objective function in the problem.

linprob = optimproblem('Objective',0.002614*HPS + 0.0239*PP + 0.009825*EP);

Create and Include Linear Constraints

The problem expressions contain three linear inequalities:

I1 - HE1 ≤ 132,000 (1-2)

 Set Up a Linear Program, Problem-Based

1-29

EP + PP ≥ 12,000
P1 + P2 + PP ≥ 24,550

Create these inequality constraints and include them in the problem.

linprob.Constraints.cons1 = I1 - HE1 <= 132000;
linprob.Constraints.cons2 = EP + PP >= 12000;
linprob.Constraints.cons3 = P1 + P2 + PP >= 24550;

The problem has eight linear equalities:

I2 = LE2 + HE2
LPS = LE1 + LE2 + BF2
HPS = I1 + I2 + BF1
HPS = C + MPS + LPS
I1 = LE1 + HE1 + C
MPS = HE1 + HE2 + BF1 - BF2
1359.8 I1 = 1267.8 HE1 + 1251.4 LE1 + 192 C + 3413 P1
1359.8 I2 = 1267.8 HE2 + 1251.4 LE2 + 3413 P2.

(1-3)

Include these constraints as well.

linprob.Constraints.econs1 = LE2 + HE2 == I2;
linprob.Constraints.econs2 = LE1 + LE2 + BF2 == LPS;
linprob.Constraints.econs3 = I1 + I2 + BF1 == HPS;
linprob.Constraints.econs4 = C + MPS + LPS == HPS;
linprob.Constraints.econs5 = LE1 + HE1 + C == I1;
linprob.Constraints.econs6 = HE1 + HE2 + BF1 == BF2 + MPS;
linprob.Constraints.econs7 = 1267.8*HE1 + 1251.4*LE1 + 192*C + 3413*P1 == 1359.8*I1;
linprob.Constraints.econs8 = 1267.8*HE2 + 1251.4*LE2 + 3413*P2 == 1359.8*I2;

Solve Problem

The problem formulation is complete. Solve the problem using solve.

linsol = solve(linprob);

Optimal solution found.

Examine Solution

Evaluate the objective function. (You can also obtain this value by calling [linsol,fval] =
solve(linprob).)

evaluate(linprob.Objective,linsol)

ans =

 1.2703e+03

The lowest-cost method of operating the plant costs $1,207.30.

Examine the solution variable values.

tbl = struct2table(linsol)

tbl =

1 Getting Started

1-30

 1×16 table

 BF1 BF2 C EP HE1 HE2 HPS I1 I2 LE1 LE2 LPS MPS P1 P2 PP
 ___ ___ ______ ______ __________ __________ __________ __________ ________ ___ __________ __________ __________ ____ ______ _____

 0 0 8169.7 760.71 1.2816e+05 1.4338e+05 3.8033e+05 1.3633e+05 2.44e+05 0 1.0062e+05 1.0062e+05 2.7154e+05 6250 7060.7 11239

This table is too wide to view its contents easily. Stack the variables to arrange them vertically.

vars = {'P1','P2','I1','I2','C','LE1','LE2','HE1','HE2',...
'HPS','MPS','LPS','BF1','BF2','EP','PP'};
outputvars = stack(tbl,vars,'NewDataVariableName','Amt','IndexVariableName','Var')

outputvars =

 16×2 table

 Var Amt
 ___ __________

 P1 6250
 P2 7060.7
 I1 1.3633e+05
 I2 2.44e+05
 C 8169.7
 LE1 0
 LE2 1.0062e+05
 HE1 1.2816e+05
 HE2 1.4338e+05
 HPS 3.8033e+05
 MPS 2.7154e+05
 LPS 1.0062e+05
 BF1 0
 BF2 0
 EP 760.71
 PP 11239

• BF1, BF2, and LE1 are 0, their lower bounds.
• I2 is 244,000, its upper bound.
• The nonzero components of the objective function (cost) are

• HPS — 380,328.74
• PP — 11,239.29
• EP — 760.71

The Part 2 video interprets these characteristics in terms of the original problem.

Second Solution Method: Create One Optimization Variable and
Indices
Alternatively, you can solve the problem using just one optimization variable that has indices with the
names of the problem variables. This method enables you to give a lower bound of zero to all problem
variables at once.

 Set Up a Linear Program, Problem-Based

1-31

vars = {'P1','P2','I1','I2','C','LE1','LE2','HE1','HE2',...
 'HPS','MPS','LPS','BF1','BF2','EP','PP'};
x = optimvar('x',vars,'LowerBound',0);

Set Variable Bounds

Include the bounds on the variables using dot notation.

x('P1').LowerBound = 2500;
x('P2').LowerBound = 3000;
x('MPS').LowerBound = 271536;
x('LPS').LowerBound = 100623;
x('P1').UpperBound = 6250;
x('P2').UpperBound = 9000;
x('I1').UpperBound = 192000;
x('I2').UpperBound = 244000;
x('C').UpperBound = 62000;
x('LE2').UpperBound = 142000;

Create Problem, Linear Constraints, and Solution

The remainder of the problem setup is similar to the setup using separate variables. The difference is
that, instead of addressing a variable by its name, such as P1, you address it using its index,
x('P1').

Create the problem object, include the linear constraints, and solve the problem.

linprob = optimproblem('Objective',0.002614*x('HPS') + 0.0239*x('PP') + 0.009825*x('EP'));

linprob.Constraints.cons1 = x('I1') - x('HE1') <= 132000;
linprob.Constraints.cons2 = x('EP') + x('PP') >= 12000;
linprob.Constraints.cons3 = x('P1') + x('P2') + x('PP') >= 24550;

linprob.Constraints.econs1 = x('LE2') + x('HE2') == x('I2');
linprob.Constraints.econs2 = x('LE1') + x('LE2') + x('BF2') == x('LPS');
linprob.Constraints.econs3 = x('I1') + x('I2') + x('BF1') == x('HPS');
linprob.Constraints.econs4 = x('C') + x('MPS') + x('LPS') == x('HPS');
linprob.Constraints.econs5 = x('LE1') + x('HE1') + x('C') == x('I1');
linprob.Constraints.econs6 = x('HE1') + x('HE2') + x('BF1') == x('BF2') + x('MPS');
linprob.Constraints.econs7 = 1267.8*x('HE1') + 1251.4*x('LE1') + 192*x('C') + 3413*x('P1') == 1359.8*x('I1');
linprob.Constraints.econs8 = 1267.8*x('HE2') + 1251.4*x('LE2') + 3413*x('P2') == 1359.8*x('I2');

[linsol,fval] = solve(linprob);

Optimal solution found.

Examine Indexed Solution

Examine the solution as a vertical table.

tbl = table(vars',linsol.x')

tbl =

 16×2 table

 Var1 Var2
 _____ __________

1 Getting Started

1-32

 'P1' 6250
 'P2' 7060.7
 'I1' 1.3633e+05
 'I2' 2.44e+05
 'C' 8169.7
 'LE1' 0
 'LE2' 1.0062e+05
 'HE1' 1.2816e+05
 'HE2' 1.4338e+05
 'HPS' 3.8033e+05
 'MPS' 2.7154e+05
 'LPS' 1.0062e+05
 'BF1' 0
 'BF2' 0
 'EP' 760.71
 'PP' 11239

Bibliography

[1] Edgar, Thomas F., and David M. Himmelblau. Optimization of Chemical Processes. New York:
McGraw-Hill, 1987.

See Also

More About
• “Set Up a Linear Program, Solver-Based” on page 1-21
• “Problem-Based Optimization Setup”

 Set Up a Linear Program, Problem-Based

1-33

Get Started with Solver-Based Optimize Live Editor Task
This example script helps you to use the solver-based Optimize Live Editor task for optimization or
equation solving. Modify the script for your own problem.

The script solves a nonlinear optimization problem with nonlinear constraints.

Include Parameters or Data

Typically, you have data or values to pass to the solver. Place those values in the input section (where
you see x0) and run the section by choosing Section > Run Section or pressing Control+Enter.

Set the initial point x0 and scale a for the optimization.

x0 = [2;1];
a = 100;

Place the x0 value and any other problem data into the workspace by running this section
before proceeding.

Optimize Live Editor Task

Usually, you place the Optimize Live Editor task into the script by selecting Task > Optimize in the
Live Editor tab, or by selecting Task > Optimize in the Insert tab. Then you are presented with the
following choice (this is only a picture, not the real task):

To get the solver-based task, click Solver-based.

The following solver-based task has objective and nonlinear constraint functions included. To change
these functions, edit the function listings below the task on page 1-0 .

To change the constraints, select appropriate constraint types and enter values in the input boxes.
You might need to enter values in the section containing x0 above, and run the section to put values
in the workspace.

Run the task by clicking the striped bar to the left, or by choosing Run or Section > Run Section,
or by pressing Control+Enter.

1 Getting Started

1-34

 Get Started with Solver-Based Optimize Live Editor Task

1-35

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

Results

Optimize saves the solution to the workspace variable solution, and saves the objective function
value at the solution to the workspace variable objectiveValue. You can see and modify these
variable names at the top of the Optimize task.

View these variables.

solution

solution = 2×1

 1.1413
 1.3029

objectiveValue

objectiveValue = 0.0200

View the nonlinear constraint function values at the solution.

[ccons,ceqcons] = constraintFcn(solution)

1 Getting Started

1-36

ccons = 1×2

 -2.0000 -0.0000

ceqcons =

 []

Helper Functions — Local Functions

The following code creates the objective function. Modify this code for your problem.

function f = objectiveFcn(x,a)
f = a*(x(2) - x(1)^2)^2 + (1 - x(1))^2;
end

The following code creates the constraint function. Modify this code for your problem.

function [c,ceq] = constraintFcn(x)
c(1) = x(1)^2 + x(2)^2 - 5;
c(2) = 3 - x(1)^2 - x(2)^2;
ceq = []; % No equality constraints
end

See Also
Optimize

More About
• “Use Solver-Based Optimize Live Editor Task Effectively” on page 1-41
• “Add Interactive Tasks to a Live Script”
• How to Use the Optimize Live Editor Task

 Get Started with Solver-Based Optimize Live Editor Task

1-37

https://www.mathworks.com/videos/how-to-use-the-optimize-live-editor-task-1594660384855.html

Get Started with Problem-Based Optimize Live Editor Task
This example script helps you to use the problem-based Optimize Live Editor task for optimization or
equation solving. Modify the script for your own problem.

The script solves a nonlinear optimization problem with nonlinear constraints:

Minimize rosenbrock(x, y, a) = a(y − x2)2 + (1− x)2 subject to the constraint x2 + y2 ≤ 1, where
a = 100 and the initial point x0 has x = − 2, y = 2. Also, impose the bounds −3 ≤ x ≤ 3, −2 ≤ y ≤ 9.

The code for the objective function appears at the end of this script on page 1-0 .

Include Parameters or Data

Typically, you have data or values to pass to the solver. Place those values in the input section (where
you see x0x and x0y) and run the section by choosing Section > Run Section or pressing Control
+Enter.

Set the initial point components x0x and x0y and scale a for the optimization.

x0x = -2;
x0y = 2;
a = 100;

Place these values and any other problem data into the workspace by running this section
before proceeding.

Optimize Live Editor Task

Usually, you place the Optimize Live Editor task into the script by selecting Task > Optimize in the
Live Editor tab, or by selecting Task > Optimize in the Insert tab. Then you are presented with the
following choice (this is only a picture, not the real task):

To get the problem-based task, click Problem-based (recommended).

The following problem-based task has the variables, objective, and constraint filled in. Modify it for
your problem, or run it as is to see how the task works. To modify the problem, click the Define
problem button at the bottom of the task. To run the task, click the Solve problem button at the
bottom of the task.

1 Getting Started

1-38

 OptimizationProblem :

 Solve for:
 x, y

 minimize :
 ((100 .* (y - x.^2).^2) + (1 - x).^2)

 subject to :
 (x.^2 + y.^2) <= 1

 variable bounds:
 -3 <= x <= 3

 -2 <= y <= 9

Solving problem using fmincon.

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

solution = struct with fields:
 x: 0.7864
 y: 0.6177

reasonSolverStopped =
 OptimalSolution

objectiveValue = 0.0457

 Get Started with Problem-Based Optimize Live Editor Task

1-39

Interpret Results

The task calls solve, which calls fmincon to solve the problem. The top of the task shows that the
solution is returned in the solution structure. The reported solution, x = 0.7864 and y =
0.6177, satisfies the constraint x2 + y2 ≤ 1, as you can see in the following calculation.

solution.x^2 + solution.y^2

ans = 1.0000

The solver reports exit condition OptimalSolution when it stops. To interpret this condition, look at
the exitflag “Output Arguments” on page 15-505 for the fmincon solver. The description states
"First-order optimality measure is less than options.OptimalityTolerance, and maximum constraint
violation is less than options.ConstraintTolerance." In other words, the solution is a feasible local
minimum.

The objective function value at the solution is 0.0457. This is the smallest objective function value
among feasible points.

Helper Functions

This code creates the rosenbrock helper function.

function objective = rosenbrock(x,y,a)
% This function should return a scalar representing an optimization objective.

% Example: Concession stand profit
% revenue = 3*soda + 5*popcorn + 2*candy;
% cost = 1*soda + 2*popcorn + 0.75*candy;
% objective = revenue - cost; % profit

% Edit the lines below with your calculations.
objective = a*(y - x^2)^2 + (1 - x)^2;
end

See Also
Optimize

1 Getting Started

1-40

Use Solver-Based Optimize Live Editor Task Effectively
In this section...
“Organize the Task Effectively” on page 1-41
“Place Optimization Variables in One Vector and Data in Other Variables” on page 1-42
“Specify Problem Type to Obtain Recommended Solver” on page 1-43
“Ways to Run the Task” on page 1-43
“View Solver Progress” on page 1-45
“View Equivalent Code” on page 1-45

Organize the Task Effectively
Place the Optimize Live Editor task in a live script with a section above and two or more sections
below the task. To open the Optimize task in the Live Editor, click the Insert tab and then select
Task > Optimize. Use the Section Break button on the Insert tab to insert a new section.

By default, the Output on right button is selected to the right of the task window.

 Use Solver-Based Optimize Live Editor Task Effectively

1-41

This selection places the output to the right of the task. To place the output below the task, select the
Output inline button.

• Above the task, include a section for the data that you need for the optimization. For example, the
initial point x0, any constraint matrices such as Aeq or beq, and extra parameters for objective or
nonlinear constraint functions belong in the section above the task. The data must be included in a
section above the task so that you can run the entire script successfully, for example, after saving
and reloading it. The data loads into the workspace before the script needs to access it.

• Place outputs of the task in a section below the task. For example, display the solution and
objectiveValue outputs in this section, after the task writes them to the workspace. You can
include multiple sections below the task to view and work with the results of the task.

• The final section contains any local functions for the problem. Local functions must be included at
the end of the live script. However, if you have functions that you access from more than one
script, including them as separate files on the MATLAB path can be more convenient.

Place Optimization Variables in One Vector and Data in Other
Variables
Optimize is a front end for solver-based optimization and equation solving. As such, it requires all
variables to be placed in one vector, as documented in “Writing Scalar Objective Functions” on page
2-17. For example, suppose that your objective function is

f (x, y, z, w) = x2 + y4 exp(− (z/(1 + x2))wexp(− z) .

In this example, the variables x and z are the optimization variables, and the variables y and w are
fixed data. You can represent your function in a section below the Optimize task as follows.

function f = myfun(vars,y,w)
x = vars(1);
z = vars(2);
f = (x^2 + y^4)*exp(-z/(1 + x^2))*w*exp(-z);
end

Define the values of the variables y and w in a section above the task.

y = log(pi);
w = 2/3;

Run the section above the task by pressing Ctrl+Enter to put y and w into the workspace. Then
select the appropriate inputs in the Select problem data section of the task.

1 Getting Started

1-42

Specify Problem Type to Obtain Recommended Solver
The Specify problem type section of the task provides buttons for choosing the objective function
type and the constraint types. After you select these items, Optimize reduces the number of available
solvers and shows one solver as recommended. For example, for a problem with a least-squares
objective and upper and lower bounds, Optimize shows that the lsqnonlin solver is recommended.

To use a solver that is not available with the current selections, deselect all of the problem type
buttons by clicking each selected button.

Ways to Run the Task
You can run the Optimize Live Editor task in various ways:

• Click the options button ⁝ at the top right of the task window, and select Run Section.

 Use Solver-Based Optimize Live Editor Task Effectively

1-43

• Click in the task and then press Ctrl+Enter.
• Set the task to autorun after any change by selecting the autorun button (next to the options

button at the top right of the task window). If your task is time consuming, do not choose this
setting.

• Run the section containing the task by clicking the striped bar to the left of the task.

• Run the entire live script from the Live Editor tab by clicking the Run button, or by pressing F5.

1 Getting Started

1-44

View Solver Progress
The Live Editor task enables you to monitor the solver progress easily. To ensure that the solver is
performing properly, view at least the objective function value plot. Also, by using a plot function you
can stop the solver without losing any data.

View Equivalent Code
Optimize internally creates code to match the visual selections. You can view the code by clicking
the options button ⁝ and selecting Controls and Code or Code Only.

The code appears below the task.

You can select and copy this code to modify it for use in other contexts.

To convert the task from a visual interface to usable code, choose Convert Task to Editable Code.
This choice removes the visual Optimize interface and allows you to proceed using code.

 Use Solver-Based Optimize Live Editor Task Effectively

1-45

See Also
Optimize

More About
• “Get Started with Optimization Toolbox”
• “Get Started with Solver-Based Optimize Live Editor Task” on page 1-34
• “Add Interactive Tasks to a Live Script”
• How to Use the Optimize Live Editor Task

1 Getting Started

1-46

https://www.mathworks.com/videos/how-to-use-the-optimize-live-editor-task-1594660384855.html

Setting Up an Optimization

• “Optimization Theory Overview” on page 2-2
• “Optimization Toolbox Solvers” on page 2-3
• “Optimization Decision Table” on page 2-4
• “Choosing the Algorithm” on page 2-6
• “Problems Handled by Optimization Toolbox Functions” on page 2-12
• “Complex Numbers in Optimization Toolbox Solvers” on page 2-14
• “Types of Objective Functions” on page 2-16
• “Writing Scalar Objective Functions” on page 2-17
• “Writing Vector and Matrix Objective Functions” on page 2-26
• “Writing Objective Functions for Linear or Quadratic Problems” on page 2-29
• “Maximizing an Objective” on page 2-30
• “Matrix Arguments” on page 2-31
• “Types of Constraints” on page 2-32
• “Iterations Can Violate Constraints” on page 2-33
• “Bound Constraints” on page 2-34
• “Linear Constraints” on page 2-35
• “Nonlinear Constraints” on page 2-37
• “Or Instead of And Constraints” on page 2-41
• “How to Use All Types of Constraints” on page 2-45
• “Objective and Nonlinear Constraints in the Same Function” on page 2-48
• “Objective and Constraints Having a Common Function in Serial or Parallel, Problem-Based”

on page 2-52
• “Passing Extra Parameters” on page 2-57
• “What Are Options?” on page 2-60
• “Options in Common Use: Tuning and Troubleshooting” on page 2-61
• “Set and Change Options” on page 2-62
• “Choose Between optimoptions and optimset” on page 2-63
• “View Options” on page 2-66
• “Tolerances and Stopping Criteria” on page 2-68
• “Tolerance Details” on page 2-70
• “Checking Validity of Gradients or Jacobians” on page 2-73
• “Bibliography” on page 2-76

2

Optimization Theory Overview
Optimization techniques are used to find a set of design parameters, x = {x1,x2,...,xn}, that can in
some way be defined as optimal. In a simple case, this process might be the minimization or
maximization of some system characteristic that is dependent on x. In a more advanced formulation,
the objective function f(x), to be minimized or maximized, might be subject to constraints in one or
more of these forms:

• Equality constraints, Gi(x) = 0 (i = 1,...,me)
• Inequality constraints, Gi(x) ≤ 0 (i = me + 1,...,m)
• Parameter bounds, xl, xu, where xl ≤ x ≤ xu, some xl can be –∞, and some xu can be ∞

A General Problem (GP) description is stated as

min
x

f (x), (2-1)

subject to

Gi(x) = 0 i = 1, ..., me
Gi(x) ≤ 0 i = me + 1, ..., m
xl ≤ x ≤ xu,

where x is the vector of length n design parameters, f(x) is the objective function (which returns a
scalar value), and the vector function G(x) returns a vector of length m containing the values of the
equality and inequality constraints evaluated at x.

An efficient and accurate solution to this problem depends not only on the size of the problem in
terms of the number of constraints and design variables, but also on characteristics of the objective
function and constraints. When both the objective function and the constraints are linear functions of
the design variable, the problem is known as a Linear Programming (LP) problem. Quadratic
Programming (QP) concerns the minimization or maximization of a quadratic objective function that
is linearly constrained. For both the LP and QP problems, reliable solution procedures are readily
available. More difficult to solve is the Nonlinear Programming (NP) problem in which the objective
function and constraints can be nonlinear functions of the design variables. A solution of the NP
problem generally requires an iterative procedure to establish a direction of search at each major
iteration. This solution is usually achieved by the solution of an LP, QP, or unconstrained subproblem.

All optimization takes place in real numbers. However, unconstrained least-squares problems and
equation solving can be formulated and solved using complex analytic functions. See “Complex
Numbers in Optimization Toolbox Solvers” on page 2-14.

2 Setting Up an Optimization

2-2

Optimization Toolbox Solvers
Optimization Toolbox solvers are grouped into four general categories:

• Minimizers on page 2-12

Solvers in this group attempt to find a local minimum of the objective function near a starting
point x0. They address problems of unconstrained optimization, linear programming, quadratic
programming, cone programming, and general nonlinear programming.

• Multiobjective minimizers on page 2-13

Solvers in this group attempt to either minimize the maximum value of a set of functions
(fminimax), or to find a location where a collection of functions is below some specified values
(fgoalattain).

• Equation solvers on page 2-13

Solvers in this group attempt to find a solution to a scalar- or vector-valued nonlinear equation
f(x) = 0 near a starting point x0. Equation-solving can be considered a form of optimization
because it is equivalent to finding the minimum norm of f(x) near x0.

• Least-Squares (curve-fitting) solvers on page 2-13

Solvers in this group attempt to minimize a sum of squares. This type of problem frequently arises
in fitting a model to data. The solvers address problems of finding nonnegative solutions, finding
bounded or linearly constrained solutions, and fitting parameterized nonlinear models to data.

For more information see “Problems Handled by Optimization Toolbox Functions” on page 2-12. See
“Optimization Decision Table” on page 2-4 for help choosing a solver for minimization.

Minimizers formulate optimization problems in the form

min
x

f (x),

possibly subject to constraints. f(x) is called an objective function. In general, f(x) is a scalar function
of type double, and x is a vector or scalar of type double. However, multiobjective optimization,
equation solving, and some sum-of-squares minimizers can have vector or matrix objective functions
F(x) of type double. To use Optimization Toolbox solvers for maximization instead of minimization,
see “Maximizing an Objective” on page 2-30.

Write the objective function for a solver in the form of a function file or anonymous function handle.
You can supply a gradient ∇f(x) for many solvers, and you can supply a Hessian for several solvers.
See “Write Objective Function”. Constraints have a special form, as described in “Write Constraints”.

 Optimization Toolbox Solvers

2-3

Optimization Decision Table
The following table is designed to help you choose a solver. It does not address multiobjective
optimization or equation solving. There are more details on all the solvers in “Problems Handled by
Optimization Toolbox Functions” on page 2-12.

In this table:

• * means relevant solvers are found in Global Optimization Toolbox (Global Optimization Toolbox)
functions (licensed separately from Optimization Toolbox solvers).

• fmincon applies to most smooth objective functions with smooth constraints. It is not listed as a
preferred solver for least squares or linear or quadratic programming because the listed solvers
are usually more efficient.

• The table has suggested functions, but it is not meant to unduly restrict your choices. For
example, fmincon can be effective on some nonsmooth problems.

• The Global Optimization Toolbox ga and surrogateopt functions can address mixed-integer
nonlinear programming problems.

• The Statistics and Machine Learning Toolbox™ bayesopt function can address low-dimensional
deterministic or stochastic optimization problems with combinations of continuous, integer, or
categorical variables.

Solvers by Objective and Constraint

Constraint Type Objective Type
Linear Quadratic Least Squares Smooth

Nonlinear
Nonsmooth

None n/a (f = const, or
min = −∞)

quadprog,
Information

mldivide,
lsqcurvefit,
lsqnonlin,
Information

fminsearch,
fminunc,
Information

fminsearch, *

Bound linprog,
Information

quadprog,
Information

lsqcurvefit,
lsqlin,
lsqnonlin,
lsqnonneg,
Information

fminbnd,
fmincon,
fseminf,
Information

fminbnd, *

Linear linprog,
Information

quadprog,
Information

lsqlin,
Information

fmincon,
fseminf,
Information

*

Cone coneprog,
Information

fmincon,
Information

fmincon,
Information

fmincon,
Information

*

General Smooth fmincon,
Information

fmincon,
Information

fmincon,
Information

fmincon,
fseminf,
Information

*

Discrete, with
Bound or Linear

intlinprog,
Information

* * * *

2 Setting Up an Optimization

2-4

Note This table does not list multiobjective solvers nor equation solvers. See “Problems Handled by
Optimization Toolbox Functions” on page 2-12 for a complete list of problems addressed by
Optimization Toolbox functions.

Note Some solvers have several algorithms. For help choosing, see “Choosing the Algorithm” on
page 2-6.

 Optimization Decision Table

2-5

Choosing the Algorithm
In this section...
“fmincon Algorithms” on page 2-6
“fsolve Algorithms” on page 2-7
“fminunc Algorithms” on page 2-7
“Least Squares Algorithms” on page 2-8
“Linear Programming Algorithms” on page 2-9
“Quadratic Programming Algorithms” on page 2-9
“Large-Scale vs. Medium-Scale Algorithms” on page 2-10
“Potential Inaccuracy with Interior-Point Algorithms” on page 2-10

fmincon Algorithms
fmincon has five algorithm options:

• 'interior-point' (default)
• 'trust-region-reflective'
• 'sqp'
• 'sqp-legacy'
• 'active-set'

Use optimoptions to set the Algorithm option at the command line.

Recommendations
• Use the 'interior-point' algorithm first.

For help if the minimization fails, see “When the Solver Fails” on page 4-3 or “When the Solver
Might Have Succeeded” on page 4-12.

• To run an optimization again to obtain more speed on small- to medium-sized problems, try
'sqp' next, and 'active-set' last.

• Use 'trust-region-reflective' when applicable. Your problem must have: objective
function includes gradient, only bounds, or only linear equality constraints (but not both).

See “Potential Inaccuracy with Interior-Point Algorithms” on page 2-10.

Reasoning Behind the Recommendations

• 'interior-point' handles large, sparse problems, as well as small dense problems. The
algorithm satisfies bounds at all iterations, and can recover from NaN or Inf results. It is a large-
scale algorithm; see “Large-Scale vs. Medium-Scale Algorithms” on page 2-10. The algorithm can
use special techniques for large-scale problems. For details, see Interior-Point Algorithm in
fmincon options.

• 'sqp' satisfies bounds at all iterations. The algorithm can recover from NaN or Inf results. It is
not a large-scale algorithm; see “Large-Scale vs. Medium-Scale Algorithms” on page 2-10.

• 'sqp-legacy' is similar to 'sqp', but usually is slower and uses more memory.

2 Setting Up an Optimization

2-6

• 'active-set' can take large steps, which adds speed. The algorithm is effective on some
problems with nonsmooth constraints. It is not a large-scale algorithm; see “Large-Scale vs.
Medium-Scale Algorithms” on page 2-10.

• 'trust-region-reflective' requires you to provide a gradient, and allows only bounds or
linear equality constraints, but not both. Within these limitations, the algorithm handles both large
sparse problems and small dense problems efficiently. It is a large-scale algorithm; see “Large-
Scale vs. Medium-Scale Algorithms” on page 2-10. The algorithm can use special techniques to
save memory usage, such as a Hessian multiply function. For details, see Trust-Region-
Reflective Algorithm in fmincon options.

For descriptions of the algorithms, see “Constrained Nonlinear Optimization Algorithms” on page 5-
19.

fsolve Algorithms
fsolve has three algorithms:

• 'trust-region-dogleg' (default)
• 'trust-region'
• 'levenberg-marquardt'

Use optimoptions to set the Algorithm option at the command line.

Recommendations
• Use the 'trust-region-dogleg' algorithm first.

For help if fsolve fails, see “When the Solver Fails” on page 4-3 or “When the Solver Might
Have Succeeded” on page 4-12.

• To solve equations again if you have a Jacobian multiply function, or want to tune the internal
algorithm (see Trust-Region Algorithm in fsolve options), try 'trust-region'.

• Try timing all the algorithms, including 'levenberg-marquardt', to find the algorithm that
works best on your problem.

Reasoning Behind the Recommendations

• 'trust-region-dogleg' is the only algorithm that is specially designed to solve nonlinear
equations. The others attempt to minimize the sum of squares of the function.

• The 'trust-region' algorithm is effective on sparse problems. It can use special techniques
such as a Jacobian multiply function for large-scale problems.

For descriptions of the algorithms, see “Equation Solving Algorithms” on page 12-2.

fminunc Algorithms
fminunc has two algorithms:

• 'quasi-newton' (default)
• 'trust-region'

Use optimoptions to set the Algorithm option at the command line.

 Choosing the Algorithm

2-7

Recommendations
• If your objective function includes a gradient, use 'Algorithm' = 'trust-region', and set

the SpecifyObjectiveGradient option to true.
• Otherwise, use 'Algorithm' = 'quasi-newton'.

For help if the minimization fails, see “When the Solver Fails” on page 4-3 or “When the Solver
Might Have Succeeded” on page 4-12.

For descriptions of the algorithms, see “Unconstrained Nonlinear Optimization Algorithms” on page
5-2.

Least Squares Algorithms
lsqlin

lsqlin has three algorithms:

• 'interior-point', the default
• 'trust-region-reflective'
• 'active-set'

Use optimoptions to set the Algorithm option at the command line.

Recommendations
• Try 'interior-point' first.

Tip For better performance when your input matrix C has a large fraction of nonzero entries,
specify C as an ordinary double matrix. Similarly, for better performance when C has relatively
few nonzero entries, specify C as sparse. For data type details, see “Sparse Matrices”. You can
also set the internal linear algebra type by using the 'LinearSolver' option.

• If you have no constraints or only bound constraints, and want higher accuracy, more speed, or
want to use a “Jacobian Multiply Function with Linear Least Squares” on page 11-31, try
'trust-region-reflective'.

• If you have a large number of linear constraints and not a large number of variables, try
'active-set'.

For help if the minimization fails, see “When the Solver Fails” on page 4-3 or “When the Solver
Might Have Succeeded” on page 4-12.

See “Potential Inaccuracy with Interior-Point Algorithms” on page 2-10.

For descriptions of the algorithms, see “Least-Squares (Model Fitting) Algorithms” on page 11-2.

lsqcurvefit and lsqnonlin

lsqcurvefit and lsqnonlin have two algorithms:

• 'trust-region-reflective' (default)
• 'levenberg-marquardt'

2 Setting Up an Optimization

2-8

Use optimoptions to set the Algorithm option at the command line.

Recommendations
• Generally, try 'trust-region-reflective' first.
• If your problem is underdetermined (fewer equations than dimensions), use 'levenberg-

marquardt'.

For help if the minimization fails, see “When the Solver Fails” on page 4-3 or “When the Solver
Might Have Succeeded” on page 4-12.

For descriptions of the algorithms, see “Least-Squares (Model Fitting) Algorithms” on page 11-2.

Linear Programming Algorithms
linprog has three algorithms:

• 'dual-simplex', the default
• 'interior-point-legacy'
• 'interior-point'

Use optimoptions to set the Algorithm option at the command line.

Recommendations
Use the 'dual-simplex' algorithm or the 'interior-point' algorithm first.

For help if the minimization fails, see “When the Solver Fails” on page 4-3 or “When the Solver
Might Have Succeeded” on page 4-12.

See “Potential Inaccuracy with Interior-Point Algorithms” on page 2-10.

Reasoning Behind the Recommendations

• Often, the 'dual-simplex' and 'interior-point' algorithms are fast, and use the least
memory.

• The 'interior-point-legacy' algorithm is similar to 'interior-point', but 'interior-
point-legacy' can be slower, less robust, or use more memory.

For descriptions of the algorithms, see “Linear Programming Algorithms” on page 8-2.

Quadratic Programming Algorithms
quadprog has three algorithms:

• 'interior-point-convex' (default)
• 'trust-region-reflective'
• 'active-set'

Use optimoptions to set the Algorithm option at the command line.

 Choosing the Algorithm

2-9

Recommendations
• If you have a convex problem, or if you don't know whether your problem is convex, use

'interior-point-convex'.
• Tip For better performance when your Hessian matrix H has a large fraction of nonzero entries,

specify H as an ordinary double matrix. Similarly, for better performance when H has relatively
few nonzero entries, specify H as sparse. For data type details, see “Sparse Matrices”. You can
also set the internal linear algebra type by using the 'LinearSolver' option.

• If you have a nonconvex problem with only bounds, or with only linear equalities, use 'trust-
region-reflective'.

• If you have a positive semidefinite problem with a large number of linear constraints and not a
large number of variables, try 'active-set'.

For help if the minimization fails, see “When the Solver Fails” on page 4-3 or “When the Solver
Might Have Succeeded” on page 4-12.

See “Potential Inaccuracy with Interior-Point Algorithms” on page 2-10.

For descriptions of the algorithms, see “Quadratic Programming Algorithms” on page 10-2.

Large-Scale vs. Medium-Scale Algorithms
An optimization algorithm is large scale when it uses linear algebra that does not need to store, nor
operate on, full matrices. This may be done internally by storing sparse matrices, and by using sparse
linear algebra for computations whenever possible. Furthermore, the internal algorithms either
preserve sparsity, such as a sparse Cholesky decomposition, or do not generate matrices, such as a
conjugate gradient method.

In contrast, medium-scale methods internally create full matrices and use dense linear algebra. If a
problem is sufficiently large, full matrices take up a significant amount of memory, and the dense
linear algebra may require a long time to execute.

Don't let the name “large scale” mislead you; you can use a large-scale algorithm on a small problem.
Furthermore, you do not need to specify any sparse matrices to use a large-scale algorithm. Choose a
medium-scale algorithm to access extra functionality, such as additional constraint types, or possibly
for better performance.

Potential Inaccuracy with Interior-Point Algorithms
Interior-point algorithms in fmincon, quadprog, lsqlin, and linprog have many good
characteristics, such as low memory usage and the ability to solve large problems quickly. However,
their solutions can be slightly less accurate than those from other algorithms. The reason for this
potential inaccuracy is that the (internally calculated) barrier function keeps iterates away from
inequality constraint boundaries.

For most practical purposes, this inaccuracy is usually quite small.

To reduce the inaccuracy, try to:

• Rerun the solver with smaller StepTolerance, OptimalityTolerance, and possibly
ConstraintTolerance tolerances (but keep the tolerances sensible.) See “Tolerances and
Stopping Criteria” on page 2-68).

2 Setting Up an Optimization

2-10

• Run a different algorithm, starting from the interior-point solution. This can fail, because some
algorithms can use excessive memory or time, and all linprog and some quadprog algorithms
do not accept an initial point.

For example, try to minimize the function x when bounded below by 0. Using the fmincon default
interior-point algorithm:

options = optimoptions(@fmincon,'Algorithm','interior-point','Display','off');
x = fmincon(@(x)x,1,[],[],[],[],0,[],[],options)

x =

 2.0000e-08

Using the fmincon sqp algorithm:

options.Algorithm = 'sqp';
x2 = fmincon(@(x)x,1,[],[],[],[],0,[],[],options)

x2 =

 0

Similarly, solve the same problem using the linprog interior-point-legacy algorithm:

opts = optimoptions(@linprog,'Display','off','Algorithm','interior-point-legacy');
x = linprog(1,[],[],[],[],0,[],1,opts)

x =

 2.0833e-13

Using the linprog dual-simplex algorithm:

opts.Algorithm = 'dual-simplex';
x2 = linprog(1,[],[],[],[],0,[],1,opts)

x2 =

 0

In these cases, the interior-point algorithms are less accurate, but the answers are quite close to the
correct answer.

 Choosing the Algorithm

2-11

Problems Handled by Optimization Toolbox Functions
The following tables show the functions available for minimization, multiobjective optimization,
equation solving, and solving least-squares (model-fitting) problems.

Minimization Problems

Type Formulation Solver
Scalar minimization min

x
f (x)

such that lb < x < ub (x is scalar)

fminbnd

Unconstrained minimization min
x

f (x) fminunc,
fminsearch

Linear programming min
x

f Tx

such that A·x ≤ b, Aeq·x = beq, lb ≤ x ≤ ub

linprog

Mixed-integer linear programming min
x

f Tx

such that A·x ≤ b, Aeq·x = beq, lb ≤ x ≤ ub, x(intcon) is
integer-valued

intlinprog

Quadratic programming min
x

1
2xTHx + cTx

such that A·x ≤ b, Aeq·x = beq, lb ≤ x ≤ ub

quadprog

Cone programming min
x

f Tx

such that A ⋅ x− b ≤ dT ⋅ x− γ, A·x ≤ b, Aeq·x = beq,
lb ≤ x ≤ ub

coneprog

Constrained minimization min
x

f (x)

such that c(x) ≤ 0, ceq(x) = 0, A·x ≤ b, Aeq·x = beq,
lb ≤ x ≤ ub

fmincon

Semi-infinite minimization min
x

f (x)

such that K(x,w) ≤ 0 for all w, c(x) ≤ 0, ceq(x) = 0,
A·x ≤ b, Aeq·x = beq, lb ≤ x ≤ ub

fseminf

2 Setting Up an Optimization

2-12

Multiobjective Optimization Problems

Type Formulation Solver
Goal attainment min

x, γ
γ

such that F(x) – w·γ ≤ goal, c(x) ≤ 0, ceq(x) = 0,
A·x ≤ b, Aeq·x = beq, lb ≤ x ≤ ub

fgoalattain

Minimax min
x

max
i

Fi(x)

such that c(x) ≤ 0, ceq(x) = 0, A·x ≤ b, Aeq·x = beq,
lb ≤ x ≤ ub

fminimax

Equation Solving Problems

Type Formulation Solver
Linear equations C·x = d, n equations, n variables mldivide

(matrix left
division)

Nonlinear equation of one variable f(x) = 0 fzero
Nonlinear equations F(x) = 0, n equations, n variables fsolve

Least-Squares (Model-Fitting) Problems

Type Formulation Solver
Linear least squares min

x
1
2 C ⋅ x− d 2

2

m equations, n variables

mldivide
(matrix left
division)

Nonnegative linear least squares min
x

1
2 C ⋅ x− d 2

2

such that x ≥ 0

lsqnonneg

Constrained linear least squares min
x

1
2 C ⋅ x− d 2

2

such that A·x ≤ b, Aeq·x = beq, lb ≤ x ≤ ub

lsqlin

Nonlinear least squares min
x

F(x) 2
2 = min

x
∑
i

Fi
2(x)

such that lb ≤ x ≤ ub

lsqnonlin

Nonlinear curve fitting min
x

F(x, xdata)− ydata 2
2

such that lb ≤ x ≤ ub

lsqcurvefit

 Problems Handled by Optimization Toolbox Functions

2-13

Complex Numbers in Optimization Toolbox Solvers
Generally, Optimization Toolbox solvers do not accept or handle objective functions or constraints
with complex values. However, the least-squares solvers lsqcurvefit, lsqnonlin, and lsqlin,
and the fsolve solver can handle these objective functions under the following restrictions:

• The objective function must be analytic in the complex function sense (for details, see Nevanlinna
and Paatero [1]). For example, the function f(z) = Re(z) – iIm(z) is not analytic, but the function
f(z) = exp(z) is analytic. This restriction automatically holds for lsqlin.

• There must be no constraints, not even bounds. Complex numbers are not well ordered, so it is not
clear what “bounds” might mean. When there are problem bounds, nonlinear least-squares solvers
disallow steps leading to complex values.

• Do not set the FunValCheck option to 'on'. This option immediately halts a solver when the solver
encounters a complex value.

Warning The problem-based approach does not support complex values in an objective function,
nonlinear equalities, or nonlinear inequalities. If a function calculation has a complex value, even as
an intermediate value, the final result can be incorrect.

The least-squares solvers and fsolve try to minimize the squared norm of a vector of function
values. This makes sense even in the presence of complex values.

If you have a non-analytic function or constraints, split the real and imaginary parts of the problem.
For an example, see “Fit a Model to Complex-Valued Data” on page 11-51.

To get the best (smallest norm) solution, try setting a complex initial point. For example, solving
1 + x4 = 0 fails if you use a real start point:

f = @(x)1+x^4;
x0 = 1;
x = fsolve(f,x0)

No solution found.

fsolve stopped because the problem appears regular as measured by the gradient,
but the vector of function values is not near zero as measured by the
default value of the function tolerance.

x =

 1.1176e-08

However, if you use a complex initial point, fsolve succeeds:

x0 = 1 + 1i/10;
x = fsolve(f,x0)

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the default value of the function tolerance, and
the problem appears regular as measured by the gradient.

2 Setting Up an Optimization

2-14

x =

 0.7071 + 0.7071i

References
[1] Nevanlinna, Rolf, and V. Paatero. Introduction to Complex Analysis. Addison-Wesley, 1969.

See Also

Related Examples
• “Fit a Model to Complex-Valued Data” on page 11-51

 Complex Numbers in Optimization Toolbox Solvers

2-15

Types of Objective Functions
Many Optimization Toolbox solvers minimize a scalar function of a multidimensional vector. The
objective function is the function the solvers attempt to minimize. Several solvers accept vector-
valued objective functions, and some solvers use objective functions you specify by vectors or
matrices.

Objective Type Solvers How to Write Objectives
Scalar fmincon

fminunc

fminbnd

fminsearch

fseminf

fzero

“Writing Scalar Objective Functions” on page 2-
17

Nonlinear least squares lsqcurvefit

lsqnonlin

“Writing Vector and Matrix Objective Functions”
on page 2-26

Multivariable equation solving fsolve
Multiobjective fgoalattain

fminimax
Linear programming linprog “Writing Objective Functions for Linear or

Quadratic Problems” on page 2-29Mixed-integer linear
programming

intlinprog

Linear least squares lsqlin

lsqnonneg
Quadratic programming quadprog

2 Setting Up an Optimization

2-16

Writing Scalar Objective Functions
In this section...
“Function Files” on page 2-17
“Anonymous Function Objectives” on page 2-18
“Including Gradients and Hessians” on page 2-19

Function Files
A scalar objective function file accepts one input, say x, and returns one real scalar output, say f. The
input x can be a scalar, vector, or matrix on page 2-31. A function file can return more outputs (see
“Including Gradients and Hessians” on page 2-19).

For example, suppose your objective is a function of three variables, x, y, and z:

f(x) = 3*(x – y)4 + 4*(x + z)2 / (1 + x2 + y2 + z2) + cosh(x – 1) + tanh(y + z).

1 Write this function as a file that accepts the vector xin = [x;y;z] and returns f:

function f = myObjective(xin)
f = 3*(xin(1)-xin(2))^4 + 4*(xin(1)+xin(3))^2/(1+norm(xin)^2) ...
 + cosh(xin(1)-1) + tanh(xin(2)+xin(3));

2 Save it as a file named myObjective.m to a folder on your MATLAB path.
3 Check that the function evaluates correctly:

myObjective([1;2;3])

ans =
 9.2666

For information on how to include extra parameters, see “Passing Extra Parameters” on page 2-57.
For more complex examples of function files, see “Minimization with Gradient and Hessian Sparsity
Pattern” on page 5-16 or “Minimization with Bound Constraints and Banded Preconditioner” on
page 5-90.

Local Functions and Nested Functions

Functions can exist inside other files as local functions or nested functions. Using local functions or
nested functions can lower the number of distinct files you save. Using nested functions also lets you
access extra parameters, as shown in “Nested Functions” on page 2-58.

For example, suppose you want to minimize the myObjective.m objective function, described in
“Function Files” on page 2-17, subject to the ellipseparabola.m constraint, described in
“Nonlinear Constraints” on page 2-37. Instead of writing two files, myObjective.m and
ellipseparabola.m, write one file that contains both functions as local functions:

function [x fval] = callObjConstr(x0,options)
% Using a local function for just one file

if nargin < 2
 options = optimoptions('fmincon','Algorithm','interior-point');
end

 Writing Scalar Objective Functions

2-17

[x fval] = fmincon(@myObjective,x0,[],[],[],[],[],[], ...
 @ellipseparabola,options);

function f = myObjective(xin)
f = 3*(xin(1)-xin(2))^4 + 4*(xin(1)+xin(3))^2/(1+sum(xin.^2)) ...
 + cosh(xin(1)-1) + tanh(xin(2)+xin(3));

function [c,ceq] = ellipseparabola(x)
c(1) = (x(1)^2)/9 + (x(2)^2)/4 - 1;
c(2) = x(1)^2 - x(2) - 1;
ceq = [];

Solve the constrained minimization starting from the point [1;1;1]:

[x fval] = callObjConstr(ones(3,1))

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is
non-decreasing in feasible directions, to within the default
value of the function tolerance, and constraints are satisfied
to within the default value of the constraint tolerance.

x =
 1.1835
 0.8345
 -1.6439

fval =
 0.5383

Anonymous Function Objectives
Use anonymous functions to write simple objective functions. For more information about anonymous
functions, see “What Are Anonymous Functions?”. Rosenbrock's function is simple enough to write as
an anonymous function:

anonrosen = @(x)(100*(x(2) - x(1)^2)^2 + (1-x(1))^2);

Check that anonrosen evaluates correctly at [-1 2]:

anonrosen([-1 2])

ans =
 104

Minimizing anonrosen with fminunc yields the following results:

options = optimoptions(@fminunc,'Algorithm','quasi-newton');
[x fval] = fminunc(anonrosen,[-1;2],options)

Local minimum found.

Optimization completed because the size of the gradient
is less than the default value of the function tolerance.

x =
 1.0000

2 Setting Up an Optimization

2-18

 1.0000

fval =
 1.2266e-10

Including Gradients and Hessians
• “Provide Derivatives For Solvers” on page 2-19
• “How to Include Gradients” on page 2-19
• “Including Hessians” on page 2-21
• “Benefits of Including Derivatives” on page 2-24
• “Choose Input Hessian Approximation for interior-point fmincon” on page 2-24

Provide Derivatives For Solvers

For fmincon and fminunc, you can include gradients in the objective function. Generally, solvers are
more robust, and can be slightly faster when you include gradients. See “Benefits of Including
Derivatives” on page 2-24. To also include second derivatives (Hessians), see “Including Hessians”
on page 2-21.

The following table shows which algorithms can use gradients and Hessians.

Solver Algorithm Gradient Hessian
fmincon active-set Optional No

interior-point Optional Optional (see “Hessian for fmincon
interior-point algorithm” on page 2-21)

sqp Optional No
trust-region-reflective Required Optional (see “Hessian for fminunc trust-

region or fmincon trust-region-reflective
algorithms” on page 2-21)

fminunc quasi-newton Optional No
trust-region Required Optional (see “Hessian for fminunc trust-

region or fmincon trust-region-reflective
algorithms” on page 2-21)

How to Include Gradients

1 Write code that returns:

• The objective function (scalar) as the first output
• The gradient (vector) as the second output

2 Set the SpecifyObjectiveGradient option to true using optimoptions. If appropriate, also
set the SpecifyConstraintGradient option to true.

3 Optionally, check if your gradient function matches a finite-difference approximation. See
“Checking Validity of Gradients or Jacobians” on page 2-73.

Tip For most flexibility, write conditionalized code. Conditionalized means that the number of
function outputs can vary, as shown in the following example. Conditionalized code does not error

 Writing Scalar Objective Functions

2-19

depending on the value of the SpecifyObjectiveGradient option. Unconditionalized code
requires you to set options appropriately.

For example, consider Rosenbrock's function

f (x) = 100 x2− x1
2 2 + (1− x1)2,

which is described and plotted in “Solve a Constrained Nonlinear Problem, Solver-Based” on page 1-
11. The gradient of f(x) is

∇ f (x) =
−400 x2− x1

2 x1− 2 1− x1

200 x2− x1
2

,

rosentwo is a conditionalized function that returns whatever the solver requires:

function [f,g] = rosentwo(x)
% Calculate objective f
f = 100*(x(2) - x(1)^2)^2 + (1-x(1))^2;

if nargout > 1 % gradient required
 g = [-400*(x(2)-x(1)^2)*x(1)-2*(1-x(1));
 200*(x(2)-x(1)^2)];

end

nargout checks the number of arguments that a calling function specifies. See “Find Number of
Function Arguments”.

The fminunc solver, designed for unconstrained optimization, allows you to minimize Rosenbrock's
function. Tell fminunc to use the gradient and Hessian by setting options:

options = optimoptions(@fminunc,'Algorithm','trust-region',...
 'SpecifyObjectiveGradient',true);

Run fminunc starting at [-1;2]:

[x fval] = fminunc(@rosentwo,[-1;2],options)
Local minimum found.

Optimization completed because the size of the gradient
is less than the default value of the function tolerance.

x =
 1.0000
 1.0000

fval =
 1.9886e-17

If you have a Symbolic Math Toolbox™ license, you can calculate gradients and Hessians
automatically, as described in “Calculate Gradients and Hessians Using Symbolic Math Toolbox” on
page 5-103.

2 Setting Up an Optimization

2-20

Including Hessians

You can include second derivatives with the fmincon 'trust-region-reflective' and
'interior-point' algorithms, and with the fminunc 'trust-region' algorithm. There are
several ways to include Hessian information, depending on the type of information and on the
algorithm.

You must also include gradients (set SpecifyObjectiveGradient to true and, if applicable,
SpecifyConstraintGradient to true) in order to include Hessians.

• “Hessian for fminunc trust-region or fmincon trust-region-reflective algorithms” on page 2-21
• “Hessian for fmincon interior-point algorithm” on page 2-21
• “Hessian Multiply Function” on page 2-23

Hessian for fminunc trust-region or fmincon trust-region-reflective algorithms

These algorithms either have no constraints, or have only bound or linear equality constraints.
Therefore the Hessian is the matrix of second derivatives of the objective function.

Include the Hessian matrix as the third output of the objective function. For example, the Hessian
H(x) of Rosenbrock’s function is (see “How to Include Gradients” on page 2-19)

H(x) =
1200x1

2− 400x2 + 2 −400x1

−400x1 200
.

Include this Hessian in the objective:

function [f, g, H] = rosenboth(x)
% Calculate objective f
f = 100*(x(2) - x(1)^2)^2 + (1-x(1))^2;

if nargout > 1 % gradient required
 g = [-400*(x(2)-x(1)^2)*x(1)-2*(1-x(1));
 200*(x(2)-x(1)^2)];

 if nargout > 2 % Hessian required
 H = [1200*x(1)^2-400*x(2)+2, -400*x(1);
 -400*x(1), 200];
 end

end

Set HessianFcn to 'objective'. For example,

options = optimoptions('fminunc','Algorithm','trust-region',...
 'SpecifyObjectiveGradient',true,'HessianFcn','objective');

Hessian for fmincon interior-point algorithm

The Hessian is the Hessian of the Lagrangian, where the Lagrangian L(x,λ) is

L(x, λ) = f (x) + ∑λg, igi(x) + ∑λh, ihi(x) .

g and h are vector functions representing all inequality and equality constraints respectively
(meaning bound, linear, and nonlinear constraints), so the minimization problem is

 Writing Scalar Objective Functions

2-21

min
x

f (x) subject to g(x) ≤ 0, h(x) = 0.

For details, see “Constrained Optimality Theory” on page 3-12. The Hessian of the Lagrangian is

∇xx
2 L(x, λ) = ∇2 f (x) + ∑λg, i∇2gi(x) + ∑λh, i∇2hi(x) . (2-2)

To include a Hessian, write a function with the syntax

hessian = hessianfcn(x,lambda)

hessian is an n-by-n matrix, sparse or dense, where n is the number of variables. If hessian is large
and has relatively few nonzero entries, save running time and memory by representing hessian as a
sparse matrix. lambda is a structure with the Lagrange multiplier vectors associated with the
nonlinear constraints:

lambda.ineqnonlin
lambda.eqnonlin

fmincon computes the structure lambda and passes it to your Hessian function. hessianfcn must
calculate the sums in “Equation 2-2”. Indicate that you are supplying a Hessian by setting these
options:

options = optimoptions('fmincon','Algorithm','interior-point',...
 'SpecifyObjectiveGradient',true,'SpecifyConstraintGradient',true,...
 'HessianFcn',@hessianfcn);

For example, to include a Hessian for Rosenbrock’s function constrained to the unit disk x1
2 + x2

2 ≤ 1,
notice that the constraint function g(x) = x1

2 + x2
2− 1 ≤ 0 has gradient and second derivative matrix

∇g(x) =
2x1
2x2

Hg(x) =
2 0
0 2

.

Write the Hessian function as

function Hout = hessianfcn(x,lambda)
% Hessian of objective
H = [1200*x(1)^2-400*x(2)+2, -400*x(1);
 -400*x(1), 200];
% Hessian of nonlinear inequality constraint
Hg = 2*eye(2);
Hout = H + lambda.ineqnonlin*Hg;

Save hessianfcn on your MATLAB path. To complete the example, the constraint function including
gradients is

function [c,ceq,gc,gceq] = unitdisk2(x)
c = x(1)^2 + x(2)^2 - 1;
ceq = [];

if nargout > 2
 gc = [2*x(1);2*x(2)];

2 Setting Up an Optimization

2-22

 gceq = [];
end

Solve the problem including gradients and Hessian.

fun = @rosenboth;
nonlcon = @unitdisk2;
x0 = [-1;2];
options = optimoptions('fmincon','Algorithm','interior-point',...
 'SpecifyObjectiveGradient',true,'SpecifyConstraintGradient',true,...
 'HessianFcn',@hessianfcn);
[x,fval,exitflag,output] = fmincon(fun,x0,[],[],[],[],[],[],@unitdisk2,options);

For other examples using an interior-point Hessian, see “fmincon Interior-Point Algorithm with
Analytic Hessian” on page 5-72 and “Calculate Gradients and Hessians Using Symbolic Math
Toolbox” on page 5-103.

Hessian Multiply Function

Instead of a complete Hessian function, both the fmincon interior-point and trust-region-
reflective algorithms allow you to supply a Hessian multiply function. This function gives the
result of a Hessian-times-vector product, without computing the Hessian directly. This can save
memory. The SubproblemAlgorithm option must be 'cg' for a Hessian multiply function to work;
this is the trust-region-reflective default.

The syntaxes for the two algorithms differ.

• For the interior-point algorithm, the syntax is

W = HessMultFcn(x,lambda,v);

The result W should be the product H*v, where H is the Hessian of the Lagrangian at x (see
“Equation 15-1”), lambda is the Lagrange multiplier (computed by fmincon), and v is a vector of
size n-by-1. Set options as follows:

options = optimoptions('fmincon','Algorithm','interior-point','SpecifyObjectiveGradient',true,...
 'SpecifyConstraintGradient',true,'SubproblemAlgorithm','cg','HessianMultiplyFcn',@HessMultFcn);

Supply the function HessMultFcn, which returns an n-by-1 vector, where n is the number of
dimensions of x. The HessianMultiplyFcn option enables you to pass the result of multiplying
the Hessian by a vector without calculating the Hessian.

• The trust-region-reflective algorithm does not involve lambda:

W = HessMultFcn(H,v);

The result W = H*v. fmincon passes H as the value returned in the third output of the objective
function (see “Hessian for fminunc trust-region or fmincon trust-region-reflective algorithms” on
page 2-21). fmincon also passes v, a vector or matrix with n rows. The number of columns in v
can vary, so write HessMultFcn to accept an arbitrary number of columns. H does not have to be
the Hessian; rather, it can be anything that enables you to calculate W = H*v.

Set options as follows:

options = optimoptions('fmincon','Algorithm','trust-region-reflective',...
 'SpecifyObjectiveGradient',true,'HessianMultiplyFcn',@HessMultFcn);

 Writing Scalar Objective Functions

2-23

For an example using a Hessian multiply function with the trust-region-reflective
algorithm, see “Minimization with Dense Structured Hessian, Linear Equalities” on page 5-99.

Benefits of Including Derivatives

If you do not provide gradients, solvers estimate gradients via finite differences. If you provide
gradients, your solver need not perform this finite difference estimation, so can save time and be
more accurate, although a finite-difference estimate can be faster for complicated derivatives.
Furthermore, solvers use an approximate Hessian, which can be far from the true Hessian. Providing
a Hessian can yield a solution in fewer iterations. For example, see the end of “Calculate Gradients
and Hessians Using Symbolic Math Toolbox” on page 5-103.

For constrained problems, providing a gradient has another advantage. A solver can reach a point x
such that x is feasible, but, for this x, finite differences around x always lead to an infeasible point.
Suppose further that the objective function at an infeasible point returns a complex output, Inf, NaN,
or error. In this case, a solver can fail or halt prematurely. Providing a gradient allows a solver to
proceed. To obtain this benefit, you might also need to include the gradient of a nonlinear constraint
function, and set the SpecifyConstraintGradient option to true. See “Nonlinear Constraints”
on page 2-37.

Choose Input Hessian Approximation for interior-point fmincon

The fmincon interior-point algorithm has many options for selecting an input Hessian
approximation. For syntax details, see “Hessian as an Input” on page 15-105. Here are the options,
along with estimates of their relative characteristics.

Hessian Relative Memory Usage Relative Efficiency
'bfgs' (default) High (for large problems) High
'lbfgs' Low to Moderate Moderate
'fin-diff-grads' Low Moderate
'HessianMultiplyFcn' Low (can depend on your code) Moderate
'HessianFcn' ? (depends on your code) High (depends on your code)

Use the default 'bfgs' Hessian unless you

• Run out of memory — Try 'lbfgs' instead of 'bfgs'. If you can provide your own gradients, try
'fin-diff-grads', and set the SpecifyObjectiveGradient and
SpecifyConstraintGradient options to true.

• Want more efficiency — Provide your own gradients and Hessian. See “Including Hessians” on
page 2-21, “fmincon Interior-Point Algorithm with Analytic Hessian” on page 5-72, and
“Calculate Gradients and Hessians Using Symbolic Math Toolbox” on page 5-103.

The reason 'lbfgs' has only moderate efficiency is twofold. It has relatively expensive Sherman-
Morrison updates. And the resulting iteration step can be somewhat inaccurate due to the 'lbfgs'
limited memory.

The reason 'fin-diff-grads' and HessianMultiplyFcn have only moderate efficiency is that
they use a conjugate gradient approach. They accurately estimate the Hessian of the objective
function, but they do not generate the most accurate iteration step. For more information, see
“fmincon Interior Point Algorithm” on page 5-30, and its discussion of the LDL approach and the
conjugate gradient approach to solving “Equation 5-53”.

2 Setting Up an Optimization

2-24

See Also

More About
• “Checking Validity of Gradients or Jacobians” on page 2-73

 Writing Scalar Objective Functions

2-25

Writing Vector and Matrix Objective Functions
In this section...
“What Are Vector and Matrix Objective Functions?” on page 2-26
“Jacobians of Vector Functions” on page 2-26
“Jacobians of Matrix Functions” on page 2-27
“Jacobians with Matrix-Valued Independent Variables” on page 2-27

What Are Vector and Matrix Objective Functions?
Some solvers, such as fsolve and lsqcurvefit, have objective functions that are vectors or
matrices. The main difference in usage between these types of objective functions and scalar
objective functions on page 2-17 is how you write their derivatives. The first-order partial derivatives
of a vector-valued or matrix-valued function is called a Jacobian; the first-order partial derivatives of a
scalar function is called a gradient.

For information on complex-valued objective functions, see “Complex Numbers in Optimization
Toolbox Solvers” on page 2-14.

Jacobians of Vector Functions
If x is a vector of independent variables and F(x) is a vector function, the Jacobian J(x) is

Ji j(x) =
∂Fi(x)
∂x j

.

If F has m components and x has k components, J is an m-by-k matrix.

For example, if

F(x) =
x1

2 + x2x3

sin x1 + 2x2− 3x3
,

then J(x) is

J(x) =
2x1 x3 x2

cos x1 + 2x2− 3x3 2cos x1 + 2x2− 3x3 −3cos x1 + 2x2− 3x3
.

The function file associated with this example is:

function [F jacF] = vectorObjective(x)
F = [x(1)^2 + x(2)*x(3);
 sin(x(1) + 2*x(2) - 3*x(3))];
if nargout > 1 % need Jacobian
 jacF = [2*x(1),x(3),x(2);
 cos(x(1)+2*x(2)-3*x(3)),2*cos(x(1)+2*x(2)-3*x(3)), ...
 -3*cos(x(1)+2*x(2)-3*x(3))];
end

To indicate to the solver that your objective function includes a Jacobian, set the
SpecifyObjectiveGradient option to true. For example:

2 Setting Up an Optimization

2-26

options = optimoptions('lsqnonlin','SpecifyObjectiveGradient',true);

Jacobians of Matrix Functions
To define the Jacobian of a matrix F(x), change the matrix to a vector, column by column. For
example, rewrite the matrix

F =
F11 F12
F21 F22
F31 F32

as a vector f

f =

F11
F21
F31
F12
F22
F32

.

The Jacobian of F is defined in terms of the Jacobian of f,

Ji j =
∂ f i
∂x j

.

If F is an m-by-n matrix, and x is a k-vector, the Jacobian is an mn-by-k matrix.

For example, if

F(x) =

x1x2 x1
3 + 3x2

2

5x2− x1
4 x2/x1

4− x2
2 x1

3− x2
4

,

then the Jacobian of F is

J(x) =

x2 x1

−4x1
3 5

0 −2x2

3x1
2 6x2

−x2/x1
2 1/x1

3x1
2 −4x2

3

.

Jacobians with Matrix-Valued Independent Variables
If x is a matrix, define the Jacobian of F(x) by changing the matrix x to a vector, column by column.
For example, if

 Writing Vector and Matrix Objective Functions

2-27

X =
x11 x12
x21 x22

,

then the gradient is defined in terms of the vector

x =

x11
x21
x12
x22

.

With

F =
F11 F12
F21 F22
F31 F32

,

and f having the vector form of F, the Jacobian of F(X) is defined as the Jacobian of f(x):

Ji j =
∂ f i
∂x j

.

So, for example,

J(3, 2) = ∂ f (3)
∂x(2) =

∂F31
∂X21

, and J(5, 4) = ∂ f (5)
∂x(4) =

∂F22
∂X22

.

If F is an m-by-n matrix and x is a j-by-k matrix, then the Jacobian is an mn-by-jk matrix.

See Also

More About
• “Checking Validity of Gradients or Jacobians” on page 2-73

2 Setting Up an Optimization

2-28

Writing Objective Functions for Linear or Quadratic Problems
The following solvers handle linear or quadratic objective functions:

• linprog and intlinprog: minimize

f'x = f(1)*x(1) + f(2)*x(2) +...+ f(n)*x(n).

Input the vector f for the objective. See the examples in “Linear Programming and Mixed-Integer
Linear Programming”.

• lsqlin and lsqnonneg: minimize

‖Cx - d‖.

Input the matrix C and the vector d for the objective. See “Nonnegative Linear Least Squares,
Solver-Based” on page 11-25.

• quadprog: minimize

1/2 * x'Hx + f'x
= 1/2 * (x(1)*H(1,1)*x(1) + 2*x(1)*H(1,2)*x(2) +...
+ x(n)*H(n,n)*x(n)) + f(1)*x(1) + f(2)*x(2) +...+ f(n)*x(n).

Input both the vector f and the symmetric matrix H for the objective. See “Quadratic
Programming and Cone Programming”.

 Writing Objective Functions for Linear or Quadratic Problems

2-29

Maximizing an Objective
All solvers attempt to minimize an objective function. If you have a maximization problem, that is, a
problem of the form

max
x

f (x),

then define g(x) = – f (x) and minimize g.

For example, to find the maximum of tan(cos(x)) near x = 5, evaluate

[x,fval] = fminunc(@(x)-tan(cos(x)),5)

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

x = 6.2832

fval = -1.5574

The maximum is 1.5574 (the negative of the reported fval), and occurs at x = 6.2832. This
answer is correct because, to five digits, the maximum is tan(1) = 1 . 5574, which occurs at
x = 2π = 6 . 2832.

2 Setting Up an Optimization

2-30

Matrix Arguments
Optimization Toolbox solvers accept vectors for many arguments, such as the initial point x0, lower
bounds lb, and upper bounds ub. They also accept matrices for these arguments, where matrix
means an array of any size. When your solver arguments are naturally arrays, not vectors, feel free to
provide the arguments as arrays.

Here is how solvers handle matrix arguments.

• Internally, solvers convert matrix arguments into vectors before processing. For example, x0
becomes x0(:). For an explanation of this syntax, see the A(:) entry in colon, or the "Indexing
with a Single Index" section of “Array Indexing”.

• For output, solvers reshape the solution x to the same size as the input x0.
• When x0 is a matrix, solvers pass x as a matrix of the same size as x0 to both the objective

function and to any nonlinear constraint function.
• “Linear Constraints” on page 2-35, though, take x in vector form, x(:). In other words, a linear

constraint of the form

A*x ≤ b or Aeq*x = beq

takes x as a vector, not a matrix. Ensure that your matrix A or Aeq has the same number of
columns as x0 has elements, or the solver will error.

See Also
colon

More About
• “Writing Scalar Objective Functions” on page 2-17
• “Bound Constraints” on page 2-34
• “Linear Constraints” on page 2-35
• “Nonlinear Constraints” on page 2-37
• “Array Indexing”

 Matrix Arguments

2-31

Types of Constraints
Optimization Toolbox solvers have special forms for constraints:

• “Bound Constraints” on page 2-34 — Lower and upper bounds on individual components; x ≥ l
and x ≤ u.

• “Linear Inequality Constraints” on page 2-35 — A·x ≤ b. A is an m-by-n matrix, which represents
m constraints for an n-dimensional vector x. b is m-dimensional.

• “Linear Equality Constraints” on page 2-36 — Aeq·x = beq. Equality constraints have the same
form as inequality constraints.

• “Nonlinear Constraints” on page 2-37 — c(x) ≤ 0 and ceq(x) = 0. Both c and ceq are scalars or
vectors representing several constraints.

Optimization Toolbox functions assume that inequality constraints have the form ci(x) ≤ 0 or A·x ≤ b.
Express greater-than constraints as less-than constraints by multiplying them by –1. For example, a
constraint of the form ci(x) ≥ 0 is equivalent to the constraint –ci(x) ≤ 0. A constraint of the form
A·x ≥ b is equivalent to the constraint –A·x ≤ –b. For more information, see “Linear Inequality
Constraints” on page 2-35 and “Nonlinear Constraints” on page 2-37.

You can sometimes write constraints in several ways. For best results, use the lowest numbered
constraints possible:

1 Bounds
2 Linear equalities
3 Linear inequalities
4 Nonlinear equalities
5 Nonlinear inequalities

For example, with a constraint 5 x ≤ 20, use a bound x ≤ 4 instead of a linear inequality or nonlinear
inequality.

For information on how to pass extra parameters to constraint functions, see “Passing Extra
Parameters” on page 2-57.

2 Setting Up an Optimization

2-32

Iterations Can Violate Constraints

In this section...
“Intermediate Iterations can Violate Constraints” on page 2-33
“Algorithms That Satisfy Bound Constraints” on page 2-33
“Solvers and Algorithms That Can Violate Bound Constraints” on page 2-33

Intermediate Iterations can Violate Constraints
Be careful when writing your objective and constraint functions. Intermediate iterations can lead to
points that are infeasible (do not satisfy constraints). If you write objective or constraint functions
that assume feasibility, these functions can error or give unexpected results.

For example, if you take a square root or logarithm of x, and x < 0, the result is not real. You can try
to avoid this error by setting 0 as a lower bound on x. Nevertheless, an intermediate iteration can
violate this bound.

Algorithms That Satisfy Bound Constraints
Some solver algorithms satisfy bound constraints at every iteration:

• fmincon interior-point, sqp, and trust-region-reflective algorithms
• lsqcurvefit trust-region-reflective algorithm
• lsqnonlin trust-region-reflective algorithm
• fminbnd

Note If you set a lower bound equal to an upper bound, iterations can violate these constraints.

Solvers and Algorithms That Can Violate Bound Constraints
The following solvers and algorithms can violate bound constraints at intermediate iterations:

• fmincon active-set algorithm
• fgoalattain solver
• fminimax solver
• fseminf solver

See Also

More About
• “Bound Constraints” on page 2-34

 Iterations Can Violate Constraints

2-33

Bound Constraints
Lower and upper bounds limit the components of the solution x.

If you know the bounds on the location of an optimum, you can obtain faster and more reliable
solutions by explicitly including these bounds in your problem formulation.

Specify bounds as vectors with the same length as x, or as matrices on page 2-31 with the same
number of elements as x.

• If a particular component has no lower bound, use –Inf as the bound; similarly, use Inf if a
component has no upper bound.

• If you have only bounds of one type (upper or lower), you do not need to write the other type. For
example, if you have no upper bounds, you do not need to supply a vector of Infs.

• If only the first m out of n components have bounds, then you only need to supply a vector of
length m containing bounds. However, this shortcut causes solvers to issue a warning.

For example, suppose your bounds are:

x3 ≥ 8,
x2 ≤ 3.

Write the constraint vectors as

l = [–Inf; –Inf; 8],
u = [Inf; 3] (issues a warning) or u = [Inf; 3; Inf].

Tip To lower memory usage and increase solver speed, use Inf or –Inf instead of a large, arbitrary
bound. For more information, see “Use Inf Instead of a Large, Arbitrary Bound” on page 4-10.

You do not have to give gradients for bound constraints; solvers calculate them automatically. Bounds
do not affect Hessians.

For a more complex example of bounds, see “Set Up a Linear Program, Solver-Based” on page 1-21.

See Also

More About
• “Iterations Can Violate Constraints” on page 2-33

2 Setting Up an Optimization

2-34

Linear Constraints
In this section...
“What Are Linear Constraints?” on page 2-35
“Linear Inequality Constraints” on page 2-35
“Linear Equality Constraints” on page 2-36

What Are Linear Constraints?
Several optimization solvers accept linear constraints, which are restrictions on the solution x to
satisfy linear equalities or inequalities. Solvers that accept linear constraints include fmincon,
intlinprog, linprog, lsqlin, quadprog, multiobjective solvers, and some Global Optimization
Toolbox solvers.

Linear Inequality Constraints
Linear inequality constraints have the form A·x ≤ b. When A is m-by-n, there are m constraints on a
variable x with n components. You supply the m-by-n matrix A and the m-component vector b.

Pass linear inequality constraints in the A and b arguments.

For example, suppose that you have the following linear inequalities as constraints:

x1 + x3 ≤ 4,
2x2 – x3 ≥ –2,
x1 – x2 + x3 – x4 ≥ 9.

Here, m = 3 and n = 4.

Write these constraints using the following matrix A and vector b:

A =
1 0 1 0
0 −2 1 0
−1 1 −1 1

,

b =
4
2
−9

.

Notice that the “greater than” inequalities are first multiplied by –1 to put them in “less than”
inequality form. In MATLAB syntax:

A = [1 0 1 0;
 0 -2 1 0;
 -1 1 -1 1];
b = [4;2;-9];

You do not need to give gradients for linear constraints; solvers calculate them automatically. Linear
constraints do not affect Hessians.

Even if you pass an initial point x0 as a matrix, solvers pass the current point x as a column vector to
linear constraints. See “Matrix Arguments” on page 2-31.

 Linear Constraints

2-35

For a more complex example of linear constraints, see “Set Up a Linear Program, Solver-Based” on
page 1-21.

Intermediate iterations can violate linear constraints. See “Iterations Can Violate Constraints” on
page 2-33.

Linear Equality Constraints
Linear equalities have the form Aeq·x = beq, which represents m equations with n-component vector
x. You supply the m-by-n matrix Aeq and the m-component vector beq.

Pass linear equality constraints in the Aeq and beq arguments in the same way as described for the A
and b arguments in “Linear Inequality Constraints” on page 2-35.

See Also

More About
• “Write Constraints”

2 Setting Up an Optimization

2-36

Nonlinear Constraints
Several optimization solvers accept nonlinear constraints, including fmincon, fseminf,
fgoalattain, fminimax, and the Global Optimization Toolbox solvers ga, gamultiobj,
patternsearch, paretosearch, GlobalSearch, and MultiStart. Nonlinear constraints allow
you to restrict the solution to any region that can be described in terms of smooth functions.

Nonlinear inequality constraints have the form c(x) ≤ 0, where c is a vector of constraints, one
component for each constraint. Similarly, nonlinear equality constraints have the form ceq(x) = 0.

Note Nonlinear constraint functions must return both c and ceq, the inequality and equality
constraint functions, even if they do not both exist. Return an empty entry [] for a nonexistent
constraint.

For example, suppose that you have the following inequalities as constraints:

x1
2

9 +
x2

2

4 ≤ 1,

x2 ≥ x1
2− 1.

Write these constraints in a function file as follows:

function [c,ceq] = ellipseparabola(x)
c(1) = (x(1)^2)/9 + (x(2)^2)/4 - 1;
c(2) = x(1)^2 - x(2) - 1;
ceq = [];
end

ellipseparabola returns an empty entry [] for ceq, the nonlinear equality constraint function.
Also, the second inequality is rewritten to ≤ 0 form.

Minimize the function exp(x(1) + 2*x(2)) subject to the ellipseparabola constraints.

fun = @(x)exp(x(1) + 2*x(2));
nonlcon = @ellipseparabola;
x0 = [0 0];
A = []; % No other constraints
b = [];
Aeq = [];
beq = [];
lb = [];
ub = [];
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

x =

 -0.2500 -0.9375

 Nonlinear Constraints

2-37

Including Gradients in Constraint Functions
If you provide gradients for c and ceq, the solver can run faster and give more reliable results.

Providing a gradient has another advantage. A solver can reach a point x such that x is feasible, but
finite differences around x always lead to an infeasible point. In this case, a solver can fail or halt
prematurely. Providing a gradient allows a solver to proceed.

To include gradient information, write a conditionalized function as follows:

function [c,ceq,gradc,gradceq] = ellipseparabola(x)
c(1) = x(1)^2/9 + x(2)^2/4 - 1;
c(2) = x(1)^2 - x(2) - 1;
ceq = [];

if nargout > 2
 gradc = [2*x(1)/9, 2*x(1); ...
 x(2)/2, -1];
 gradceq = [];
end

See “Writing Scalar Objective Functions” on page 2-17 for information on conditionalized functions.
The gradient matrix has the form

gradci, j = [∂c(j)/∂xi].

The first column of the gradient matrix is associated with c(1), and the second column is associated
with c(2). This derivative form is the transpose of the form of Jacobians.

To have a solver use gradients of nonlinear constraints, indicate that they exist by using
optimoptions:

options = optimoptions(@fmincon,'SpecifyConstraintGradient',true);

Make sure to pass the options structure to the solver:

[x,fval] = fmincon(@myobj,x0,A,b,Aeq,beq,lb,ub, ...
 @ellipseparabola,options)

If you have a Symbolic Math Toolbox license, you can calculate gradients and Hessians automatically,
as described in “Calculate Gradients and Hessians Using Symbolic Math Toolbox” on page 5-103.

Anonymous Nonlinear Constraint Functions
Nonlinear constraint functions must return two outputs. The first output corresponds to nonlinear
inequalities, and the second corresponds to nonlinear equalities.

Anonymous functions return just one output. So how can you write an anonymous function as a
nonlinear constraint?

The deal function distributes multiple outputs. For example, suppose that you have the nonlinear
inequalities

x1
2

9 +
x2

2

4 ≤ 1,

x2 ≥ x1
2− 1 .

2 Setting Up an Optimization

2-38

Suppose that you have the nonlinear equality

x2 = tanh(x1).

Write a nonlinear constraint function as follows.

c = @(x)[x(1)^2/9 + x(2)^2/4 - 1;
 x(1)^2 - x(2) - 1];
ceq = @(x)tanh(x(1)) - x(2);
nonlinfcn = @(x)deal(c(x),ceq(x));

To minimize the function cosh(x1) + sinh(x2) subject to the constraints in nonlinfcn, use
fmincon.

obj = @(x)cosh(x(1))+sinh(x(2));
opts = optimoptions(@fmincon,'Algorithm','sqp');
z = fmincon(obj,[0;0],[],[],[],[],[],[],nonlinfcn,opts)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

z = 2×1

 -0.6530
 -0.5737

To check how well the resulting point z satisfies the constraints, use nonlinfcn.

[cout,ceqout] = nonlinfcn(z)

cout = 2×1

 -0.8704
 0

ceqout = 1.1102e-16

z satisfies all the constraints to within the default value of the constraint tolerance
ConstraintTolerance, 1e-6.

For information on anonymous objective functions, see “Anonymous Function Objectives” on page 2-
18.

See Also
fmincon | fgoalattain | ga | patternsearch | GlobalSearch | MultiStart

More About
• “Tutorial for Optimization Toolbox” on page 5-42
• “Nonlinear Constraints with Gradients” on page 5-69

 Nonlinear Constraints

2-39

• “Or Instead of And Constraints” on page 2-41
• “How to Use All Types of Constraints” on page 2-45

2 Setting Up an Optimization

2-40

Or Instead of And Constraints
In general, solvers takes constraints with an implicit AND:

constraint 1 AND constraint 2 AND constraint 3 are all satisfied.

However, sometimes you want an OR:

constraint 1 OR constraint 2 OR constraint 3 is satisfied.

These formulations are not logically equivalent, and there is generally no way to express OR
constraints in terms of AND constraints.

Tip Fortunately, nonlinear constraints are extremely flexible. You get OR constraints simply by
setting the nonlinear constraint function to the minimum of the constraint functions.

The reason that you can set the minimum as the constraint is due to the nature of “Nonlinear
Constraints” on page 2-37: you give them as a set of functions that must be negative at a feasible
point. If your constraints are

F1(x) ≤ 0 OR F2(x) ≤ 0 OR F3(x) ≤ 0,

then set the nonlinear inequality constraint function c(x) as:

c(x) = min(F1(x),F2(x),F3(x)).

c(x) is not smooth, which is a general requirement for constraint functions, due to the minimum.
Nevertheless, the method often works.

Note You cannot use the usual bounds and linear constraints in an OR constraint. Instead, convert
your bounds and linear constraints to nonlinear constraint functions, as in this example.

For example, suppose your feasible region is the L-shaped region: x is in the rectangle –1 ≤ x(1) ≤ 1,
0 ≤ x(2) ≤ 1 OR x is in the rectangle 0 ≤ x(1) ≤ 1, –1 ≤ x(2) ≤ 1.

 Or Instead of And Constraints

2-41

Code for creating the figure

% Write the x and y coordinates of the figure, clockwise from (0,0)
x = [0,-1,-1,1,1,0,0];
y = [0,0,1,1,-1,-1,0];
plot(x,y)
xlim([-1.2 1.2])
ylim([-1.2 1.2])
axis equal

To represent a rectangle as a nonlinear constraint, instead of as bound constraints, construct a
function that is negative inside the rectangle a ≤ x(1) ≤ b, c ≤ x(2) ≤ d:

function cout = rectconstr(x,a,b,c,d)
% Negative when x is in the rectangle [a,b][c,d]
% First check that a,b,c,d are in the correct order

if (b <= a) || (d <= c)
 error('Give a rectangle a < b, c < d')
end

cout = max([(x(1)-b),(x(2)-d),(a-x(1)),(c-x(2))]);

Following the prescription of using the minimum of nonlinear constraint functions, for the L-shaped
region, the nonlinear constraint function is:

2 Setting Up an Optimization

2-42

function [c,ceq] = rectconstrfcn(x)

ceq = []; % no equality constraint
F(1) = rectconstr(x,-1,1,0,1); % one rectangle
F(2) = rectconstr(x,0,1,-1,1); % another rectangle
c = min(F); % for OR constraints

Code for creating the figure

Plot rectconstrfcn over the region max|x| ≤ 2 for a = –1, b = 1, c = 0, d = 1:

[xx,yy] = meshgrid(-2:.1:2);
x = [xx(:),yy(:)]; % one row per point

z = zeros(length(x),1); % allocate
for ii = 1:length(x)
 [z(ii),~] = rectconstrfcn(x(ii,:));
end

z = reshape(z,size(xx));
surf(xx,yy,z)
colorbar
axis equal
xlabel('x');ylabel('y')
view(0,90)

Suppose your objective function is

 Or Instead of And Constraints

2-43

fun = @(x)exp(x(1)) * (4*x(1)^2 + 2*x(2)^2 + 4*x(1)*x(2) + 2*x(2) + 1);

Minimize fun over the L-shaped region:

opts = optimoptions(@fmincon,'Algorithm','interior-point','Display','off');
x0 = [-.5,.6]; % an arbitrary guess
[xsol,fval,eflag] = fmincon(fun,x0,[],[],[],[],[],[],@rectconstrfcn,opts)

xsol =

 0.4998 -0.9996

fval =

 2.4650e-07

eflag =

 1

Clearly, the solution xsol is inside the L-shaped region. The exit flag is 1, indicating that xsol is a
local minimum.

See Also
fmincon

More About
• “Nonlinear Constraints” on page 2-37

2 Setting Up an Optimization

2-44

How to Use All Types of Constraints
This example is a nonlinear minimization problem with all possible types of constraints. The example
does not use gradients.

The problem has five variables, x(1) through x(5). The objective function is a polynomial in the
variables.

f (x) = 6x2x5 + 7x1x3 + 3x2
2.

The objective function is in the local function myobj(x), which is nested inside the function
fullexample. The code for fullexample appears at the end of this example on page 2-0 .

The nonlinear constraints are likewise polynomial expressions.

x1− 0 . 2x2x5 ≤ 71

0 . 9x3− x4
2 ≤ 67

3x2
2x5 + 3x1

2x3 = 20 . 875.

The nonlinear constraints are in the local function myconstr(x), which is nested inside the function
fullexample.

The problem has bounds on x3 and x5.

0 ≤ x3 ≤ 20, x5 ≥ 1.

The problem has a linear equality constraint x1 = 0 . 3x2, which you can write as x1− 0 . 3x2 = 0.

The problem also has three linear inequality constraints:

0 . 1x5 ≤ x4
x4 ≤ 0 . 5x5
0 . 9x5 ≤ x3 .

Represent the bounds and linear constraints as matrices and vectors. The code that creates these
arrays is in the fullexample function. As described in the fmincon “Input Arguments” on page 15-
89 section, the lb and ub vectors represent the constraints

lb ≤ x ≤ ub.

The matrix A and vector b represent the linear inequality constraints

A*x ≤ b,

and the matrix Aeq and vector beq represent the linear equality constraints

Aeq*x = b.

Call fullexample to solve the minimization problem subject to all types of constraints.

[x,fval,exitflag] = fullexample

 How to Use All Types of Constraints

2-45

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

x = 5×1

 0.6114
 2.0380
 1.3948
 0.1572
 1.5498

fval = 37.3806

exitflag = 1

The exit flag value of 1 indicates that fmincon converges to a local minimum that satisfies all of the
constraints.

This code creates the fullexample function, which contains the nested functions myobj and
myconstr.

function [x,fval,exitflag] = fullexample
x0 = [1; 4; 5; 2; 5];
lb = [-Inf; -Inf; 0; -Inf; 1];
ub = [Inf; Inf; 20; Inf; Inf];
Aeq = [1 -0.3 0 0 0];
beq = 0;
A = [0 0 0 -1 0.1
 0 0 0 1 -0.5
 0 0 -1 0 0.9];
b = [0; 0; 0];
opts = optimoptions(@fmincon,'Algorithm','sqp');

[x,fval,exitflag] = fmincon(@myobj,x0,A,b,Aeq,beq,lb,ub,...
 @myconstr,opts);

%---
function f = myobj(x)

f = 6*x(2)*x(5) + 7*x(1)*x(3) + 3*x(2)^2;
end

%---
function [c, ceq] = myconstr(x)

c = [x(1) - 0.2*x(2)*x(5) - 71
 0.9*x(3) - x(4)^2 - 67];
ceq = 3*x(2)^2*x(5) + 3*x(1)^2*x(3) - 20.875;
end
end

2 Setting Up an Optimization

2-46

See Also

More About
• “Write Constraints”
• “Solver-Based Nonlinear Optimization”

 How to Use All Types of Constraints

2-47

Objective and Nonlinear Constraints in the Same Function
This example shows how to avoid calling a function twice when it computes values for both the
objective and constraints using the solver-based approach. To avoid calling a function twice using the
problem-based approach, see “Objective and Constraints Having a Common Function in Serial or
Parallel, Problem-Based” on page 2-52.

You typically use such a function in a simulation. Solvers such as fmincon evaluate the objective and
nonlinear constraint functions separately. This evaluation is wasteful when you use the same
calculation for both results.

To avoid wasting time, use a nested function to evaluate the objective and constraint functions only
when needed, by retaining the values of time-consuming calculations. This approach avoids using
global variables, while retaining intermediate results be retained and sharing them between the
objective and constraint functions.

Note Because of the way ga calls nonlinear constraint functions, the technique in this example
usually does not reduce the number of calls to the objective or constraint functions.

Step 1. Write a function that computes the objective and constraints.

For example, suppose computeall is the expensive (time-consuming) function called by both the
objective function and the nonlinear constraint functions. Assume that you want to use fmincon as
your optimizer.

Write a function that computes a portion of Rosenbrock’s function f1 and includes a nonlinear
constraint c1 that keeps the solution in a disk of radius 1 around the origin. Rosenbrock’s function is

f (x) = 100 x2− x1
2 2 + (1− x1)2,

which has a unique minimum value of 0 at (1,1). See “Solve a Constrained Nonlinear Problem, Solver-
Based” on page 1-11.

This example has no nonlinear equality constraint, so ceq1 = []. Add a pause(1) statement to
simulate an expensive computation.

function [f1,c1,ceq1] = computeall(x)
 ceq1 = [];
 c1 = x(1)^2 + x(2)^2 - 1;
 f1 = 100*(x(2) - x(1)^2)^2 + (1-x(1))^2;
 pause(1) % Simulate expensive computation
end

Save computeall.m as a file on your MATLAB path.

Step 2. Embed the function in a nested function that keeps recent values.

Suppose the objective function is

y = 100(x2 – x1
2)2 + (1 – x1)2

+ 20*(x3 – x4
2)2 + 5*(1 – x4)2.

2 Setting Up an Optimization

2-48

computeall returns the first part of the objective function. Embed the call to computeall in a
nested function:

function [x,f,eflag,outpt] = runobjconstr(x0,opts)

if nargin == 1 % No options supplied
 opts = [];
end

xLast = []; % Last place computeall was called
myf = []; % Use for objective at xLast
myc = []; % Use for nonlinear inequality constraint
myceq = []; % Use for nonlinear equality constraint

fun = @objfun; % The objective function, nested below
cfun = @constr; % The constraint function, nested below

% Call fmincon
[x,f,eflag,outpt] = fmincon(fun,x0,[],[],[],[],[],[],cfun,opts);

 function y = objfun(x)
 if ~isequal(x,xLast) % Check if computation is necessary
 [myf,myc,myceq] = computeall(x);
 xLast = x;
 end
 % Now compute objective function
 y = myf + 20*(x(3) - x(4)^2)^2 + 5*(1 - x(4))^2;
 end

 function [c,ceq] = constr(x)
 if ~isequal(x,xLast) % Check if computation is necessary
 [myf,myc,myceq] = computeall(x);
 xLast = x;
 end
 % Now compute constraint function
 c = myc; % In this case, the computation is trivial
 ceq = myceq;
 end

end

Save the nested function as a file named runobjconstr.m on your MATLAB path.

Step 3. Determine the time to run with the nested function.

Run the function, timing the call with tic and toc.

opts = optimoptions(@fmincon,'Algorithm','interior-point','Display','off');
x0 = [-1,1,1,2];
tic
[x,fval,exitflag,output] = runobjconstr(x0,opts);
toc

Elapsed time is 259.364090 seconds.

Step 4. Determine the time to run without the nested function.

Compare the times to run the solver with and without the nested function. For the run without the
nested function, save myrosen2.m as the objective function file and constr.m as the constraint.

 Objective and Nonlinear Constraints in the Same Function

2-49

function y = myrosen2(x)
 f1 = computeall(x); % Get first part of objective
 y = f1 + 20*(x(3) - x(4)^2)^2 + 5*(1 - x(4))^2;
end

function [c,ceq] = constr(x)
 [~,c,ceq] = computeall(x);
end

Run fmincon, timing the call with tic and toc.

tic
[x,fval,exitflag,output] = fmincon(@myrosen2,x0,...
 [],[],[],[],[],[],@constr,opts);
toc

Elapsed time is 518.364770 seconds.

The solver takes twice as long as before, because it evaluates the objective and constraint separately.

Step 5. Save computing time with parallel computing.

If you have a Parallel Computing Toolbox™ license, you can save even more time by setting the
UseParallel option to true.

parpool

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

ans =

 ProcessPool with properties:

 Connected: true
 NumWorkers: 6
 Cluster: local
 AttachedFiles: {}
 AutoAddClientPath: true
 IdleTimeout: 30 minutes (30 minutes remaining)
 SpmdEnabled: true

opts = optimoptions(opts,'UseParallel',true);
tic
[x,fval,exitflag,output] = runobjconstr(x0,opts);
toc

Elapsed time is 121.151203 seconds.

In this case, enabling parallel computing reduces the computational time in half, compared to the
serial run with the nested function.

Compare the runs with parallel computing, with and without a nested function:

tic
[x,fval,exitflag,output] = fmincon(@myrosen2,x0,...
 [],[],[],[],[],[],@constr,opts);
toc

2 Setting Up an Optimization

2-50

Elapsed time is 235.914597 seconds.

In this example, computing in parallel but not nested takes about the same time as computing nested
but not parallel. Computing both nested and parallel takes half the time of using either alone.

See Also

More About
• “Objective and Constraints Having a Common Function in Serial or Parallel, Problem-Based” on

page 2-52
• “Solve a Constrained Nonlinear Problem, Solver-Based” on page 1-11
• “Optimizing a Simulation or Ordinary Differential Equation” on page 4-26
• “Parallel Computing”

 Objective and Nonlinear Constraints in the Same Function

2-51

Objective and Constraints Having a Common Function in Serial
or Parallel, Problem-Based

This example shows how to avoid calling a function twice when it computes values for both the
objective and the constraints using the problem-based approach. For the solver-based approach, see
“Objective and Nonlinear Constraints in the Same Function” on page 2-48.

You typically use such a function in a simulation. Solvers usually evaluate the objective and nonlinear
constraint functions separately. This evaluation is wasteful when you use the same calculation for
both results.

This example also shows the effect of parallel computation on solver speed. For time-consuming
functions, computing in parallel can speed the solver, as can avoiding calling the time-consuming
function repeatedly at the same point. Using both techniques together speeds the solver the most.

Create Time-Consuming Function That Computes Several Quantities

The computeall function returns outputs that are part of the objective and nonlinear constraints.

type computeall

function [f1,c1] = computeall(x)
 c1 = norm(x)^2 - 1;
 f1 = 100*(x(2) - x(1)^2)^2 + (1 - x(1))^2 + besselj(1,x(1));
 pause(1) % simulate expensive computation
end

The function includes a pause(1) statement to simulate a time-consuming function.

Create Optimization Variables

This problem uses a four-element optimization variable.

x = optimvar('x',4);

Convert Function Using ReuseEvaluation

Convert the computeall function to an optimization expression. To save time during the
optimization, use the ReuseEvaluation name-value argument. To save time for the solver to
determine the output expression sizes (this happens only once), set the OutputSize name-value
argument to [1 1], indicating that both f and c are scalar.

[f,c] = fcn2optimexpr(@computeall,x,'ReuseEvaluation',true,'OutputSize',[1 1]);

Create Objective, Constraint, and Problem

Create the objective function from the f expression.

obj = f + 20*(x(3) - x(4)^2)^2 + 5*(1 - x(4))^2;

Create the nonlinear inequality constraint from the c expression.

cons = c <= 0;

Create an optimization problem and include the objective and constraint.

2 Setting Up an Optimization

2-52

prob = optimproblem('Objective',obj);
prob.Constraints.cons = cons;
show(prob)

 OptimizationProblem :

 Solve for:
 x

 minimize :
 ((arg3 + (20 .* (x(3) - x(4).^2).^2)) + (5 .* (1 - x(4)).^2))

 where:

 [arg3,~] = computeall(x);

 subject to cons:
 arg_LHS <= 0

 where:

 [~,arg_LHS] = computeall(x);

Solve Problem

Monitor the time it takes to solve the problem starting from the initial point x0.x = [-1;1;1;2].

x0.x = [-1;1;1;2];
x0.x = x0.x/norm(x0.x); % Feasible initial point
tic
[sol,fval,exitflag,output] = solve(prob,x0)

Solving problem using fmincon.

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>

sol = struct with fields:
 x: [4×1 double]

fval = 0.9091

exitflag =
 OptimalSolution

output = struct with fields:
 iterations: 24
 funcCount: 142
 constrviolation: 0
 stepsize: 2.6813e-05

 Objective and Constraints Having a Common Function in Serial or Parallel, Problem-Based

2-53

 algorithm: 'interior-point'
 firstorderopt: 1.0143e-06
 cgiterations: 7
 message: 'Local minimum found that satisfies the constraints.↵↵Optimization completed because the objective function is non-decreasing in ↵feasible directions, to within the value of the optimality tolerance,↵and constraints are satisfied to within the value of the constraint tolerance.↵↵<stopping criteria details>↵↵Optimization completed: The relative first-order optimality measure, 8.264724e-07,↵is less than options.OptimalityTolerance = 1.000000e-06, and the relative maximum constraint↵violation, 0.000000e+00, is less than options.ConstraintTolerance = 1.000000e-06.'
 bestfeasible: [1×1 struct]
 objectivederivative: "finite-differences"
 constraintderivative: "finite-differences"
 solver: 'fmincon'

time1 = toc

time1 = 144.0930

The number of seconds for the solution is just over the number of function evaluations, which
indicates that the solver computed each evaluation only once.

fprintf("The number of seconds to solve was %g, and the number of evaluation points was %g.\n",time1,output.funcCount)

The number of seconds to solve was 144.093, and the number of evaluation points was 142.

If, instead, you do not call fcn2optimexpr using ReuseEvaluation, then the solution time doubles.

[f2,c2] = fcn2optimexpr(@computeall,x,'ReuseEvaluation',false,'Analysis','off');
obj2 = f2 + 20*(x(3) - x(4)^2)^2 + 5*(1 - x(4))^2;
cons2 = c2 <= 0;
prob2 = optimproblem('Objective',obj2);
prob2.Constraints.cons2 = cons2;
tic
[sol2,fval2,exitflag2,output2] = solve(prob2,x0);

Solving problem using fmincon.

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>

time2 = toc

time2 = 286.3669

Parallel Processing

If you have a Parallel Computing Toolbox™ license, you can save even more time by computing in
parallel. To do so, set options to use parallel processing, and call solve with options.

options = optimoptions(prob,'UseParallel',true);
tic
[sol3,fval3,exitflag3,output3] = solve(prob,x0,'Options',options);

Solving problem using fmincon.

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

2 Setting Up an Optimization

2-54

feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>

time3 = toc

time3 = 72.1202

Using parallel processing and ReuseEvaluation together provides a faster solution than using
ReuseEvaluation alone. See how long it takes to solve the problem using parallel processing alone.

tic
[sol4,fval4,exitflag4,output4] = solve(prob2,x0,'Options',options);

Solving problem using fmincon.

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>

time4 = toc

time4 = 136.8033

Summary of Timing Results

Combine the timing results into one table.

timingtable = table([time1;time2;time3;time4],...
 'RowNames',["Reuse Serial";"No Reuse Serial";"Reuse Parallel";"No Reuse Parallel"])

timingtable=4×1 table
 Var1

 Reuse Serial 144.09
 No Reuse Serial 286.37
 Reuse Parallel 72.12
 No Reuse Parallel 136.8

For this problem, on a computer with a 6-core processor, computing in parallel takes about half the
time of computing in serial, and computing with ReuseEvaluation takes about half the time of
computing without ReuseEvaluation. Computing in parallel with ReuseEvaluation takes about a
quarter of the time of computing in serial without ReuseEvaluation.

See Also
fcn2optimexpr

More About
• “Objective and Nonlinear Constraints in the Same Function” on page 2-48

 Objective and Constraints Having a Common Function in Serial or Parallel, Problem-Based

2-55

• “Convert Nonlinear Function to Optimization Expression” on page 6-8
• “Using Parallel Computing in Optimization Toolbox” on page 13-5

2 Setting Up an Optimization

2-56

Passing Extra Parameters

Extra Parameters, Fixed Variables, or Data
Sometimes objective or constraint functions have parameters in addition to the independent variable.
The extra parameters can be data, or can represent variables that do not change during the
optimization. There are three methods of passing these parameters:

• “Anonymous Functions” on page 2-57
• “Nested Functions” on page 2-58
• “Global Variables” on page 2-59

Global variables are troublesome because they do not allow names to be reused among functions. It is
better to use one of the other two methods.

Generally, for problem-based optimization, you pass extra parameters in a natural manner. See “Pass
Extra Parameters in Problem-Based Approach” on page 9-11.

For example, suppose you want to minimize the function

f (x) = a− bx1
2 + x1

4/3 x1
2 + x1x2 + −c + cx2

2 x2
2 (2-3)

for different values of a, b, and c. Solvers accept objective functions that depend only on a single
variable (x in this case). The following sections show how to provide the additional parameters a, b,
and c. The solutions are for parameter values a = 4, b = 2.1, and c = 4 near x0 = [0.5 0.5] using
fminunc.

Anonymous Functions
To pass parameters using anonymous functions:

1 Write a file containing the following code:

function y = parameterfun(x,a,b,c)
y = (a - b*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) + ...
 (-c + c*x(2)^2)*x(2)^2;

2 Assign values to the parameters and define a function handle f to an anonymous function by
entering the following commands at the MATLAB prompt:

a = 4; b = 2.1; c = 4; % Assign parameter values
x0 = [0.5,0.5];
f = @(x)parameterfun(x,a,b,c);

3 Call the solver fminunc with the anonymous function:

[x,fval] = fminunc(f,x0)

The following output is displayed in the command window:

Local minimum found.

Optimization completed because the size of the gradient is less than
the default value of the function tolerance.

 Passing Extra Parameters

2-57

x =
 -0.0898 0.7127

fval =
 -1.0316

Note The parameters passed in the anonymous function are those that exist at the time the
anonymous function is created. Consider the example

a = 4; b = 2.1; c = 4;
f = @(x)parameterfun(x,a,b,c)

Suppose you subsequently change, a to 3 and run

[x,fval] = fminunc(f,x0)

You get the same answer as before, since parameterfun uses a = 4, the value when f was created.

To change the parameters that are passed to the function, renew the anonymous function by
reentering it:

a = 3;
f = @(x)parameterfun(x,a,b,c)

You can create anonymous functions of more than one argument. For example, to use lsqcurvefit,
first create a function that takes two input arguments, x and xdata:

fh = @(x,xdata)(sin(x).*xdata +(x.^2).*cos(xdata));
x = pi; xdata = pi*[4;2;3];
fh(x, xdata)

ans =

 9.8696
 9.8696
 -9.8696

Now call lsqcurvefit:

% Assume ydata exists
x = lsqcurvefit(fh,x,xdata,ydata)

Nested Functions
To pass the parameters for “Equation 2-3” via a nested function, write a single file that

• Accepts a, b, c, and x0 as inputs
• Contains the objective function as a nested function
• Calls fminunc

Here is the code for the function file for this example:

function [x,fval] = runnested(a,b,c,x0)
[x,fval] = fminunc(@nestedfun,x0);

2 Setting Up an Optimization

2-58

% Nested function that computes the objective function
 function y = nestedfun(x)
 y = (a - b*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) +...
 (-c + c*x(2)^2)*x(2)^2;
 end
end

The objective function is the nested function nestedfun, which has access to the variables a, b, and
c.

To run the optimization, enter:

a = 4; b = 2.1; c = 4;% Assign parameter values
x0 = [0.5,0.5];
[x,fval] = runnested(a,b,c,x0)

The output is the same as in “Anonymous Functions” on page 2-57.

Global Variables
Global variables can be troublesome, so it is better to avoid using them. Also, global variables fail in
parallel computations. See “Factors That Affect Results” on page 13-13.

To use global variables, declare the variables to be global in the workspace and in the functions that
use the variables.

1 Write a function file:

function y = globalfun(x)
global a b c
y = (a - b*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) + ...
 (-c + c*x(2)^2)*x(2)^2;

2 In your MATLAB workspace, define the variables and run fminunc:

global a b c;
a = 4; b = 2.1; c = 4; % Assign parameter values
x0 = [0.5,0.5];
[x,fval] = fminunc(@globalfun,x0)

The output is the same as in “Anonymous Functions” on page 2-57.

See Also

More About
• “Solver-Based Optimization Problem Setup”
• “Pass Extra Parameters in Problem-Based Approach” on page 9-11

 Passing Extra Parameters

2-59

What Are Options?
Options are a way of combining a set of name-value pairs. They are useful because they allow you to:

• Tune or modify the optimization process.
• Select extra features, such as output functions and plot functions.
• Save and reuse settings.

They simplify solver syntax—you don’t have to include a lot of name-value pairs in a call to a solver.

To see how to set and change options, see “Set and Change Options” on page 2-62.

For an overview of all options, including which solvers use each option, see “Optimization Options
Reference” on page 14-6.

2 Setting Up an Optimization

2-60

Options in Common Use: Tuning and Troubleshooting
You set or change options when the default settings do not work sufficiently well. This can mean the
solver takes too long to converge, the solver fails, or you are unsure of the reliability of the result.

To tune your solver for improved speed or accuracy, try setting these options first:

• “Choosing the Algorithm” on page 2-6 — Algorithm
• “Tolerances and Stopping Criteria” on page 2-68 — OptimalityTolerance, StepTolerance,

MaxFunctionEvaluations, and MaxIterations
• Finite differences — FiniteDifferenceType and FiniteDifferenceStepSize

To diagnose and troubleshoot, try setting these options first:

• “Iterative Display” on page 3-14 — Display
• Function evaluation errors — FunValCheck
• “Plot Functions” on page 3-27 and “Output Functions for Optimization Toolbox” on page 3-30 —

PlotFcn and OutputFcn

See Also
optimoptions | optimset

Related Examples
• “Improve Results”

More About
• “Solver Outputs and Iterative Display”

 Options in Common Use: Tuning and Troubleshooting

2-61

Set and Change Options
The recommended way to set options is to use the optimoptions function. For example, the
following code sets the fmincon algorithm to sqp, specifies iterative display, and sets a small value
for the ConstraintTolerance tolerance.

options = optimoptions('fmincon',...
 'Algorithm','sqp','Display','iter','ConstraintTolerance',1e-12);

Note Use optimset instead of optimoptions for the fminbnd, fminsearch, fzero, and
lsqnonneg solvers. These are the solvers that do not require an Optimization Toolbox license.

You can change options in several ways. For example, you can use dot notation.

options.StepTolerance = 1e-10;

Or, you can change options using optimoptions.

options = optimoptions(options,'StepTolerance',1e-10);

Note Ensure that you pass options in your solver call, as shown in this example.

[x,fval] = fmincon(@objfun,x0,[],[],[],[],lb,ub,@nonlcon,options);

To reset an option to its default value, use resetoptions.

options = resetoptions(options,'StepTolerance');

Reset more than one option at a time by passing a cell array of option names.

options = resetoptions(options,{'Algorithm','StepTolerance'});

You can also set and change options using the Optimize Live Editor task.

See Also
optimoptions | resetoptions | Optimize

More About
• “Optimization Options Reference” on page 14-6

2 Setting Up an Optimization

2-62

Choose Between optimoptions and optimset
Previously, the recommended way to set options was to use optimset. Now the general
recommendation is to use optimoptions, with some caveats listed below.

optimset still works, and it is the only way to set options for solvers that are available without an
Optimization Toolbox license: fminbnd, fminsearch, fzero, and lsqnonneg.

Note Some other toolboxes use optimization options and require you to pass in options created using
optimset, not optimoptions. Check the documentation for your toolboxes.

optimoptions organizes options by solver, with a more focused and comprehensive display than
optimset:

• Creates and modifies only the options that apply to a solver
• Shows your option choices and default values for a specific solver/algorithm
• Displays links for more information on solver options and other available solver algorithms

intlinprog uses only optimoptions options.

The main difference in creating options is:

• For optimoptions, you include the solver name as the first argument.

options = optimoptions(SolverName,Name,Value,...)
• For optimset, the syntax does not include the solver name.

options = optimset(Name,Value,...)

In both cases, you can query or change options by using dot notation. See “Set and Change Options”
on page 2-62 and “View Options” on page 2-66.

For example, compare the display of optimoptions to that of optimset.

options = optimoptions(@fminunc,'SpecifyObjectiveGradient',true)

options =

 fminunc options:

 Options used by current Algorithm ('trust-region'):
 (Other available algorithms: 'quasi-newton')

 Set properties:
 SpecifyObjectiveGradient: 1

 Default properties:
 Algorithm: 'trust-region'
 CheckGradients: 0
 Display: 'final'
 FiniteDifferenceStepSize: 'sqrt(eps)'
 FiniteDifferenceType: 'forward'
 FunctionTolerance: 1.0000e-06
 HessianFcn: []

 Choose Between optimoptions and optimset

2-63

 HessianMultiplyFcn: []
 MaxFunctionEvaluations: '100*numberOfVariables'
 MaxIterations: 400
 OptimalityTolerance: 1.0000e-06
 OutputFcn: []
 PlotFcn: []
 StepTolerance: 1.0000e-06
 SubproblemAlgorithm: 'cg'
 TypicalX: 'ones(numberOfVariables,1)'

 Show options not used by current Algorithm ('trust-region')

options = optimset('GradObj','on')

options =

 struct with fields:

 Display: []
 MaxFunEvals: []
 MaxIter: []
 TolFun: []
 TolX: []
 FunValCheck: []
 OutputFcn: []
 PlotFcns: []
 ActiveConstrTol: []
 Algorithm: []
 AlwaysHonorConstraints: []
 DerivativeCheck: []
 Diagnostics: []
 DiffMaxChange: []
 DiffMinChange: []
 FinDiffRelStep: []
 FinDiffType: []
 GoalsExactAchieve: []
 GradConstr: []
 GradObj: 'on'
 HessFcn: []
 Hessian: []
 HessMult: []
 HessPattern: []
 HessUpdate: []
 InitBarrierParam: []
 InitTrustRegionRadius: []
 Jacobian: []
 JacobMult: []
 JacobPattern: []
 LargeScale: []
 MaxNodes: []
 MaxPCGIter: []
 MaxProjCGIter: []
 MaxSQPIter: []
 MaxTime: []
 MeritFunction: []
 MinAbsMax: []
 NoStopIfFlatInfeas: []
 ObjectiveLimit: []

2 Setting Up an Optimization

2-64

 PhaseOneTotalScaling: []
 Preconditioner: []
 PrecondBandWidth: []
 RelLineSrchBnd: []
 RelLineSrchBndDuration: []
 ScaleProblem: []
 Simplex: []
 SubproblemAlgorithm: []
 TolCon: []
 TolConSQP: []
 TolGradCon: []
 TolPCG: []
 TolProjCG: []
 TolProjCGAbs: []
 TypicalX: []
 UseParallel: []

See Also

More About
• “Set Options”

 Choose Between optimoptions and optimset

2-65

View Options
optimoptions “hides” some options, meaning it does not display their values. For example, it hides
the DiffMinChange option.

options = optimoptions('fsolve','DiffMinChange',1e-3)

options =

 fsolve options:

 Options used by current Algorithm ('trust-region-dogleg'):
 (Other available algorithms: 'levenberg-marquardt', 'trust-region')

 Set properties:
 No options set.

 Default properties:
 Algorithm: 'trust-region-dogleg'
 CheckGradients: 0
 Display: 'final'
 FiniteDifferenceStepSize: 'sqrt(eps)'
 FiniteDifferenceType: 'forward'
 FunctionTolerance: 1.0000e-06
 MaxFunctionEvaluations: '100*numberOfVariables'
 MaxIterations: 400
 OptimalityTolerance: 1.0000e-06
 OutputFcn: []
 PlotFcn: []
 SpecifyObjectiveGradient: 0
 StepTolerance: 1.0000e-06
 TypicalX: 'ones(numberOfVariables,1)'
 UseParallel: 0

 Show options not used by current Algorithm ('trust-region-dogleg')

You can view the value of any option, including “hidden” options, by using dot notation. For example,

options.DiffMinChange

ans =

 1.0000e-03

Solver reference pages list “hidden” options in italics.

There are two reason that some options are “hidden”:

• There are better ways. For example, the FiniteDifferenceStepSize option supersedes both
the DiffMinChange and DiffMaxChange options. Therefore, both DiffMinChange and
DiffMaxChange are “hidden”.

• They are rarely used, or are difficult to set appropriately. For example, the fmincon MaxSQPIter
option is recondite and hard to choose, and so is “hidden”.

• For a list of hidden options, see “Hidden Options” on page 14-18.

2 Setting Up an Optimization

2-66

See Also

More About
• “Optimization Options Reference” on page 14-6

 View Options

2-67

Tolerances and Stopping Criteria
The number of iterations in an optimization depends on a solver's stopping criteria. These criteria
include several tolerances you can set. Generally, a tolerance is a threshold which, if crossed, stops
the iterations of a solver.

Set tolerances and other criteria using optimoptions as explained in “Set and Change Options” on
page 2-62.

Tip Generally set tolerances such as OptimalityTolerance and StepTolerance to be well above
eps, and usually above 1e-14. Setting small tolerances does not always result in accurate results.
Instead, a solver can fail to recognize when it has converged, and can continue futile iterations. A
tolerance value smaller than eps effectively disables that stopping condition. This tip does not apply
to fzero, which uses a default value of eps for the TolX tolerance.

optimoptions displays tolerances. For example,

options = optimoptions('fmincon');
[options.OptimalityTolerance,options.FunctionTolerance,options.StepTolerance]

ans =

 1.0e-06 *

 1.0000 1.0000 0.0001

You can also find the default tolerances in the options section of the solver function reference page.

• StepTolerance is a lower bound on the size of a step, meaning the norm of (xi – xi+1). If the
solver attempts to take a step that is smaller than StepTolerance, the iterations end.
StepTolerance is generally used as a relative bound, meaning iterations end when |(xi – xi+1)| <
StepTolerance*(1 + |xi|), or a similar relative measure. See “Tolerance Details” on page 2-70.

• For some algorithms, FunctionTolerance is a lower bound on the change in the value of the
objective function during a step. For those algorithms, if |f(xi) – f(xi+1)| < FunctionTolerance,
the iterations end. FunctionTolerance is generally used as a relative bound, meaning iterations
end when |f(xi) – f(xi+1)| < FunctionTolerance*(1 + |f(xi)|), or a similar relative measure. See
“Tolerance Details” on page 2-70.

2 Setting Up an Optimization

2-68

Note Unlike other solvers, fminsearch stops when it satisfies both TolFun (the function
tolerance) and TolX (the step tolerance).

• OptimalityTolerance is a tolerance for the first-order optimality measure. If the optimality
measure is less than OptimalityTolerance, the iterations end. OptimalityTolerance can
also be a relative bound on the first-order optimality measure. See “Tolerance Details” on page 2-
70. First-order optimality measure is defined in “First-Order Optimality Measure” on page 3-11.

• ConstraintTolerance is an upper bound on the magnitude of any constraint functions. If a
solver returns a point x with c(x) > ConstraintTolerance or |ceq(x)|
 > ConstraintTolerance, the solver reports that the constraints are violated at x.
ConstraintTolerance can also be a relative bound. See “Tolerance Details” on page 2-70.

Note ConstraintTolerance operates differently from other tolerances. If
ConstraintTolerance is not satisfied (i.e., if the magnitude of the constraint function exceeds
ConstraintTolerance), the solver attempts to continue, unless it is halted for another reason. A
solver does not halt simply because ConstraintTolerance is satisfied.

• MaxIterations is a bound on the number of solver iterations. MaxFunctionEvaluations is a
bound on the number of function evaluations. Iterations and function evaluations are discussed in
“Iterations and Function Counts” on page 3-9.

There are two other tolerances that apply to particular solvers: TolPCG and MaxPCGIter. These
relate to preconditioned conjugate gradient steps. For more information, see “Preconditioned
Conjugate Gradient Method” on page 5-21.

There are several tolerances that apply only to the fmincon interior-point algorithm. For more
information, see Interior-Point Algorithm in fmincon options.

There are several tolerances that apply only to intlinprog. See “Some “Integer” Solutions Are Not
Integers” on page 8-53 and “Branch and Bound” on page 8-48.

See Also

More About
• “Tolerance Details” on page 2-70
• “Optimization Options Reference” on page 14-6

 Tolerances and Stopping Criteria

2-69

Tolerance Details
Optimization Toolbox solvers use tolerances to decide when to stop iterating and to measure solution
quality. See “Tolerances and Stopping Criteria” on page 2-68.

For the four most important tolerances, this section describes which tolerances are relative, meaning
scale in some sense with problem size or values, and which are absolute, meaning do not scale with
the problem. In the following table,

• R means Relative.
• A means Absolute.
• . means inapplicable.
• A* means Absolute when the tolerances are checked; however, preprocessing can scale the entries

to some extent, so the tolerances can be considered relative.
• A*, R means the constraints are first checked as Absolute. If this check passes, the solver returns

a positive exit flag. If this check fails then the constraints are checked as Relative. If this check
passes, the solver returns a positive exit flag with "poor feasibility". If this check fails, the solver
returns a negative exit flag.

2 Setting Up an Optimization

2-70

Tolerances by Solver and Algorithm

Solver Algorithm Optimality
Tolerance

Function
Tolerance

Step Tolerance Constraint
Tolerance

fmincon 'interior-
point'

R . R R

'sqp' R . R R
'sqp-legacy' R . R R
'active-set' A A A A
'trust-
region-
reflective'

A R A .

fminunc 'quasi-
newton'

R . R .

'trust-
region'

A R A .

fminsearch . A A .
fminbnd . A R .
fseminf A A A A
fgoalattain A A A A
fminimax A A A A
linprog 'dual-

simplex'
A* . . A*, R

'interior-
point'

R . . R

'interior-
point-
legacy'

R . . .

intlinprog A* . . A*, R
quadprog 'interior-

point-
convex'

R . R R

'trust-
region-
reflective',
bounds

A R A .

'trust-
region-
reflective',
linear equalities

. . . .

'active-set' R . A R
coneprog R R
lsqlin 'interior-

point'
R . R R

 Tolerance Details

2-71

Solver Algorithm Optimality
Tolerance

Function
Tolerance

Step Tolerance Constraint
Tolerance

'trust-
region-
reflective'

A R A .

lsqnonneg . . R .
lsqnonlin 'trust-

region-
reflective'

A R A .

'levenberg-
marquardt'

R R R .

lsqcurvefit 'trust-
region-
reflective'

A R A .

'levenberg-
marquardt'

R R R .

fsolve 'trust-
region-
dogleg'

A R R .

'trust-
region'

A R A .

'levenberg-
marquardt'

R R R .

fzero . . R .

See Also

More About
• “Tolerances and Stopping Criteria” on page 2-68

2 Setting Up an Optimization

2-72

Checking Validity of Gradients or Jacobians
In this section...
“Check Gradient or Jacobian in Objective Function” on page 2-73
“How to Check Derivatives” on page 2-73
“Example: Checking Derivatives of Objective and Constraint Functions” on page 2-73

Check Gradient or Jacobian in Objective Function
Many solvers allow you to supply a function that calculates first derivatives (gradients or Jacobians)
of objective or constraint functions. You can check whether the derivatives calculated by your
function match finite-difference approximations. This check can help you diagnose whether your
derivative function is correct.

• If a component of the gradient function is less than 1, “match” means the absolute difference of
the gradient function and the finite-difference approximation of that component is less than 1e-6.

• Otherwise, “match” means that the relative difference is less than 1e-6.

The CheckGradients option causes the solver to check the supplied derivative against a finite-
difference approximation at just one point. If the finite-difference and supplied derivatives do not
match, the solver errors. If the derivatives match to within 1e-6, the solver reports the calculated
differences, and continues iterating without further derivative checks. Solvers check the match at a
point that is a small random perturbation of the initial point x0, modified to be within any bounds.
Solvers do not include the computations for CheckGradients in the function count; see “Iterations
and Function Counts” on page 3-9.

How to Check Derivatives
At the MATLAB command line:

1 Set the SpecifyObjectiveGradient or SpecifyConstraintGradient options to true
using optimoptions. Make sure your objective or constraint functions supply the appropriate
derivatives.

2 Set the CheckGradients option to true.

Central finite differences are more accurate than the default forward finite differences. To use central
finite differences at the MATLAB command line, set FiniteDifferenceType option to 'central'
using optimoptions.

Example: Checking Derivatives of Objective and Constraint Functions
• “Objective and Constraint Functions” on page 2-73
• “Checking Derivatives at the Command Line” on page 2-74

Objective and Constraint Functions

Consider the problem of minimizing the Rosenbrock function within the unit disk as described in
“Solve a Constrained Nonlinear Problem, Solver-Based” on page 1-11. The rosenboth function
calculates the objective function and its gradient:

 Checking Validity of Gradients or Jacobians

2-73

function [f g H] = rosenboth(x)

f = 100*(x(2) - x(1)^2)^2 + (1-x(1))^2;

if nargout > 1
 g = [-400*(x(2)-x(1)^2)*x(1)-2*(1-x(1));
 200*(x(2)-x(1)^2)];

 if nargout > 2
 H = [1200*x(1)^2-400*x(2)+2, -400*x(1);
 -400*x(1), 200];
 end
end

rosenboth calculates the Hessian, too, but this example does not use the Hessian.

The unitdisk2 function correctly calculates the constraint function and its gradient:

function [c,ceq,gc,gceq] = unitdisk2(x)
c = x(1)^2 + x(2)^2 - 1;
ceq = [];

if nargout > 2
 gc = [2*x(1);2*x(2)];
 gceq = [];
end

The unitdiskb function incorrectly calculates gradient of the constraint function:

function [c ceq gc gceq] = unitdiskb(x)
c = x(1)^2 + x(2)^2 - 1;
ceq = [];

if nargout > 2
 gc = [x(1);x(2)]; % Gradient incorrect: off by a factor of 2
 gceq = [];
end

Checking Derivatives at the Command Line

1 Set the options to use the interior-point algorithm, gradient of objective and constraint functions,
and the CheckGradients option:

% For reproducibility--CheckGradients randomly perturbs the initial point
rng(0,'twister');
options = optimoptions(@fmincon,'Algorithm','interior-point',...
 'CheckGradients',true,'SpecifyObjectiveGradient',true,'SpecifyConstraintGradient',true);

2 Solve the minimization with fmincon using the erroneous unitdiskb constraint function:

[x fval exitflag output] = fmincon(@rosenboth,...
 [-1;2],[],[],[],[],[],[],@unitdiskb,options);
__
 Derivative Check Information

Objective function derivatives:
Maximum relative difference between user-supplied
and finite-difference derivatives = 1.84768e-008.

2 Setting Up an Optimization

2-74

Nonlinear inequality constraint derivatives:
Maximum relative difference between user-supplied
and finite-difference derivatives = 1.
 User-supplied constraint derivative element (2,1): 1.99838
 Finite-difference constraint derivative element (2,1): 3.99675
__

Error using validateFirstDerivatives
Derivative Check failed:
User-supplied and forward finite-difference derivatives
do not match within 1e-006 relative tolerance.

Error in fmincon at 805
 validateFirstDerivatives(funfcn,confcn,X, ...

The constraint function does not match the calculated gradient, encouraging you to check the
function for an error.

3 Replace the unitdiskb constraint function with unitdisk2 and run the minimization again:

[x fval exitflag output] = fmincon(@rosenboth,...
 [-1;2],[],[],[],[],[],[],@unitdisk2,options);

__
 Derivative Check Information

Objective function derivatives:
Maximum relative difference between user-supplied
and finite-difference derivatives = 1.28553e-008.

Nonlinear inequality constraint derivatives:
Maximum relative difference between user-supplied
and finite-difference derivatives = 1.46443e-008.

Derivative Check successfully passed.
__

Local minimum found that satisfies the constraints...

 Checking Validity of Gradients or Jacobians

2-75

Bibliography
[1] Biggs, M.C., “Constrained Minimization Using Recursive Quadratic Programming,” Towards

Global Optimization (L.C.W. Dixon and G.P. Szergo, eds.), North-Holland, pp 341–349, 1975.

[2] Brayton, R.K., S.W. Director, G.D. Hachtel, and L. Vidigal, “A New Algorithm for Statistical Circuit
Design Based on Quasi-Newton Methods and Function Splitting,” IEEE Transactions on
Circuits and Systems, Vol. CAS-26, pp 784–794, Sept. 1979.

[3] Broyden, C.G., “The Convergence of a Class of Double-rank Minimization Algorithms,”; J. Inst.
Maths. Applics., Vol. 6, pp 76–90, 1970.

[4] Conn, N.R., N.I.M. Gould, and Ph.L. Toint, Trust-Region Methods, MPS/SIAM Series on
Optimization, SIAM and MPS, 2000.

[5] Dantzig, G., Linear Programming and Extensions, Princeton University Press, Princeton, 1963.

[6] Dantzig, G.B., A. Orden, and P. Wolfe, “Generalized Simplex Method for Minimizing a Linear Form
Under Linear Inequality Restraints,” Pacific Journal Math., Vol. 5, pp. 183–195, 1955.

[7] Davidon, W.C., “Variable Metric Method for Minimization,” A.E.C. Research and Development
Report, ANL-5990, 1959.

[8] Dennis, J.E., Jr., “Nonlinear least-squares,” State of the Art in Numerical Analysis ed. D. Jacobs,
Academic Press, pp 269–312, 1977.

[9] Dennis, J.E., Jr. and R.B. Schnabel, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations, Prentice-Hall Series in Computational Mathematics, Prentice-Hall,
1983.

[10] Fleming, P.J., “Application of Multiobjective Optimization to Compensator Design for SISO
Control Systems,” Electronics Letters, Vol. 22, No. 5, pp 258–259, 1986.

[11] Fleming, P.J., “Computer-Aided Control System Design of Regulators using a Multiobjective
Optimization Approach,” Proc. IFAC Control Applications of Nonlinear Prog. and Optim.,
Capri, Italy, pp 47–52, 1985.

[12] Fletcher, R., “A New Approach to Variable Metric Algorithms,” Computer Journal, Vol. 13, pp
317–322, 1970.

[13] Fletcher, R., “Practical Methods of Optimization,” John Wiley and Sons, 1987.

[14] Fletcher, R. and M.J.D. Powell, “A Rapidly Convergent Descent Method for Minimization,”
Computer Journal, Vol. 6, pp 163–168, 1963.

[15] Forsythe, G.F., M.A. Malcolm, and C.B. Moler, Computer Methods for Mathematical
Computations, Prentice Hall, 1976.

[16] Gembicki, F.W., “Vector Optimization for Control with Performance and Parameter Sensitivity
Indices,” Ph.D. Thesis, Case Western Reserve Univ., Cleveland, Ohio, 1974.

[17] Gill, P.E., W. Murray, M.A. Saunders, and M.H. Wright, “Procedures for Optimization Problems
with a Mixture of Bounds and General Linear Constraints,” ACM Trans. Math. Software, Vol.
10, pp 282–298, 1984.

2 Setting Up an Optimization

2-76

[18] Gill, P.E., W. Murray, and M.H. Wright, Numerical Linear Algebra and Optimization, Vol. 1,
Addison Wesley, 1991.

[19] Gill, P. E., W. Murray, and M. H. Wright, Practical Optimization, London, Academic Press, 1981.

[20] Goldfarb, D., “A Family of Variable Metric Updates Derived by Variational Means,” Mathematics
of Computing, Vol. 24, pp 23–26, 1970.

[21] Grace, A.C.W., “Computer-Aided Control System Design Using Optimization Techniques,” Ph.D.
Thesis, University of Wales, Bangor, Gwynedd, UK, 1989.

[22] Han, S.P., “A Globally Convergent Method for Nonlinear Programming,” J. Optimization Theory
and Applications, Vol. 22, p. 297, 1977.

[23] Hock, W. and K. Schittkowski, “A Comparative Performance Evaluation of 27 Nonlinear
Programming Codes,” Computing, Vol. 30, p. 335, 1983.

[24] Hollingdale, S.H., Methods of Operational Analysis in Newer Uses of Mathematics (James
Lighthill, ed.), Penguin Books, 1978.

[25] Levenberg, K., “A Method for the Solution of Certain Problems in Least Squares,” Quart. Appl.
Math. Vol. 2, pp 164–168, 1944.

[26] Madsen, K. and H. Schjaer-Jacobsen, “Algorithms for Worst Case Tolerance Optimization,” IEEE
Transactions of Circuits and Systems, Vol. CAS-26, Sept. 1979.

[27] Marquardt, D., “An Algorithm for Least-Squares Estimation of Nonlinear Parameters,” SIAM J.
Appl. Math. Vol. 11, pp 431–441, 1963.

[28] Moré, J.J., “The Levenberg-Marquardt Algorithm: Implementation and Theory,” Numerical
Analysis, ed. G. A. Watson, Lecture Notes in Mathematics 630, Springer Verlag, pp 105–116,
1977.

[29] NAG Fortran Library Manual, Mark 12, Vol. 4, E04UAF, p. 16.

[30] Nelder, J.A. and R. Mead, “A Simplex Method for Function Minimization,” Computer J., Vol.7, pp
308–313, 1965.

[31] Nocedal, J. and S. J. Wright. Numerical Optimization, Second Edition. Springer Series in
Operations Research, Springer Verlag, 2006.

[32] Powell, M.J.D., “The Convergence of Variable Metric Methods for Nonlinearly Constrained
Optimization Calculations,” Nonlinear Programming 3, (O.L. Mangasarian, R.R. Meyer and
S.M. Robinson, eds.), Academic Press, 1978.

[33] Powell, M.J.D., “A Fast Algorithm for Nonlinearly Constrained Optimization Calculations,”
Numerical Analysis, G. A. Watson ed., Lecture Notes in Mathematics, Springer Verlag, Vol.
630, 1978.

[34] Powell, M.J.D., “A Fortran Subroutine for Solving Systems of Nonlinear Algebraic Equations,”
Numerical Methods for Nonlinear Algebraic Equations, (P. Rabinowitz, ed.), Ch.7, 1970.

[35] Powell, M.J.D., “Variable Metric Methods for Constrained Optimization,” Mathematical
Programming: The State of the Art, (A. Bachem, M. Grotschel and B. Korte, eds.) Springer
Verlag, pp 288–311, 1983.

 Bibliography

2-77

[36] Schittkowski, K., “NLQPL: A FORTRAN-Subroutine Solving Constrained Nonlinear Programming
Problems,” Annals of Operations Research, Vol. 5, pp 485-500, 1985.

[37] Shanno, D.F., “Conditioning of Quasi-Newton Methods for Function Minimization,” Mathematics
of Computing, Vol. 24, pp 647–656, 1970.

[38] Waltz, F.M., “An Engineering Approach: Hierarchical Optimization Criteria,” IEEE Trans., Vol.
AC-12, pp 179–180, April, 1967.

[39] Branch, M.A., T.F. Coleman, and Y. Li, “A Subspace, Interior, and Conjugate Gradient Method for
Large-Scale Bound-Constrained Minimization Problems,” SIAM Journal on Scientific
Computing, Vol. 21, Number 1, pp 1–23, 1999.

[40] Byrd, R.H., J. C. Gilbert, and J. Nocedal, “A Trust Region Method Based on Interior Point
Techniques for Nonlinear Programming,” Mathematical Programming, Vol 89, No. 1, pp. 149–
185, 2000.

[41] Byrd, R.H., Mary E. Hribar, and Jorge Nocedal, “An Interior Point Algorithm for Large-Scale
Nonlinear Programming,” SIAM Journal on Optimization, Vol 9, No. 4, pp. 877–900, 1999.

[42] Byrd, R.H., R.B. Schnabel, and G.A. Shultz, “Approximate Solution of the Trust Region Problem
by Minimization over Two-Dimensional Subspaces,” Mathematical Programming, Vol. 40, pp
247–263, 1988.

[43] Coleman, T.F. and Y. Li, “On the Convergence of Reflective Newton Methods for Large-Scale
Nonlinear Minimization Subject to Bounds,” Mathematical Programming, Vol. 67, Number 2,
pp 189–224, 1994.

[44] Coleman, T.F. and Y. Li, “An Interior, Trust Region Approach for Nonlinear Minimization Subject
to Bounds,” SIAM Journal on Optimization, Vol. 6, pp 418–445, 1996.

[45] Coleman, T.F. and Y. Li, “A Reflective Newton Method for Minimizing a Quadratic Function
Subject to Bounds on some of the Variables,” SIAM Journal on Optimization, Vol. 6, Number 4,
pp 1040–1058, 1996.

[46] Coleman, T.F. and A. Verma, “A Preconditioned Conjugate Gradient Approach to Linear Equality
Constrained Minimization,” Computational Optimization and Applications, Vol. 20, No. 1, pp.
61–72, 2001.

[47] Mehrotra, S., “On the Implementation of a Primal-Dual Interior Point Method,” SIAM Journal on
Optimization, Vol. 2, pp 575–601, 1992.

[48] Moré, J.J. and D.C. Sorensen, “Computing a Trust Region Step,” SIAM Journal on Scientific and
Statistical Computing, Vol. 3, pp 553–572, 1983.

[49] Sorensen, D.C., “Minimization of a Large Scale Quadratic Function Subject to an Ellipsoidal
Constraint,” Department of Computational and Applied Mathematics, Rice University,
Technical Report TR94-27, 1994.

[50] Steihaug, T., “The Conjugate Gradient Method and Trust Regions in Large Scale Optimization,”
SIAM Journal on Numerical Analysis, Vol. 20, pp 626–637, 1983.

[51] Waltz, R. A. , J. L. Morales, J. Nocedal, and D. Orban, “An interior algorithm for nonlinear
optimization that combines line search and trust region steps,” Mathematical Programming,
Vol 107, No. 3, pp. 391–408, 2006.

2 Setting Up an Optimization

2-78

[52] Zhang, Y., “Solving Large-Scale Linear Programs by Interior-Point Methods Under the MATLAB
Environment,” Department of Mathematics and Statistics, University of Maryland, Baltimore
County, Baltimore, MD, Technical Report TR96-01, July, 1995.

[53] Hairer, E., S. P. Norsett, and G. Wanner, Solving Ordinary Differential Equations I - Nonstiff
Problems, Springer-Verlag, pp. 183–184.

[54] Chvatal, Vasek, Linear Programming, W. H. Freeman and Company, 1983.

[55] Bixby, Robert E., “Implementing the Simplex Method: The Initial Basis,” ORSA Journal on
Computing, Vol. 4, No. 3, 1992.

[56] Andersen, Erling D. and Knud D. Andersen, “Presolving in Linear Programming,” Mathematical
Programming, Vol. 71, pp. 221–245, 1995.

[57] Lagarias, J. C., J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence Properties of the
Nelder-Mead Simplex Method in Low Dimensions,” SIAM Journal of Optimization, Vol. 9,
Number 1, pp. 112–147, 1998.

[58] Dolan, Elizabeth D. , Jorge J. Moré and Todd S. Munson, “Benchmarking Optimization Software
with COPS 3.0,” Argonne National Laboratory Technical Report ANL/MCS-TM-273, February
2004.

[59] Applegate, D. L., R. E. Bixby, V. Chvátal and W. J. Cook, The Traveling Salesman Problem: A
Computational Study, Princeton University Press, 2007.

[60] Spellucci, P., “A new technique for inconsistent QP problems in the SQP method,” Journal of
Mathematical Methods of Operations Research, Volume 47, Number 3, pp. 355–400, October
1998.

[61] Tone, K., “Revisions of constraint approximations in the successive QP method for nonlinear
programming problems,” Journal of Mathematical Programming, Volume 26, Number 2, pp.
144–152, June 1983.

[62] Gondzio, J. “Multiple centrality corrections in a primal dual method for linear programming.”
Computational Optimization and Applications, Volume 6, Number 2, pp. 137–156, 1996.

[63] Gould, N. and P. L. Toint. “Preprocessing for quadratic programming.” Math. Programming,
Series B, Vol. 100, pp. 95–132, 2004.

[64] Schittkowski, K., “More Test Examples for Nonlinear Programming Codes,” Lecture Notes in
Economics and Mathematical Systems, Number 282, Springer, p. 45, 1987.

 Bibliography

2-79

Examining Results

• “Current Point and Function Value” on page 3-2
• “Exit Flags and Exit Messages” on page 3-3
• “Iterations and Function Counts” on page 3-9
• “First-Order Optimality Measure” on page 3-11
• “Iterative Display” on page 3-14
• “Output Structures” on page 3-21
• “Lagrange Multiplier Structures” on page 3-22
• “Hessian Output” on page 3-24
• “Plot Functions” on page 3-27
• “Output Functions for Optimization Toolbox” on page 3-30

3

Current Point and Function Value
The current point and function value are the first two outputs of all Optimization Toolbox solvers.

• The current point is the final point in the solver iterations. It is the best point the solver found in
its run.

• If you call a solver without assigning a value to the output, the default output, ans, is the
current point.

• The function value is the value of the objective function at the current point.

• The function value for least-squares solvers is the sum of squares, also known as the residual
norm.

• fgoalattain, fminimax, and fsolve return a vector function value.
• Sometimes fval or Fval denotes function value.

See Also

More About
• “Solver Outputs and Iterative Display”

3 Examining Results

3-2

Exit Flags and Exit Messages
In this section...
“Exit Flags” on page 3-3
“Exit Messages” on page 3-4
“Enhanced Exit Messages” on page 3-4
“Exit Message Options” on page 3-7

Exit Flags
When an optimization solver completes its task, it sets an exit flag. An exit flag is an integer that is a
code for the reason the solver halted its iterations. In general:

• Positive exit flags correspond to successful outcomes.
• Negative exit flags correspond to unsuccessful outcomes.
• The zero exit flag corresponds to the solver being halted by exceeding an iteration limit or limit on

the number of function evaluations (see “Iterations and Function Counts” on page 3-9, and also
see “Tolerances and Stopping Criteria” on page 2-68).

This table links to the exit flag description of each solver.

Exit Flags by Solver

coneprog exitflag fgoalattain exitflag fminbnd exitflag
fmincon exitflag fminimax exitflag fminsearch exitflag
fminunc exitflag fseminf exitflag fsolve exitflag
fzero exitflag intlinprog exitflag linprog exitflag
lsqcurvefit exitflag lsqlin exitflag lsqnonlin exitflag
lsqnonneg exitflag quadprog exitflag

Note Exit flags are not infallible guides to the quality of a solution. Many other factors, such as
tolerance settings, can affect whether a solution is satisfactory to you. You are responsible for
deciding whether a solver returns a satisfactory answer. Sometimes a negative exit flag does not
correspond to a “bad” solution. Similarly, sometimes a positive exit flag does not correspond to a
“good” solution.

You obtain an exit flag by calling a solver with the exitflag syntax. This syntax depends on the
solver. For details, see the solver function reference pages. For example, for fsolve, the calling
syntax to obtain an exit flag is

[x,fval,exitflag] = fsolve(...)

The following example uses this syntax. Suppose you want to solve the system of nonlinear equations

2x1− x2 = e−x1

−x1 + 2x2 = e−x2 .

 Exit Flags and Exit Messages

3-3

Write these equations as an anonymous function that gives a zero vector at a solution:

myfcn = @(x)[2*x(1) - x(2) - exp(-x(1));
 -x(1) + 2*x(2) - exp(-x(2))];

Call fsolve with the exitflag syntax at the initial point [-5 -5]:

[xfinal fval exitflag] = fsolve(myfcn,[-5 -5])

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.

xfinal =
 0.5671 0.5671

fval =
 1.0e-06 *
 -0.4059
 -0.4059

exitflag =
 1

In the table for the fsolve exitflag, you find that an exit flag value 1 means “Function converged
to a solution x.” In other words, fsolve reports myfcn is nearly zero at x = [0.5671 0.5671].

Exit Messages
Each solver issues a message to the MATLAB command window at the end of its iterations. This
message explains briefly why the solver halted. The message might give more detail than the exit
flag.

Many examples in this documentation show exit messages, such as “Define and Solve Problem at
Command Line” on page 1-16. The example in the previous section, “Exit Flags” on page 3-3, shows
the following exit message:

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.

This message is more informative than the exit flag. The message indicates that the gradient is
relevant. The message also states that the function tolerance controls how near 0 the vector of
function values must be for fsolve to regard the solution as completed.

Enhanced Exit Messages
Some solvers have exit messages that contain links for more information. There are two types of
links:

3 Examining Results

3-4

• Links on words or phrases. If you click such a link, a window opens that displays a definition of the
term, or gives other information. The new window can contain links to the Help browser
documentation for more detailed information.

• A link as the last line of the display saying <stopping criteria details>. If you click this
link, MATLAB displays more detail about the reason the solver halted.

The fminunc solver has enhanced exit messages:

opts = optimoptions(@fminunc,'Algorithm','quasi-newton'); % 'trust-region' needs gradient
[xfinal fval exitflag] = fminunc(@sin,0,opts)

This yields the following results:

Each of the underlined words or phrases contains a link that provides more information.

• The <stopping criteria details> link prints the following to the MATLAB command line:
Optimization completed: The first-order optimality measure, 0.000000e+00, is less
than options.OptimalityTolerance = 1.000000e-06.

• The other links bring up a help window with term definitions. For example, clicking the Local
minimum found link opens the following window:

 Exit Flags and Exit Messages

3-5

Clicking the first-order optimality measure expander link brings up the definition of first-
order optimality measure for fminunc:

3 Examining Results

3-6

The expander link is a way to obtain more information in the same window. Clicking the first-
order optimality measure expander link again closes the definition.

• The other links open the Help Viewer.

Exit Message Options
Set the Display option to control the appearance of both exit messages and iterative display. For
more information, see “Iterative Display” on page 3-14. The following table shows the effect of the
various settings of the Display option.

Value of the Display Option Output to Command Window
Exit message Iterative Display

'none', or the synonymous 'off' None None
'final' (default for most solvers) Default None
'final-detailed' Detailed None
'iter' Default Yes
'iter-detailed' Detailed Yes
'notify' Default only if exitflag ≤ 0 None
'notify-detailed' Detailed only if exitflag ≤ 0 None

 Exit Flags and Exit Messages

3-7

For example,

opts = optimoptions(@fminunc,'Display','iter-detailed','Algorithm','quasi-newton');
[xfinal fval] = fminunc(@cos,1,opts);

yields the following display:

See Also

More About
• “Solver Outputs and Iterative Display”

3 Examining Results

3-8

Iterations and Function Counts
In general, Optimization Toolbox solvers iterate to find an optimum. A solver begins at an initial value
x0, performs some intermediate calculations that eventually lead to a new point x1, and then repeats
the process to find successive approximations x2, x3, ... of the local minimum. Processing stops after
some number of iterations k.

You can limit the number of iterations or function counts by setting the MaxIterations or
MaxFunctionEvaluations options for a solver using optimoptions. Or, if you want a solver to
continue after reaching one of these limits, raise the values of these options. See “Set and Change
Options” on page 2-62.

At any step, intermediate calculations can involve evaluating the objective function and any
constraints at points near the current iterate xi. For example, the solver might estimate a gradient by
finite differences. At each nearby point, the function count (F-count) increases by one. The figure
“Typical Iteration in 3-D Space” on page 3-9 shows that, in 3-D space with forward finite
differences of size delta, one iteration typically corresponds to an increase in function count of four.
In the figure, ei represents the unit vector in the ith coordinate direction.

Typical Iteration in 3-D Space

• If the problem has no constraints, the F-count reports the total number of objective function
evaluations.

• If the problem has constraints, the F-count reports only the number of points where function
evaluations took place, not the total number of evaluations of constraint functions. So, if the
problem has many constraints, the F-count can be significantly less than the total number of
function evaluations.

Sometimes a solver attempts a step and rejects the attempt. The trust-region, trust-region-
reflective, and trust-region-dogleg algorithms count these failed attempts as iterations, and
report the (unchanged) result in the iterative display. The interior-point, active-set, and
levenberg-marquardt algorithms do not count failed attempts as iterations, and do not report the
attempts in the iterative display. All attempted steps increase the F-count, regardless of the
algorithm.

F-count is a header in the iterative display for many solvers. For an example, see “Interpret Result”
on page 1-19.

The F-count appears in the output structure as output.funcCount, enabling you to access the
evaluation count programmatically. For more information, see “Output Structures” on page 3-21.

See Also
optimoptions

 Iterations and Function Counts

3-9

More About
• “Solver Outputs and Iterative Display”

3 Examining Results

3-10

First-Order Optimality Measure
In this section...
“What Is First-Order Optimality Measure?” on page 3-11
“Stopping Rules Related to First-Order Optimality” on page 3-11
“Unconstrained Optimality” on page 3-11
“Constrained Optimality Theory” on page 3-12
“Constrained Optimality in Solver Form” on page 3-13

What Is First-Order Optimality Measure?
First-order optimality is a measure of how close a point x is to optimal. Most Optimization Toolbox
solvers use this measure, though it has different definitions for different algorithms. First-order
optimality is a necessary condition, but it is not a sufficient condition. In other words:

• The first-order optimality measure must be zero at a minimum.
• A point with first-order optimality equal to zero is not necessarily a minimum.

For general information about first-order optimality, see Nocedal and Wright [31]. For specifics about
the first-order optimality measures for Optimization Toolbox solvers, see “Unconstrained Optimality”
on page 3-11, “Constrained Optimality Theory” on page 3-12, and “Constrained Optimality in
Solver Form” on page 3-13.

Stopping Rules Related to First-Order Optimality
The OptimalityTolerance tolerance relates to the first-order optimality measure. Typically, if the
first-order optimality measure is less than OptimalityTolerance, solver iterations end.

Some solvers or algorithms use relative first-order optimality as a stopping criterion. Solver iterations
end if the first-order optimality measure is less than μ times OptimalityTolerance, where μ is
either:

• The infinity norm (maximum) of the gradient of the objective function at x0
• The infinity norm (maximum) of inputs to the solver, such as f or b in linprog or H in quadprog

A relative measure attempts to account for the scale of a problem. Multiplying an objective function
by a very large or small number does not change the stopping condition for a relative stopping
criterion, but does change it for an unscaled one.

Solvers with enhanced exit messages on page 3-4 state, in the stopping criteria details, when they
use relative first-order optimality.

Unconstrained Optimality
For a smooth unconstrained problem,

min
x

f (x),

 First-Order Optimality Measure

3-11

the first-order optimality measure is the infinity norm (meaning maximum absolute value) of ∇f(x),
which is:

first‐order optimality measure = max
i

∇ f (x) i = ∇ f (x) ∞ .

This measure of optimality is based on the familiar condition for a smooth function to achieve a
minimum: its gradient must be zero. For unconstrained problems, when the first-order optimality
measure is nearly zero, the objective function has gradient nearly zero, so the objective function
could be near a minimum. If the first-order optimality measure is not small, the objective function is
not minimal.

Constrained Optimality Theory
This section summarizes the theory behind the definition of first-order optimality measure for
constrained problems. The definition as used in Optimization Toolbox functions is in “Constrained
Optimality in Solver Form” on page 3-13.

For a smooth constrained problem, let g and h be vector functions representing all inequality and
equality constraints respectively (meaning bound, linear, and nonlinear constraints):

min
x

f (x) subject to g(x) ≤ 0, h(x) = 0.

The meaning of first-order optimality in this case is more complex than for unconstrained problems.
The definition is based on the Karush-Kuhn-Tucker (KKT) conditions. The KKT conditions are
analogous to the condition that the gradient must be zero at a minimum, modified to take constraints
into account. The difference is that the KKT conditions hold for constrained problems.

The KKT conditions use the auxiliary Lagrangian function:

L(x, λ) = f (x) + ∑λg, igi(x) + ∑λh, ihi(x) . (3-1)

The vector λ, which is the concatenation of λg and λh, is the Lagrange multiplier vector. Its length is
the total number of constraints.

The KKT conditions are:

∇xL(x, λ) = 0, (3-2)

λg, igi(x) = 0 ∀i, (3-3)

g(x) ≤ 0,
h(x) = 0,
λg, i ≥ 0.

 (3-4)

Solvers do not use the three expressions in “Equation 3-4” in the calculation of optimality measure.

The optimality measure associated with “Equation 3-2” is

∇xL(x, λ) = ∇ f (x) + ∑λg, i∇gi(x) + ∑λh, i∇hh, i(x) . (3-5)

The optimality measure associated with “Equation 3-3” is

3 Examining Results

3-12

λgg(x) , (3-6)

where the norm in “Equation 3-6” means infinity norm (maximum) of the vector λg, igi(x).

The combined optimality measure is the maximum of the values calculated in “Equation 3-5” and
“Equation 3-6”. Solvers that accept nonlinear constraint functions report constraint violations
g(x) > 0 or |h(x)| > 0 as ConstraintTolerance violations. See “Tolerances and Stopping Criteria”
on page 2-68.

Constrained Optimality in Solver Form
Most constrained toolbox solvers separate their calculation of first-order optimality measure into
bounds, linear functions, and nonlinear functions. The measure is the maximum of the following two
norms, which correspond to “Equation 3-5” and “Equation 3-6”:

∇xL(x, λ) = ∇ f (x) + ATλineqlin + AeqTλeqlin

 +∑λineqnonlin, i∇ci(x) + ∑λeqnonlin, i∇ceqi(x) ,
 (3-7)

li− xi λlower, i, xi− ui λupper, i, (Ax− b)i λineqlin, i, ci(x) λineqnonlin, i , (3-8)

where the norm of the vectors in “Equation 3-7” and “Equation 3-8” is the infinity norm (maximum).
The subscripts on the Lagrange multipliers correspond to solver Lagrange multiplier structures. See
“Lagrange Multiplier Structures” on page 3-22. The summations in “Equation 3-7” range over all
constraints. If a bound is ±Inf, that term is not constrained, so it is not part of the summation.

Linear Equalities Only

For some large-scale problems with only linear equalities, the first-order optimality measure is the
infinity norm of the projected gradient. In other words, the first-order optimality measure is the size
of the gradient projected onto the null space of Aeq.

Bounded Least-Squares and Trust-Region-Reflective Solvers

For least-squares solvers and trust-region-reflective algorithms, in problems with bounds alone, the
first-order optimality measure is the maximum over i of |vi*gi|. Here gi is the ith component of the
gradient, x is the current point, and

vi =
xi− bi if the negative gradient points toward bound bi

1 otherwise.

If xi is at a bound, vi is zero. If xi is not at a bound, then at a minimizing point the gradient gi should
be zero. Therefore the first-order optimality measure should be zero at a minimizing point.

See Also

More About
• “Solver Outputs and Iterative Display”

 First-Order Optimality Measure

3-13

Iterative Display
In this section...
“Introduction” on page 3-14
“Common Headings” on page 3-14
“Function-Specific Headings” on page 3-15

Introduction
The iterative display is a table of statistics describing the calculations in each iteration of a solver.
The statistics depend on both the solver and the solver algorithm. The table appears in the MATLAB
Command Window when you run solvers with appropriate options. For more information about
iterations, see “Iterations and Function Counts” on page 3-9.

Obtain the iterative display by using optimoptions with the Display option set to 'iter' or
'iter-detailed'. For example:

options = optimoptions(@fminunc,'Display','iter','Algorithm','quasi-newton');
[x fval exitflag output] = fminunc(@sin,0,options);

 First-order
Iteration Func-count f(x) Step-size optimality
 0 2 0 1
 1 4 -0.841471 1 0.54
 2 8 -1 0.484797 0.000993
 3 10 -1 1 5.62e-05
 4 12 -1 1 0

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

The iterative display is available for all solvers except:

• lsqlin 'trust-region-reflective' algorithm
• lsqnonneg
• quadprog 'trust-region-reflective' algorithm

Common Headings
This table lists some common headings of iterative display.

Heading Information Displayed
f(x) or Fval Current objective function value; for fsolve, the square of the

norm of the function value vector
First-order optimality First-order optimality measure (see “First-Order Optimality

Measure” on page 3-11)
Func-count or F-count Number of function evaluations; see “Iterations and Function

Counts” on page 3-9

3 Examining Results

3-14

Heading Information Displayed
Iteration or Iter Iteration number; see “Iterations and Function Counts” on page 3-9
Norm of step Size of the current step (size is the Euclidean norm, or 2-norm). For

the 'trust-region' and 'trust-region-reflective'
algorithms, when constraints exist, Norm of step is the norm of
D*s. Here, s is the step and D is a diagonal scaling matrix described
in the trust-region subproblem section of the algorithm description.

Function-Specific Headings
The tables in this section describe headings of the iterative display whose meaning is specific to the
optimization function you are using.

• “fgoalattain, fmincon, fminimax, and fseminf” on page 3-15
• “fminbnd and fzero” on page 3-16
• “fminsearch” on page 3-17
• “fminunc” on page 3-17
• “fsolve” on page 3-18
• “intlinprog” on page 3-18
• “linprog” on page 3-18
• “lsqlin” on page 3-19
• “lsqnonlin and lsqcurvefit” on page 3-19
• “quadprog” on page 3-19

fgoalattain, fmincon, fminimax, and fseminf

This table describes the headings specific to fgoalattain, fmincon, fminimax, and fseminf.

fgoalattain, fmincon,
fminimax, or fseminf
Heading

Information Displayed

Attainment factor Value of the attainment factor for fgoalattain
CG-iterations Number of conjugate gradient iterations taken in the current iteration

(see “Preconditioned Conjugate Gradient Method” on page 5-21)
Directional derivative Gradient of the objective function along the search direction
Feasibility Maximum constraint violation, where satisfied inequality constraints

count as 0
Line search steplength Multiplicative factor that scales the search direction (see

“Equation 5-44”)
Max constraint Maximum violation among all constraints, both internally constructed

and user-provided; can be negative when no constraint is binding
Objective value Objective function value of the nonlinear programming reformulation

of the minimax problem for fminimax

 Iterative Display

3-15

fgoalattain, fmincon,
fminimax, or fseminf
Heading

Information Displayed

Procedure Hessian update procedures:

• Infeasible start point
• Hessian not updated
• Hessian modified
• Hessian modified twice

For more information, see “Updating the Hessian Matrix” on page 5-
25.

QP subproblem procedures:

• dependent — The solver detected and removed dependent
(redundant) equality constraints.

• Infeasible — The QP subproblem with linearized constraints is
infeasible.

• Overly constrained — The QP subproblem with linearized
constraints is infeasible.

• Unbounded — The QP subproblem is feasible with large negative
curvature.

• Ill-posed — The QP subproblem search direction is too small.
• Unreliable — The QP subproblem seems to be poorly

conditioned.
Steplength Multiplicative factor that scales the search direction (see

“Equation 5-44”)
Trust-region radius Current trust-region radius

fminbnd and fzero

This table describes the headings specific to fminbnd and fzero.

3 Examining Results

3-16

fminbnd or fzero
Heading

Information Displayed

Procedure Procedures for fminbnd:

• initial
• golden (golden section search)
• parabolic (parabolic interpolation)

Procedures for fzero:

• initial (initial point)
• search (search for an interval containing a zero)
• bisection
• interpolation (linear interpolation or inverse quadratic interpolation)

x Current point for the algorithm

fminsearch

This table describes the headings specific to fminsearch.

fminsearch Heading Information Displayed
min f(x) Minimum function value in the current simplex
Procedure Simplex procedure at the current iteration. Procedures include:

• initial simplex
• expand
• reflect
• shrink
• contract inside
• contract outside

For details, see “fminsearch Algorithm” on page 5-9.

fminunc

This table describes the headings specific to fminunc.

fminunc Heading Information Displayed
CG-iterations Number of conjugate gradient iterations taken in the current iteration (see

“Preconditioned Conjugate Gradient Method” on page 5-21)
Line search
steplength

Multiplicative factor that scales the search direction (see “Equation 5-11”)

The fminunc 'quasi-newton' algorithm can issue a skipped update message to the right of the
First-order optimality column. This message means that fminunc did not update its Hessian
estimate, because the resulting matrix would not have been positive definite. The message usually
indicates that the objective function is not smooth at the current point.

 Iterative Display

3-17

fsolve

This table describes the headings specific to fsolve.

fsolve Heading Information Displayed
Directional
derivative

Gradient of the function along the search direction

Lambda λk value defined in “Levenberg-Marquardt Method” on page 11-6
Residual Residual (sum of squares) of the function
Trust-region
radius

Current trust-region radius (change in the norm of the trust-region radius)

intlinprog

This table describes the headings specific to intlinprog.

intlinprog Heading Information Displayed
nodes explored Cumulative number of explored nodes
total time (s) Time in seconds since intlinprog started
num int solution Number of integer feasible points found
integer fval Objective function value of the best integer feasible point found. This value

is an upper bound for the final objective function value
relative gap (%) 100(b− a)

b + 1 ,

where

• b is the objective function value of the best integer feasible point.
• a is the best lower bound on the objective function value.

Note Although you specify RelativeGapTolerance as a decimal number,
the iterative display and output.relativegap report the gap as a
percentage, meaning 100 times the measured relative gap. If the exit
message refers to the relative gap, this value is the measured relative gap,
not a percentage.

linprog

This table describes the headings specific to linprog. Each algorithm has its own iterative display.

linprog Heading Information Displayed
Primal Infeas A*x-
b or Primal Infeas

Primal infeasibility, a measure of the constraint violations, which should be
zero at a solution.

For definitions, see “Predictor-Corrector” on page 8-3 ('interior-
point') or “Main Algorithm” on page 8-6 ('interior-point-
legacy') or “Dual-Simplex Algorithm” on page 8-9.

3 Examining Results

3-18

linprog Heading Information Displayed
Dual Infeas A'*y
+z-w-f or Dual
Infeas

Dual infeasibility, a measure of the derivative of the Lagrangian, which
should be zero at a solution.

For the definition of the Lagrangian, see “Predictor-Corrector” on page 8-
3. For the definition of dual infeasibility, see “Predictor-Corrector” on
page 8-3 ('interior-point') or “Main Algorithm” on page 8-6
('interior-point-legacy') or “Dual-Simplex Algorithm” on page 8-9.

Upper Bounds {x}
+s-ub

Upper bound feasibility. {x} means those x with finite upper bounds. This
value is the ru residual in “Interior-Point-Legacy Linear Programming” on
page 8-6.

Duality Gap x'*z
+s'*w

Duality gap (see “Interior-Point-Legacy Linear Programming” on page 8-
6) between the primal objective and the dual objective. s and w appear in
this equation only if the problem has finite upper bounds.

Total Rel Error Total relative error, described at the end of “Main Algorithm” on page 8-6
Complementarity A measure of the Lagrange multipliers times distance from the bounds,

which should be zero at a solution. See the rc variable in “Stopping
Conditions” on page 8-6.

Time Time in seconds that linprog has been running

lsqlin

The lsqlin 'interior-point' iterative display is inherited from the quadprog iterative display.
The relationship between these functions is explained in “Linear Least Squares: Interior-Point or
Active-Set” on page 11-2. For iterative display details, see “quadprog” on page 3-19.

lsqnonlin and lsqcurvefit

This table describes the headings specific to lsqnonlin and lsqcurvefit.

lsqnonlin or
lsqcurvefit Heading

Information Displayed

Directional
derivative

Gradient of the function along the search direction

Lambda λk value defined in “Levenberg-Marquardt Method” on page 11-6
Resnorm Value of the squared 2-norm of the residual at x
Residual Residual vector of the function

quadprog

This table describes the headings specific to quadprog. Only the 'interior-point-convex'
algorithm has the iterative display.

quadprog Heading Information Displayed
Primal Infeas Primal infeasibility, defined as max(norm(Aeq*x - beq, inf),

abs(min(0, min(A*x-b))))
Dual Infeas Dual infeasibility, defined as norm(H*x + f - A*lambda_ineqlin -

Aeq*lambda_eqlin, inf)

 Iterative Display

3-19

quadprog Heading Information Displayed
Complementarity A measure of the maximum absolute value of the Lagrange multipliers of

inactive inequalities, which should be zero at a solution. This quantity is g in
“Infeasibility Detection” on page 10-7.

3 Examining Results

3-20

Output Structures
An output structure contains information on a solver's result. All solvers can return an output
structure. To obtain an output structure, invoke the solver with the output structure in the calling
syntax. For example, to get an output structure from lsqnonlin, use the syntax

[x,resnorm,residual,exitflag,output] = lsqnonlin(...)

The contents of the output structure are listed in each solver's reference pages. For example, the
output structure returned by lsqnonlin contains firstorderopt, iterations, funcCount,
cgiterations, stepsize, algorithm, and message. To access, for example, the message, enter
output.message.

You can also see the contents of an output structure by double-clicking the output structure in the
MATLAB Workspace pane.

See Also

More About
• “Solver Outputs and Iterative Display”

 Output Structures

3-21

Lagrange Multiplier Structures
Constrained optimization involves a set of Lagrange multipliers, as described in “First-Order
Optimality Measure” on page 3-11. Solvers return estimated Lagrange multipliers in a structure. The
structure is called lambda because the conventional symbol for Lagrange multipliers is the Greek
letter lambda (λ). The structure separates the multipliers into the following types, called fields:

• lower, associated with lower bounds
• upper, associated with upper bounds
• eqlin, associated with linear equalities
• ineqlin, associated with linear inequalities
• eqnonlin, associated with nonlinear equalities
• ineqnonlin, associated with nonlinear inequalities
• soc, associated with second-order cone constraints

To access, for example, the nonlinear inequality field of a Lagrange multiplier structure, enter
lambda.inqnonlin. To access the third element of the Lagrange multiplier associated with lower
bounds, enter lambda.lower(3).

The content of the Lagrange multiplier structure depends on the solver. For example, linear
programming has no nonlinearities, so it does not have eqnonlin or ineqnonlin fields. Each
applicable solver's function reference pages contains a description of its Lagrange multiplier
structure under the heading “Outputs.”

Examine the Lagrange multiplier structure for the solution of a nonlinear problem with linear and
nonlinear inequality constraints and bounds.

lb = [-3 -3]; % lower bounds
ub = [3 3]; % upper bounds
A = [1 1]; % linear inequality x(1) + x(2) <= 1
b = 1;
Aeq = [];
beq = [];
x0 = [-1 1];
fun = @(x)100*(x(2) - x(1)^2)^2 + (1 - x(1))^2; % Rosenbrock function
nlcons = @(x)deal(x(1)^2 + x(2)^2 - 1,[]); % nonlinear inequality
options = optimoptions('fmincon','Display','off');
[x,fval,exitflag,output,lambda] = ...
 fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nlcons,options);

disp(lambda)

 eqlin: [0×1 double]
 eqnonlin: [0×1 double]
 ineqlin: 0.3407
 lower: [2×1 double]
 upper: [2×1 double]
 ineqnonlin: 1.7038e-07

Here is an interpretation of the Lagrange multiplier structure.

• The lambda.eqlin and lambda.eqnonlin fields have size 0 because there are no linear
equality constraints and no nonlinear equality constraints.

3 Examining Results

3-22

• The lambda.ineqlin field has value 0.3407, indicating that the linear inequality constraint is
active. The linear inequality constraint is x(1) + x(2) <= 1. Check that the constraint is active
at the solution, meaning the solution causes the inequality to be an equality:

x(1) + x(2)

ans =

 1.0000
• Check the values of the lambda.lower and lambda.upper fields.

lambda.lower

ans =

 1.0e-07 *

 0.2210
 0.2365

lambda.upper

ans =

 1.0e-07 *

 0.3361
 0.3056

These values are effectively zero, indicating that the solution is not near the bounds.
• The value of the lambda.ineqnonlin field is 1.7038e-07, indicating that this constraint is not

active. Check the constraint, which is x(1)^2 + x(2)^2 <= 1.

x(1)^2 + x(2)^2

ans =

 0.5282

The nonlinear constraint function value is not near its limit, so the Lagrange multiplier is
approximately 0.

See Also

More About
• “Solver Outputs and Iterative Display”

 Lagrange Multiplier Structures

3-23

Hessian Output
In this section...
“fminunc Hessian” on page 3-24
“fmincon Hessian” on page 3-24

The fminunc and fmincon solvers return an approximate Hessian as an optional output.

[x,fval,exitflag,output,grad,hessian] = fminunc(fun,x0)
% or
[x,fval,exitflag,output,lambda,grad,hessian] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)

This topic describes the meaning of the returned Hessian, and the accuracy you can expect.

You can also specify the type of Hessian that the solvers use as input Hessian arguments. For
fminunc, see “Including Gradients and Hessians” on page 2-19. For fmincon, see “Hessian as an
Input” on page 15-105.

fminunc Hessian
The Hessian for an unconstrained problem is the matrix of second derivatives of the objective
function f:

Hessian Hi j = ∂2 f
∂xi∂x j

.

• Quasi-Newton Algorithm — fminunc returns an estimated Hessian matrix at the solution.
fminunc computes the estimate by finite differences, so the estimate is generally accurate.

• Trust-Region Algorithm — fminunc returns a Hessian matrix at the next-to-last iterate.

• If you supply a Hessian in the objective function and set the HessianFcn option to
'objective', fminunc returns this Hessian.

• If you supply a HessianMultiplyFcn function, fminunc returns the Hinfo matrix from the
HessianMultiplyFcn function. For more information, see HessianMultiplyFcn in the
trust-region section of the fminunc options table.

• Otherwise, fminunc returns an approximation from a sparse finite difference algorithm on the
gradients.

This Hessian is accurate for the next-to-last iterate. However, the next-to-last iterate might not be
close to the final point.

The trust-region algorithm returns the Hessian at the next-to-last iterate for efficiency.
fminunc uses the Hessian internally to compute its next step. When fminunc reaches a stopping
condition, it does not need to compute the next step and, therefore, does not compute the Hessian.

fmincon Hessian
The Hessian for a constrained problem is the Hessian of the Lagrangian. For an objective function f,
nonlinear inequality constraint vector c, and nonlinear equality constraint vector ceq, the Lagrangian
is

3 Examining Results

3-24

L = f + ∑
i

λici + ∑
j

λ jceq j .

The λi are Lagrange multipliers; see “First-Order Optimality Measure” on page 3-11 and “Lagrange
Multiplier Structures” on page 3-22. The Hessian of the Lagrangian is

H = ∇2L = ∇2 f + ∑
i

λi∇2ci + ∑
j

λ j∇2ceq j .

fmincon has several algorithms, with several options for Hessians, as described in “fmincon Trust
Region Reflective Algorithm” on page 5-19, “fmincon Active Set Algorithm” on page 5-22, and
“fmincon Interior Point Algorithm” on page 5-30.

• active-set, sqp, or sqp-legacy Algorithm — fmincon returns the Hessian approximation it
computes at the next-to-last iterate. fmincon computes a quasi-Newton approximation of the
Hessian matrix at the solution in the course of its iterations. In general, this approximation does
not match the true Hessian in every component, but only in certain subspaces. Therefore, the
Hessian returned by fmincon can be inaccurate. For more details about the active-set
calculation, see “SQP Implementation” on page 5-25.

• trust-region-reflective Algorithm — fmincon returns the Hessian it computes at the
next-to-last iterate.

• If you supply a Hessian in the objective function and set the HessianFcn option to
'objective', fmincon returns this Hessian.

• If you supply a HessianMultiplyFcn function, fmincon returns the Hinfo matrix from the
HessianMultiplyFcn function. For more information, see Trust-Region-Reflective
Algorithm in fmincon options.

• Otherwise, fmincon returns an approximation from a sparse finite difference algorithm on the
gradients.

This Hessian is accurate for the next-to-last iterate. However, the next-to-last iterate might not be
close to the final point.

The trust-region-reflective algorithm returns the Hessian at the next-to-last iterate for
efficiency. fmincon uses the Hessian internally to compute its next step. When fmincon reaches
a stopping condition, it does not need to compute the next step and, therefore, does not compute
the Hessian.

• interior-point Algorithm

• If the HessianApproximation option is 'lbfgs' or 'finite-difference', or if you
supply a HessianMultiplyFcn function, fmincon returns [] for the Hessian.

• If the HessianApproximation option is 'bfgs' (the default), fmincon returns a quasi-
Newton approximation to the Hessian at the final point. This Hessian can be inaccurate, similar
to the active-set or sqp algorithm Hessian.

• If the HessianFcn option is a function handle, fmincon returns this function as the Hessian
at the final point.

 Hessian Output

3-25

See Also

More About
• “Including Gradients and Hessians” on page 2-19
• “Hessian as an Input” on page 15-105

3 Examining Results

3-26

Plot Functions
In this section...
“Plot an Optimization During Execution” on page 3-27
“Use a Plot Function” on page 3-27

Plot an Optimization During Execution
You can plot various measures of progress during the execution of a solver. Set the PlotFcn name-
value pair in optimoptions, and specify one or more plotting functions for the solver to call at each
iteration. Pass a function handle or cell array of function handles.

There are a variety of predefined plot functions available. See the PlotFcn option description in the
solver function reference page.

You can also use a custom-written plot function. Write a function file using the same structure as an
output function. For more information on this structure, see “Output Function and Plot Function
Syntax” on page 14-28.

Use a Plot Function
This example shows how to use plot functions to view the progress of the fmincon 'interior-
point' algorithm. The problem is taken from “Solve a Constrained Nonlinear Problem, Solver-
Based” on page 1-11.

Write the nonlinear objective and constraint functions, including their gradients. The objective
function is Rosenbrock's function.

type rosenbrockwithgrad

function [f,g] = rosenbrockwithgrad(x)
% Calculate objective f
f = 100*(x(2) - x(1)^2)^2 + (1-x(1))^2;

if nargout > 1 % gradient required
 g = [-400*(x(2)-x(1)^2)*x(1)-2*(1-x(1));
 200*(x(2)-x(1)^2)];
end

Save this file as rosenbrockwithgrad.m.

The constraint function is that the solution satisfies norm(x)^2 <= 1.

type unitdisk2

function [c,ceq,gc,gceq] = unitdisk2(x)
c = x(1)^2 + x(2)^2 - 1;
ceq = [];

if nargout > 2
 gc = [2*x(1);2*x(2)];
 gceq = [];
end

 Plot Functions

3-27

Save this file as unitdisk2.m.

Create options for the solver that include calling three plot functions.

options = optimoptions(@fmincon,'Algorithm','interior-point',...
 'SpecifyObjectiveGradient',true,'SpecifyConstraintGradient',true,...
 'PlotFcn',{@optimplotx,@optimplotfval,@optimplotfirstorderopt});

Create the initial point x0 = [0,0], and set the remaining inputs to empty ([]).

x0 = [0,0];
A = [];
b = [];
Aeq = [];
beq = [];
lb = [];
ub = [];

Call fmincon, including the options.

fun = @rosenbrockwithgrad;
nonlcon = @unitdisk2;
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

3 Examining Results

3-28

x = 1×2

 0.7864 0.6177

See Also

More About
• “Output Function and Plot Function Syntax” on page 14-28
• “Output Function for Problem-Based Optimization” on page 6-37

 Plot Functions

3-29

Output Functions for Optimization Toolbox
What Is an Output Function?

For some problems, you might want output from an optimization algorithm at each iteration. For
example, you might want to find the sequence of points that the algorithm computes and plot those
points. To do so, create an output function that the optimization function calls at each iteration. See
“Output Function and Plot Function Syntax” on page 14-28 for details and syntax.

This example uses the solver-based approach for output functions. For the problem-based approach,
see “Output Function for Problem-Based Optimization” on page 6-37.

Generally, the solvers that employ an output function can take nonlinear functions as inputs. You can
determine which solvers can use an output function by looking in the Options section of function
reference pages.

Use an Output Function

This example shows how to use an output function to monitor the fmincon solution process for
solving a constrained nonlinear optimization problem. At the end of each fmincon iteration, the
output function does the following:

• Plot the current point.
• Store the current point and its corresponding objective function value in a variable named

history, and store the current search direction in a variable named searchdir. The search
direction is a vector that points in the direction from the current point to the next one.

Additionally, to make the history available outside of the fmincon function, perform the optimization
inside a nested function that calls fmincon and returns the output function variables. For more
information about this method of passing information, see “Passing Extra Parameters” on page 2-57.
The runfmincon helper function at the end of this example on page 3-0 contains the nested
function call.

Objective and Constraint Functions

The problem is to minimize the function

f (x) = exp(x1) 4x1
2 + 2x2

2 + 4x1x2 + 2x2 + 1

subject to the nonlinear inequality constraints

x1 + x2− x1x2 ≥ 3/2
x1x2 ≥ − 10 .

The objfun function nested in runfmincon on page 3-0 implements the objective function. The
confun function nested in runfmincon on page 3-0 implements the constraint function.

Call Solver

To obtain the solution to the problem and see the history of the fmincon iterations, call the
runfmincon function.

[xsol,fval,history,searchdir] = runfmincon;

3 Examining Results

3-30

 Max Line search Directional First-order
 Iter F-count f(x) constraint steplength derivative optimality Procedure
 0 3 1.8394 0.5 Infeasible start point
 1 6 1.85127 -0.09197 1 0.109 0.778
 2 9 0.300167 9.33 1 -0.117 0.313 Hessian modified twice
 3 12 0.529835 0.9209 1 0.12 0.232
 4 16 0.186965 -1.517 0.5 -0.224 0.13
 5 19 0.0729085 0.3313 1 -0.121 0.054
 6 22 0.0353323 -0.03303 1 -0.0542 0.0271
 7 25 0.0235566 0.003184 1 -0.0271 0.00587
 8 28 0.0235504 9.031e-08 1 -0.0146 8.51e-07
Active inequalities (to within options.ConstraintTolerance = 1e-06):
 lower upper ineqlin ineqnonlin
 1
 2

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

The output function creates a plot of the points evaluated by fmincon. Each point is labeled by its
iteration number. The optimal point occurs at the eighth iteration. The last two points in the sequence
are so close that they overlap.

The output history is a structure that contains two fields.

 Output Functions for Optimization Toolbox

3-31

disp(history)

 x: [9x2 double]
 fval: [9x1 double]

The fval field in history contains the objective function values corresponding to the sequence of
points fmincon computes.

disp(history.fval)

 1.8394
 1.8513
 0.3002
 0.5298
 0.1870
 0.0729
 0.0353
 0.0236
 0.0236

These same values are displayed in the iterative output in the column with the header f(x).

The x field of history contains the sequence of points that fmincon computes.

disp(history.x)

 -1.0000 1.0000
 -1.3679 1.2500
 -5.5708 3.4699
 -4.8000 2.2752
 -6.7054 1.2618
 -8.0679 1.0186
 -9.0230 1.0532
 -9.5471 1.0471
 -9.5474 1.0474

The searchdir output contains the search directions for fmincon at each iteration. The search
direction is a vector pointing from the point computed at the current iteration to the point computed
at the next iteration.

disp(searchdir)

 -0.3679 0.2500
 -4.2029 2.2199
 0.7708 -1.1947
 -3.8108 -2.0268
 -1.3625 -0.2432
 -0.9552 0.0346
 -0.5241 -0.0061
 -0.0003 0.0003

Helper Functions

The following code creates the runfmincon function, which contains the outfun output function,
objfun objective function, and confun nonlinear constraint function as nested functions.

function [xsol,fval,history,searchdir] = runfmincon

% Set up shared variables with outfun

3 Examining Results

3-32

history.x = [];
history.fval = [];
searchdir = [];

% Call optimization
x0 = [-1 1];
options = optimoptions(@fmincon,'OutputFcn',@outfun,...
 'Display','iter','Algorithm','active-set');
[xsol,fval] = fmincon(@objfun,x0,[],[],[],[],[],[],@confun,options);

 function stop = outfun(x,optimValues,state)
 stop = false;

 switch state
 case 'init'
 hold on
 case 'iter'
 % Concatenate current point and objective function
 % value with history. x must be a row vector.
 history.fval = [history.fval; optimValues.fval];
 history.x = [history.x; x];
 % Concatenate current search direction with
 % searchdir.
 searchdir = [searchdir;...
 optimValues.searchdirection'];
 plot(x(1),x(2),'o');
 % Label points with iteration number and add title.
 % Add .15 to x(1) to separate label from plotted 'o'.
 text(x(1)+.15,x(2),...
 num2str(optimValues.iteration));
 title('Sequence of Points Computed by fmincon');
 case 'done'
 hold off
 otherwise
 end
 end

 function f = objfun(x)
 f = exp(x(1))*(4*x(1)^2 + 2*x(2)^2 + 4*x(1)*x(2) +...
 2*x(2) + 1);
 end

 function [c, ceq] = confun(x)
 % Nonlinear inequality constraints
 c = [1.5 + x(1)*x(2) - x(1) - x(2);
 -x(1)*x(2) - 10];
 % Nonlinear equality constraints
 ceq = [];
 end
end

See Also

More About
• “Output Function and Plot Function Syntax” on page 14-28

 Output Functions for Optimization Toolbox

3-33

• “Output Function for Problem-Based Optimization” on page 6-37

3 Examining Results

3-34

Steps to Take After Running a Solver

• “Overview of Next Steps” on page 4-2
• “When the Solver Fails” on page 4-3
• “Solver Takes Too Long” on page 4-9
• “When the Solver Might Have Succeeded” on page 4-12
• “When the Solver Succeeds” on page 4-18
• “Local vs. Global Optima” on page 4-22
• “Optimizing a Simulation or Ordinary Differential Equation” on page 4-26

4

Overview of Next Steps
This topic addresses questions you might have after running a solver. The questions include:

• Is the answer reliable?
• What can you do if the solver fails?
• Is the minimum smaller than all other minima, or only smaller than nearby minima? (“Local vs.

Global Optima” on page 4-22)
• What can you do if the solver takes too long?

The list of questions is not exhaustive. It covers common or basic problems.

You can access relevant answers from many solvers' default exit message. The first line of the exit
message contains a link to a brief description of the result. This description contains a link leading to
documentation.

See Also

Related Examples
• “When the Solver Fails” on page 4-3
• “Solver Takes Too Long” on page 4-9
• “When the Solver Might Have Succeeded” on page 4-12
• “When the Solver Succeeds” on page 4-18

4 Steps to Take After Running a Solver

4-2

When the Solver Fails
In this section...
“Too Many Iterations or Function Evaluations” on page 4-3
“Converged to an Infeasible Point” on page 4-6
“Problem Unbounded” on page 4-7
“fsolve Could Not Solve Equation” on page 4-8

Too Many Iterations or Function Evaluations
The solver stopped because it reached a limit on the number of iterations or function evaluations
before it minimized the objective to the requested tolerance. To proceed, try one or more of the
following.
“1. Enable Iterative Display” on page 4-3
“2. Relax Tolerances” on page 4-4
“3. Start the Solver From Different Points” on page 4-4
“4. Check Objective and Constraint Function Definitions” on page 4-4
“5. Center and Scale Your Problem” on page 4-4
“6. Provide Gradient or Jacobian” on page 4-5
“7. Provide Hessian” on page 4-5

1. Enable Iterative Display

Set the Display option to 'iter'. This setting shows the results of the solver iterations.

To enable iterative display at the MATLAB command line, enter

options = optimoptions('solvername','Display','iter');

Call the solver using the options structure.

For an example of iterative display, see “Interpret Result” on page 1-19.

What to Look For in Iterative Display

• See if the objective function (Fval or f(x) or Resnorm) decreases. Decrease indicates progress.
• Examine constraint violation (Max constraint) to ensure that it decreases towards 0. Decrease

indicates progress.
• See if the first-order optimality decreases towards 0. Decrease indicates progress.
• See if the Trust-region radius decreases to a small value. This decrease indicates that the

objective might not be smooth.

What to Do

• If the solver seemed to progress:

1 Set MaxIterations and/or MaxFunctionEvaluations to values larger than the defaults.
You can see the default values in the Options table in the solver's function reference pages.

2 Start the solver from its last calculated point.
• If the solver is not progressing, try the other listed suggestions.

 When the Solver Fails

4-3

2. Relax Tolerances

If StepTolerance or OptimalityTolerance, for example, are too small, the solver might not
recognize when it has reached a minimum; it can make futile iterations indefinitely.

To change tolerances at the command line, use optimoptions as described in “Set and Change
Options” on page 2-62.

The FiniteDifferenceStepSize option (or DiffMaxChange and DiffMinChange options) can
affect a solver's progress. These options control the step size in finite differencing for derivative
estimation.

3. Start the Solver From Different Points

See Change the Initial Point on page 4-18.

4. Check Objective and Constraint Function Definitions

For example, check that your objective and nonlinear constraint functions return the correct values at
some points. See Check your Objective and Constraint Functions on page 4-20. Check that an
infeasible point does not cause an error in your functions; see “Iterations Can Violate Constraints” on
page 2-33.

5. Center and Scale Your Problem

Solvers run more reliably when each coordinate has about the same effect on the objective and
constraint functions. Multiply your coordinate directions with appropriate scalars to equalize the
effect of each coordinate. Add appropriate values to certain coordinates to equalize their size.

Example: Centering and Scaling

Consider minimizing 1e6*x(1)^2 + 1e-6*x(2)^2:

f = @(x) 10^6*x(1)^2 + 10^-6*x(2)^2;

Minimize f using the fminunc 'quasi-newton' algorithm:

opts = optimoptions('fminunc','Display','none','Algorithm','quasi-newton');
x = fminunc(f,[0.5;0.5],opts)

x =
 0
 0.5000

The result is incorrect; poor scaling interfered with obtaining a good solution.

Scale the problem. Set

D = diag([1e-3,1e3]);
fr = @(y) f(D*y);
y = fminunc(fr, [0.5;0.5], opts)

y =
 0
 0 % the correct answer

Similarly, poor centering can interfere with a solution.

4 Steps to Take After Running a Solver

4-4

fc = @(z)fr([z(1)-1e6;z(2)+1e6]); % poor centering
z = fminunc(fc,[.5 .5],opts)

z =
 1.0e+005 *
 10.0000 -10.0000 % looks good, but...

z - [1e6 -1e6] % checking how close z is to 1e6

ans =

 -0.0071 0.0078 % reveals a distance

fcc = @(w)fc([w(1)+1e6;w(2)-1e6]); % centered

w = fminunc(fcc,[.5 .5],opts)

w =
 0 0 % the correct answer

6. Provide Gradient or Jacobian

If you do not provide gradients or Jacobians, solvers estimate gradients and Jacobians by finite
differences. Therefore, providing these derivatives can save computational time, and can lead to
increased accuracy. The problem-based approach can provide gradients automatically; see “Automatic
Differentiation in Optimization Toolbox” on page 9-41.

For constrained problems, providing a gradient has another advantage. A solver can reach a point x
such that x is feasible, but finite differences around x always lead to an infeasible point. In this case,
a solver can fail or halt prematurely. Providing a gradient allows a solver to proceed.

Provide gradients or Jacobians in the files for your objective function and nonlinear constraint
functions. For details of the syntax, see “Writing Scalar Objective Functions” on page 2-17, “Writing
Vector and Matrix Objective Functions” on page 2-26, and “Nonlinear Constraints” on page 2-37.

To check that your gradient or Jacobian function is correct, use the CheckGradients option, as
described in “Checking Validity of Gradients or Jacobians” on page 2-73.

If you have a Symbolic Math Toolbox license, you can calculate gradients and Hessians
programmatically. For an example, see “Calculate Gradients and Hessians Using Symbolic Math
Toolbox” on page 5-103.

For examples using gradients and Jacobians, see “Minimization with Gradient and Hessian” on page
5-13, “Nonlinear Constraints with Gradients” on page 5-69, “Calculate Gradients and Hessians
Using Symbolic Math Toolbox” on page 5-103, “Solve Nonlinear System Without and Including
Jacobian” on page 12-7, and “Large Sparse System of Nonlinear Equations with Jacobian” on page
12-10. For automatic differentiation in the problem-based approach, see “Effect of Automatic
Differentiation in Problem-Based Optimization” on page 6-23.

7. Provide Hessian

Solvers often run more reliably and with fewer iterations when you supply a Hessian.

The following solvers and algorithms accept Hessians:

 When the Solver Fails

4-5

• fmincon interior-point. Write the Hessian as a separate function. For an example, see
“fmincon Interior-Point Algorithm with Analytic Hessian” on page 5-72.

• fmincon trust-region-reflective. Give the Hessian as the third output of the objective
function. For an example, see “Minimization with Dense Structured Hessian, Linear Equalities” on
page 5-99.

• fminunc trust-region. Give the Hessian as the third output of the objective function. For an
example, see “Minimization with Gradient and Hessian” on page 5-13.

If you have a Symbolic Math Toolbox license, you can calculate gradients and Hessians
programmatically. For an example, see “Calculate Gradients and Hessians Using Symbolic Math
Toolbox” on page 5-103. To provide a Hessian in the problem-based approach, see “Supply
Derivatives in Problem-Based Workflow” on page 6-26.

Converged to an Infeasible Point
Usually, you get this result because the solver was unable to find a point satisfying all constraints to
within the ConstraintTolerance tolerance. However, the solver might have located or started at a
feasible point, and converged to an infeasible point. If the solver lost feasibility, see “Solver Lost
Feasibility” on page 4-7. If quadprog returns this result, see “quadprog Converges to an Infeasible
Point” on page 4-7

To proceed when the solver found no feasible point, try one or more of the following.
“1. Check Linear Constraints” on page 4-6
“2. Check Nonlinear Constraints” on page 4-6

1. Check Linear Constraints

Try finding a point that satisfies the bounds and linear constraints by solving a linear programming
problem.

1 Define a linear programming problem with an objective function that is always zero:

f = zeros(size(x0)); % assumes x0 is the initial point
2 Solve the linear programming problem to see if there is a feasible point:

xnew = linprog(f,A,b,Aeq,beq,lb,ub);
3 If there is a feasible point xnew, use xnew as the initial point and rerun your original problem.
4 If there is no feasible point, your problem is not well-formulated. Check the definitions of your

bounds and linear constraints. For details on checking linear constraints, see “Investigate Linear
Infeasibilities” on page 8-161.

2. Check Nonlinear Constraints

After ensuring that your bounds and linear constraints are feasible (contain a point satisfying all
constraints), check your nonlinear constraints.

• Set your objective function to zero:

@(x)0

Run your optimization with all constraints and with the zero objective. If you find a feasible point
xnew, set x0 = xnew and rerun your original problem.

• If you do not find a feasible point using a zero objective function, use the zero objective function
with several initial points.

4 Steps to Take After Running a Solver

4-6

• If you find a feasible point xnew, set x0 = xnew and rerun your original problem.
• If you do not find a feasible point, try using fmincon with the EnableFeasibilityMode

option set to true and the SubproblemAlgorithm option set to 'cg', as in “Obtain Solution
Using Feasibility Mode” on page 6-42. Try several initial points with these options.

• If you still do not find a feasible point, try relaxing the constraints, discussed next.

Try relaxing your nonlinear inequality constraints, then tightening them.

1 Change the nonlinear constraint function c to return c-Δ, where Δ is a positive number. This
change makes your nonlinear constraints easier to satisfy.

2 Look for a feasible point for the new constraint function, using either your original objective
function or the zero objective function.

1 If you find a feasible point,

a Reduce Δ
b Look for a feasible point for the new constraint function, starting at the previously found

point.
2 If you do not find a feasible point, try increasing Δ and looking again.

If you find no feasible point, your problem might be truly infeasible, meaning that no solution exists.
Check all your constraint definitions again.

Solver Lost Feasibility

If the solver started at a feasible point, but converged to an infeasible point, try the following
techniques.

• Try a different algorithm. The fmincon 'sqp' and 'interior-point' algorithms are usually
the most robust, so try one or both of them first.

• Tighten the bounds. Give the highest lb and lowest ub vectors that you can. This can help the
solver to maintain feasibility. The fmincon 'sqp' and 'interior-point' algorithms obey
bounds at every iteration, so tight bounds help throughout the optimization.

quadprog Converges to an Infeasible Point

Usually, you get this message because the linear constraints are inconsistent, or are nearly singular.
To check whether a feasible point exists, create a linear programming problem with the same
constraints and with a zero objective function vector f. Solve using the linprog 'dual-simplex'
algorithm:

options = optimoptions('linprog','Algorithm','dual-simplex');
x = linprog(f,A,b,Aeq,beq,lb,ub,options)

If linprog finds no feasible point, then your problem is truly infeasible.

If linprog finds a feasible point, then try a different quadprog algorithm. Alternatively, change
some tolerances such as StepTolerance or ConstraintTolerance and solve the problem again.

Problem Unbounded
The solver reached a point whose objective function was less than the objective limit tolerance.

 When the Solver Fails

4-7

• Your problem might be truly unbounded. In other words, there is a sequence of points xi with

lim f(xi) = –∞.

and such that all the xi satisfy the problem constraints.
• Check that your problem is formulated correctly. Solvers try to minimize objective functions; if you

want a maximum, change your objective function to its negative. For an example, see “Maximizing
an Objective” on page 2-30.

• Try scaling or centering your problem. See Center and Scale Your Problem on page 4-4.
• Relax the objective limit tolerance by using optimoptions to reduce the value of the

ObjectiveLimit tolerance.

fsolve Could Not Solve Equation
fsolve can fail to solve an equation for various reasons. Here are some suggestions for how to
proceed:

1 Try Changing the Initial Point on page 4-18. fsolve relies on an initial point. By giving it
different initial points, you increase the chances of success.

2 Check the definition of the equation to make sure that it is smooth. fsolve might fail to
converge for equations with discontinuous gradients, such as absolute value. fsolve can fail to
converge for functions with discontinuities.

3 Check that the equation is “square,” meaning equal dimensions for input and output (has the
same number of unknowns as values of the equation).

4 Change tolerances, especially OptimalityTolerance and StepTolerance. If you attempt to
get high accuracy by setting tolerances to very small values, fsolve can fail to converge. If you
set tolerances that are too high, fsolve can fail to solve an equation accurately.

5 Check the problem definition. Some problems have no real solution, such as x^2 + 1 = 0. If
you can accept a complex solution, try setting your initial point to a complex value. fsolve does
not attempt to find a complex solution when the initial point is real.

See Also

More About
• “Investigate Linear Infeasibilities” on page 8-161

4 Steps to Take After Running a Solver

4-8

Solver Takes Too Long
Solvers can take excessive time for various reasons. To diagnose the reason or enable faster solution,
use one or more of the following techniques.

1. “Enable Iterative Display” on page 4-9
2. “Use Appropriate Tolerances” on page 4-9
3. “Use a Plot Function” on page 4-9
4. “Use 'lbfgs' HessianApproximation Option” on page 4-10
5. “Enable CheckGradients” on page 4-10
6. “Use Inf Instead of a Large, Arbitrary Bound” on page 4-10
7. “Use an Output Function” on page 4-10
8. “Try Different Algorithm Options” on page 4-10
9. “Use a Sparse Solver or a Multiply Function” on page 4-11
10
.

“Use Parallel Computing” on page 4-11

Enable Iterative Display
Set the Display option to 'iter'. This setting shows the results of the solver iterations.

To enable iterative display at the MATLAB command line, enter

options = optimoptions('solvername','Display','iter');

Call the solver using the options structure.

For an example of iterative display, see “Interpret Result” on page 1-19. For more information, see
“What to Look For in Iterative Display” on page 4-3.

Use Appropriate Tolerances
Solvers can fail to converge if tolerances are too small, especially OptimalityTolerance and
StepTolerance.

To change tolerances at the command line, use optimoptions as described in “Set and Change
Options” on page 2-62.

Use a Plot Function
You can obtain more visual or detailed information about solver iterations using a plot function. The
Options section of your solver's function reference pages lists the plot functions.

To use a plot function at the MATLAB command line, enter

options = optimoptions('solvername','PlotFcn',{@plotfcn1,@plotfcn2,...});

Call the solver using the options structure.

For an example of using a plot function, see “Use a Plot Function” on page 3-27.

 Solver Takes Too Long

4-9

Use 'lbfgs' HessianApproximation Option
For the fmincon and fminunc solvers, if you have a problem with many variables (hundreds or
more), then oftentimes you can save time and memory by setting the HessianApproximation
option to 'lbfgs'. This causes the fmincon 'interior-point' algorithm and fminunc 'quasi-
newton' algorithm to use a low-memory Hessian approximation. See “Solve Nonlinear Problem with
Many Variables” on page 5-130.

Enable CheckGradients
If you have supplied derivatives (gradients or Jacobians) to your solver, the solver can fail to converge
if the derivatives are inaccurate. For more information about using the CheckGradients option, see
“Checking Validity of Gradients or Jacobians” on page 2-73.

Use Inf Instead of a Large, Arbitrary Bound
If you use a large, arbitrary bound (upper or lower), a solver can take excessive time, or even fail to
converge. However, if you set Inf or -Inf as the bound, the solver can take less time, and might
converge better.

Why? An interior-point algorithm can set an initial point to the midpoint of finite bounds. Or an
interior-point algorithm can try to find a “central path” midway between finite bounds. Therefore, a
large, arbitrary bound can resize those components inappropriately. In contrast, infinite bounds are
ignored for these purposes.

Minor point: Some solvers use memory for each constraint, primarily via a constraint Hessian. Setting
a bound to Inf or -Inf means there is no constraint, so there is less memory in use, because a
constraint Hessian has lower dimension.

Use an Output Function
You can obtain detailed information about solver iterations using an output function. Solvers call
output functions at each iteration. You write output functions using the syntax described in “Output
Function and Plot Function Syntax” on page 14-28.

For an example of using an output function, see “Output Functions for Optimization Toolbox” on page
3-30.

Try Different Algorithm Options
Many solvers have options that can change the solution time, but not in easily predictable ways.
Typically, the Algorithm option has a significant effect on the solution time.

Other options that affect the solution time include:

• fmincon 'interior-point' algorithm — Try setting the BarrierParamUpdate option to
'predictor-corrector'.

• 'SubproblemAlgorithm' option of the 'trust-region' or 'trust-region-reflective'
algorithm — Try setting 'SubproblemAlgorithm' to 'factorization' instead of the default
'cg'.

4 Steps to Take After Running a Solver

4-10

• coneprog — For a large sparse problem, try setting the LinearSolver option to 'prodchol',
'schur', or 'normal'. For a dense problem, try setting the LinearSolver option to
'augmented'.

• quadprog 'interior-point-convex' algorithm or lsqlin 'interior-point' algorithm —
Try setting the LinearSolver option to 'sparse' or 'dense'.

Use a Sparse Solver or a Multiply Function
Large problems can cause MATLAB to run out of memory or time. Here are some suggestions for
using less memory:

• Use a large-scale algorithm if possible (see “Large-Scale vs. Medium-Scale Algorithms” on page 2-
10). These algorithms include trust-region-reflective, interior-point, the fminunc
trust-region algorithm, the fsolve trust-region-dogleg algorithm, and the Levenberg-
Marquardt algorithm. In contrast, the active-set, quasi-newton, and sqp algorithms are not
large-scale.

Tip If you use a large-scale algorithm, then use sparse matrices for your linear constraints.
• Use a Jacobian multiply function or Hessian multiply function. For examples, see “Jacobian

Multiply Function with Linear Least Squares” on page 11-31, “Quadratic Minimization with
Dense, Structured Hessian” on page 10-26, and “Minimization with Dense Structured Hessian,
Linear Equalities” on page 5-99.

Use Parallel Computing
If you have a Parallel Computing Toolbox license, your solver might run faster using parallel
computing. For more information, see “Parallel Computing”.

 Solver Takes Too Long

4-11

When the Solver Might Have Succeeded

In this section...
“Final Point Equals Initial Point” on page 4-12
“Local Minimum Possible” on page 4-12

Final Point Equals Initial Point
The initial point seems to be a local minimum or solution because the first-order optimality measure
is close to 0. You might be unhappy with this result, since the solver did not improve your initial point.

If you are unsure that the initial point is truly a local minimum, try:

1 Starting from different points — see Change the Initial Point on page 4-18.
2 Checking that your objective and constraints are defined correctly (for example, do they return

the correct values at some points?) — see Check your Objective and Constraint Functions on
page 4-20. Check that an infeasible point does not cause an error in your functions; see
“Iterations Can Violate Constraints” on page 2-33.

3 Changing tolerances, such as OptimalityTolerance, ConstraintTolerance, and
StepTolerance — see Use Appropriate Tolerances on page 4-9.

4 Scaling your problem so each coordinate has about the same effect — see Rescale the Problem
on page 4-15.

5 Providing gradient and Hessian information — see Provide Analytic Gradients or Jacobian on
page 4-16 and Provide a Hessian on page 4-16.

Local Minimum Possible
The solver might have reached a local minimum, but cannot be certain because the first-order
optimality measure is not less than the OptimalityTolerance tolerance. (To learn more about first-
order optimality measure, see “First-Order Optimality Measure” on page 3-11.) To see if the reported
solution is reliable, consider the following suggestions.
“1. Nonsmooth Functions” on page 4-12
“2. Rerun Starting At Final Point” on page 4-13
“3. Try a Different Algorithm” on page 4-13
“4. Change Tolerances” on page 4-15
“5. Rescale the Problem” on page 4-15
“6. Check Nearby Points” on page 4-15
“7. Change Finite Differencing Options” on page 4-16
“8. Provide Analytic Gradients or Jacobian” on page 4-16
“9. Provide a Hessian” on page 4-16

1. Nonsmooth Functions

If you try to minimize a nonsmooth function, or have nonsmooth constraints, “Local Minimum
Possible” can be the best exit message. This is because the first-order optimality conditions do not
apply at a nonsmooth point.

To satisfy yourself that the solution is adequate, try to Check Nearby Points on page 4-19.

4 Steps to Take After Running a Solver

4-12

2. Rerun Starting At Final Point

Restarting an optimization at the final point can lead to a solution with a better first-order optimality
measure. A better (lower) first-order optimality measure gives you more reason to believe that the
answer is reliable.

For example, consider the following minimization problem, taken from the example “Using Symbolic
Mathematics with Optimization Toolbox Solvers” on page 5-114:

options = optimoptions('fminunc','Algorithm','quasi-newton');
funh = @(x)log(1 + (x(1) - 4/3)^2 + 3*(x(2) - (x(1)^3 - x(1)))^2);
[xfinal fval exitflag] = fminunc(funh,[-1;2],options)

Local minimum possible.

fminunc stopped because it cannot decrease the
objective function along the current search direction.

xfinal =
 1.3333
 1.0370

fval =
 8.5265e-014

exitflag =
 5

The exit flag value of 5 indicates that the first-order optimality measure was above the function
tolerance. Run the minimization again starting from xfinal:

[xfinal2 fval2 exitflag2] = fminunc(funh,xfinal,options)

Local minimum found.

Optimization completed because the size of the gradient is
less than the default value of the function tolerance.

xfinal2 =
 1.3333
 1.0370

fval2 =
 6.5281e-014

exitflag2 =
 1

The local minimum is “found,” not “possible,” and the exitflag is 1, not 5. The two solutions are
virtually identical. Yet the second run has a more satisfactory exit message, since the first-order
optimality measure was low enough: 7.5996e-007, instead of 3.9674e-006.

3. Try a Different Algorithm

Many solvers give you a choice of algorithm. Different algorithms can lead to the use of different
stopping criteria.

 When the Solver Might Have Succeeded

4-13

For example, Rerun Starting At Final Point on page 4-13 returns exitflag 5 from the first run. This run
uses the quasi-newton algorithm.

The trust-region algorithm requires a user-supplied gradient. betopt.m contains a calculation of the
objective function and gradient:

function [f gradf] = betopt(x)

g = 1 + (x(1)-4/3)^2 + 3*(x(2) - (x(1)^3-x(1)))^2;
f = log(g);
gradf(1) = 2*(x(1)-4/3) + 6*(x(2) - (x(1)^3-x(1)))*(1-3*x(1)^2);
gradf(1) = gradf(1)/g;
gradf(2) = 6*(x(2) - (x(1)^3 -x(1)))/g;

Running the optimization using the trust-region algorithm results in a different exitflag:

options = optimoptions('fminunc','Algorithm','trust-region','SpecifyObjectiveGradient',true);
[xfinal3 fval3 exitflag3] = fminunc(@betopt,[-1;2],options)

Local minimum possible.

fminunc stopped because the final change in function value
relative to its initial value is less than the default value
of the function tolerance.

xfinal3 =
 1.3333
 1.0370

fval3 =
 7.6659e-012

exitflag3 =
 3

The exit condition is better than the quasi-newton condition, though it is still not the best.
Rerunning the algorithm from the final point produces a better point, with extremely small first-order
optimality measure:

[xfinal4 fval4 eflag4 output4] = fminunc(@betopt,xfinal3,options)

Local minimum found.

Optimization completed because the size of the gradient is
less than the default value of the function tolerance.

xfinal4 =

 1.3333
 1.0370

fval4 =
 0

eflag4 =
 1

output4 =

4 Steps to Take After Running a Solver

4-14

 iterations: 1
 funcCount: 2
 cgiterations: 1
 firstorderopt: 7.5497e-11
 algorithm: 'trust-region'
 message: 'Local minimum found.

Optimization completed because the size o...'
 constrviolation: []

4. Change Tolerances

Sometimes tightening or loosening tolerances leads to a more satisfactory result. For example,
choose a smaller value of OptimalityTolerance in the Try a Different Algorithm on page 4-13
section:

options = optimoptions('fminunc','Algorithm','trust-region',...
 'OptimalityTolerance',1e-8,'SpecifyObjectiveGradient',true); % default=1e-6
[xfinal3 fval3 eflag3 output3] = fminunc(@betopt,[-1;2],options)

Local minimum found.

Optimization completed because the size of the gradient is
less than the selected value of the function tolerance.

xfinal3 =
 1.3333
 1.0370

fval3 =
 0

eflag3 =
 1

output3 =
 iterations: 15
 funcCount: 16
 cgiterations: 12
 firstorderopt: 7.5497e-11
 algorithm: 'trust-region'
 message: 'Local minimum found.

Optimization completed because the size...'
 constrviolation: []

fminunc took one more iteration than before, arriving at a better solution.

5. Rescale the Problem

Try to have each coordinate give about the same effect on the objective and constraint functions by
scaling and centering. For examples, see Center and Scale Your Problem on page 4-4.

6. Check Nearby Points

Evaluate your objective function and constraints, if they exist, at points near the final point. If the
final point is a local minimum, nearby feasible points have larger objective function values. See Check
Nearby Points on page 4-19 for an example.

 When the Solver Might Have Succeeded

4-15

If you have a Global Optimization Toolbox license, try running the patternsearch solver from the
final point. patternsearch examines nearby points, and accepts all types of constraints.

7. Change Finite Differencing Options

Central finite differences are more time-consuming to evaluate, but are much more accurate. Use
central differences when your problem can have high curvature.

To choose central differences at the command line, use optimoptions to set
'FiniteDifferenceType' to 'central', instead of the default 'forward'.

8. Provide Analytic Gradients or Jacobian

If you do not provide gradients or Jacobians, solvers estimate gradients and Jacobians by finite
differences. Therefore, providing these derivatives can save computational time, and can lead to
increased accuracy. The problem-based approach can provide gradients automatically; see “Automatic
Differentiation in Optimization Toolbox” on page 9-41.

For constrained problems, providing a gradient has another advantage. A solver can reach a point x
such that x is feasible, but finite differences around x always lead to an infeasible point. In this case,
a solver can fail or halt prematurely. Providing a gradient allows a solver to proceed.

Provide gradients or Jacobians in the files for your objective function and nonlinear constraint
functions. For details of the syntax, see “Writing Scalar Objective Functions” on page 2-17, “Writing
Vector and Matrix Objective Functions” on page 2-26, and “Nonlinear Constraints” on page 2-37.

To check that your gradient or Jacobian function is correct, use the CheckGradients option, as
described in “Checking Validity of Gradients or Jacobians” on page 2-73.

If you have a Symbolic Math Toolbox license, you can calculate gradients and Hessians
programmatically. For an example, see “Calculate Gradients and Hessians Using Symbolic Math
Toolbox” on page 5-103.

For examples using gradients and Jacobians, see “Minimization with Gradient and Hessian” on page
5-13, “Nonlinear Constraints with Gradients” on page 5-69, “Calculate Gradients and Hessians
Using Symbolic Math Toolbox” on page 5-103, “Solve Nonlinear System Without and Including
Jacobian” on page 12-7, and “Large Sparse System of Nonlinear Equations with Jacobian” on page
12-10. For automatic differentiation in the problem-based approach, see “Effect of Automatic
Differentiation in Problem-Based Optimization” on page 6-23.

9. Provide a Hessian

Solvers often run more reliably and with fewer iterations when you supply a Hessian.

The following solvers and algorithms accept Hessians:

• fmincon interior-point. Write the Hessian as a separate function. For an example, see
“fmincon Interior-Point Algorithm with Analytic Hessian” on page 5-72.

• fmincon trust-region-reflective. Give the Hessian as the third output of the objective
function. For an example, see “Minimization with Dense Structured Hessian, Linear Equalities” on
page 5-99.

• fminunc trust-region. Give the Hessian as the third output of the objective function. For an
example, see “Minimization with Gradient and Hessian” on page 5-13.

4 Steps to Take After Running a Solver

4-16

If you have a Symbolic Math Toolbox license, you can calculate gradients and Hessians
programmatically. For an example, see “Calculate Gradients and Hessians Using Symbolic Math
Toolbox” on page 5-103. To provide a Hessian in the problem-based approach, see “Supply
Derivatives in Problem-Based Workflow” on page 6-26.

The example in “Calculate Gradients and Hessians Using Symbolic Math Toolbox” on page 5-103
shows fmincon taking 77 iterations without a Hessian, but only 19 iterations with a Hessian.

 When the Solver Might Have Succeeded

4-17

When the Solver Succeeds
In this section...
“What Can Be Wrong If The Solver Succeeds?” on page 4-18
“1. Change the Initial Point” on page 4-18
“2. Check Nearby Points” on page 4-19
“3. Check your Objective and Constraint Functions” on page 4-20

What Can Be Wrong If The Solver Succeeds?
A solver can report that a minimization succeeded, and yet the reported solution can be incorrect. For
a rather trivial example, consider minimizing the function f(x) = x3 for x between –2 and 2, starting
from the point 1/3:

options = optimoptions('fmincon','Algorithm','active-set');
ffun = @(x)x^3;
xfinal = fmincon(ffun,1/3,[],[],[],[],-2,2,[],options)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is
non-decreasing in feasible directions, to within the default
valueof the function tolerance, and constraints were satisfied
to within the default value of the constraint tolerance.

No active inequalities.

xfinal =
 -1.5056e-008

The true minimum occurs at x = -2. fmincon gives this report because the function f(x) is so flat
near x = 0.

Another common problem is that a solver finds a local minimum, but you might want a global
minimum. For more information, see “Local vs. Global Optima” on page 4-22.

Lesson: check your results, even if the solver reports that it “found” a local minimum, or “solved” an
equation.

This section gives techniques for verifying results.

1. Change the Initial Point
The initial point can have a large effect on the solution. If you obtain the same or worse solutions
from various initial points, you become more confident in your solution.

For example, minimize f(x) = x3 + x4 starting from the point 1/4:

ffun = @(x)x^3 + x^4;
options = optimoptions('fminunc','Algorithm','quasi-newton');
[xfinal fval] = fminunc(ffun,1/4,options)

4 Steps to Take After Running a Solver

4-18

Local minimum found.

Optimization completed because the size of the gradient
is less than the default value of the function tolerance.

x =
 -1.6764e-008

fval =
 -4.7111e-024

Change the initial point by a small amount, and the solver finds a better solution:

[xfinal fval] = fminunc(ffun,1/4+.001,options)

Local minimum found.

Optimization completed because the size of the gradient
is less than the default value of the function tolerance.

xfinal =
 -0.7500

fval =
 -0.1055

x = -0.75 is the global solution; starting from other points cannot improve the solution.

For more information, see “Local vs. Global Optima” on page 4-22.

2. Check Nearby Points
To see if there are better values than a reported solution, evaluate your objective function and
constraints at various nearby points.

For example, with the objective function ffun from “What Can Be Wrong If The Solver Succeeds?” on
page 4-18, and the final point xfinal = -1.5056e-008, calculate ffun(xfinal±Δ) for some Δ:

delta = .1;
[ffun(xfinal),ffun(xfinal+delta),ffun(xfinal-delta)]

ans =
 -0.0000 0.0011 -0.0009

The objective function is lower at ffun(xfinal-Δ), so the solver reported an incorrect solution.

A less trivial example:

options = optimoptions(@fmincon,'Algorithm','active-set');
lb = [0,-1]; ub = [1,1];
ffun = @(x)(x(1)-(x(1)-x(2))^2);
[x fval exitflag] = fmincon(ffun,[1/2 1/3],[],[],[],[],...
 lb,ub,[],options)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is

 When the Solver Succeeds

4-19

non-decreasing in feasible directions, to within the default
valueof the function tolerance, and constraints were satisfied
to within the default value of the constraint tolerance.

Active inequalities (to within options.ConstraintTolerance = 1e-006):
 lower upper ineqlin ineqnonlin
 1

x =
 1.0e-007 *
 0 0.1614

fval =
 -2.6059e-016

exitflag =
 1

Evaluating ffun at nearby feasible points shows that the solution x is not a true minimum:

[ffun([0,.001]),ffun([0,-.001]),...
 ffun([.001,-.001]),ffun([.001,.001])]

ans =
 1.0e-003 *
 -0.0010 -0.0010 0.9960 1.0000

The first two listed values are smaller than the computed minimum fval.

If you have a Global Optimization Toolbox license, you can use the patternsearch function to check
nearby points.

3. Check your Objective and Constraint Functions
Double-check your objective function and constraint functions to ensure that they correspond to the
problem you intend to solve. Suggestions:

• Check the evaluation of your objective function at a few points.
• Check that each inequality constraint has the correct sign.
• If you performed a maximization, remember to take the negative of the reported solution. (This

advice assumes that you maximized a function by minimizing the negative of the objective.) For
example, to maximize f(x) = x – x2, minimize g(x) = –x + x2:

options = optimoptions('fminunc','Algorithm','quasi-newton');
[x fval] = fminunc(@(x)-x+x^2,0,options)

Local minimum found.

Optimization completed because the size of the gradient is
less than the default value of the function tolerance.

x =
 0.5000

fval =
 -0.2500

4 Steps to Take After Running a Solver

4-20

The maximum of f is 0.25, the negative of fval.
• Check that an infeasible point does not cause an error in your functions; see “Iterations Can

Violate Constraints” on page 2-33.

 When the Solver Succeeds

4-21

Local vs. Global Optima
In this section...
“Why the Solver Does Not Find the Smallest Minimum” on page 4-22
“Searching for a Smaller Minimum” on page 4-22
“Basins of Attraction” on page 4-23

Why the Solver Does Not Find the Smallest Minimum
In general, solvers return a local minimum (or optimum). The result might be a global minimum (or
optimum), but this result is not guaranteed.

• A local minimum of a function is a point where the function value is smaller than at nearby points,
but possibly greater than at a distant point.

• A global minimum is a point where the function value is smaller than at all other feasible points.

Optimization Toolbox solvers typically find a local minimum. (This local minimum can be a global
minimum.) They find the minimum in the basin of attraction of the starting point. For more
information about basins of attraction, see “Basins of Attraction” on page 4-23.

The following are exceptions to this general rule.

• Linear programming problems and positive definite quadratic programming problems are convex,
with convex feasible regions, so they have only one basin of attraction. Depending on the specified
options, linprog ignores any user-supplied starting point, and quadprog does not require one,
even though you can sometimes speed a minimization by supplying a starting point.

• Global Optimization Toolbox functions, such as simulannealbnd, attempt to search more than
one basin of attraction.

Searching for a Smaller Minimum
If you need a global minimum, you must find an initial value for your solver in the basin of attraction
of a global minimum.

You can set initial values to search for a global minimum in these ways:

• Use a regular grid of initial points.
• Use random points drawn from a uniform distribution if all of the problem coordinates are

bounded. Use points drawn from normal, exponential, or other random distributions if some
components are unbounded. The less you know about the location of the global minimum, the
more spread out your random distribution should be. For example, normal distributions rarely
sample more than three standard deviations away from their means, but a Cauchy distribution
(density 1/(π(1 + x2))) makes greatly disparate samples.

4 Steps to Take After Running a Solver

4-22

• Use identical initial points with added random perturbations on each coordinate—bounded,
normal, exponential, or other.

• If you have a Global Optimization Toolbox license, use the GlobalSearch or MultiStart
solvers. These solvers automatically generate random start points within bounds.

The more you know about possible initial points, the more focused and successful your search will be.

Basins of Attraction
If an objective function f(x) is smooth, the vector –∇f(x) points in the direction where f(x) decreases
most quickly. The equation of steepest descent, namely

d
dtx(t) = − ∇ f (x(t)),

yields a path x(t) that goes to a local minimum as t increases. Generally, initial values x(0) that are
near each other give steepest descent paths that tend towards the same minimum point. The basin of
attraction for steepest descent is the set of initial values that lead to the same local minimum.

This figure shows two one-dimensional minima. The figure shows different basins of attraction with
different line styles, and indicates the directions of steepest descent with arrows. For this and
subsequent figures, black dots represent local minima. Every steepest descent path, starting at a
point x(0), goes to the black dot in the basin containing x(0).

One-dimensional basins

This figure shows how steepest descent paths can be more complicated in more dimensions.

 Local vs. Global Optima

4-23

One basin of attraction, showing steepest descent paths from various starting points

This figure shows even more complicated paths and basins of attraction.

Several basins of attraction

Constraints can break up one basin of attraction into several pieces. For example, consider
minimizing y subject to:

y ≥ |x|

y ≥ 5 – 4(x–2)2.

This figure shows the two basins of attraction with the final points.

4 Steps to Take After Running a Solver

4-24

The steepest descent paths are straight lines down to the constraint boundaries. From the constraint
boundaries, the steepest descent paths travel down along the boundaries. The final point is either
(0,0) or (11/4,11/4), depending on whether the initial x-value is above or below 2.

See Also

More About
• “Improve Results”

 Local vs. Global Optima

4-25

Optimizing a Simulation or Ordinary Differential Equation
In this section...
“What Is Optimizing a Simulation or ODE?” on page 4-26
“Potential Problems and Solutions” on page 4-26
“Bibliography” on page 4-30

What Is Optimizing a Simulation or ODE?
Sometimes your objective function or nonlinear constraint function values are available only by
simulation or by numerical solution of an ordinary differential equation (ODE). Such optimization
problems have several common characteristics and challenges, discussed in “Potential Problems and
Solutions” on page 4-26.

For a problem-based example of optimizing an ODE, see “Fit ODE, Problem-Based” on page 11-78.
For a solver-based example, see “Fit an Ordinary Differential Equation (ODE)” on page 11-55.

For a method that avoids many of the issues encountered by other methods, see “Discretized Optimal
Trajectory, Problem-Based” on page 10-94. The method can use automatic differentiation in the
optimization process. However, the method can have relatively low precision because it is based on
fixed-step and possibly low-order ODE solution algorithms.

To optimize a Simulink® model easily, try using Simulink Design Optimization™.

Potential Problems and Solutions
• “Problems in Finite Differences” on page 4-26
• “Suggestions for Finite Differences” on page 4-27
• “Problems in Stochastic Functions” on page 4-29
• “Suggestions for Stochastic Functions” on page 4-29
• “Common Calculation of Objective and Constraints” on page 4-29
• “Failure in Objective or Constraint Function Evaluation” on page 4-29
• “Suggestions for Evaluation Failures” on page 4-29

Problems in Finite Differences

Optimization Toolbox solvers use derivatives of objective and constraint functions internally. By
default, they estimate these derivatives using finite difference approximations of the form

F x + δ − F x
δ

or

F x + δ − F x− δ
2δ .

These finite difference approximations can be inaccurate because:

4 Steps to Take After Running a Solver

4-26

• A large value of δ allows more nonlinearity to affect the finite difference.
• A small value of δ leads to inaccuracy due to limited precision in numerics.

Specifically, for simulations and numerical solutions of ODEs:

• Simulations are often insensitive to small changes in parameters. This means that if you use too
small a perturbation δ, the simulation can return a spurious estimated derivative of 0.

• Both simulations and numerical solutions of ODEs can have inaccuracies in their function
evaluations. These inaccuracies can be amplified in finite difference approximations.

• Numerical solution of ODEs introduces noise at values much larger than machine precision. This
noise can be amplified in finite difference approximations.

• If an ODE solver uses variable step sizes, then sometimes the number of ODE steps in the
evaluation of F(x + δ) can differ from the number of steps in the evaluation of F(x). This difference
can lead to a spurious difference in the returned values, giving a misleading estimate of the
derivative.

Suggestions for Finite Differences

• “Avoid Finite Differences by Using Direct Search” on page 4-27
• “Set Larger Finite Differences” on page 4-27
• “Use a Gradient Evaluation Function” on page 4-28
• “Use Tighter ODE Tolerances” on page 4-28

Avoid Finite Differences by Using Direct Search

If you have a Global Optimization Toolbox license, you can try using patternsearch as your solver.
patternsearch does not attempt to estimate gradients, so does not suffer from the limitations in
“Problems in Finite Differences” on page 4-26.

If you use patternsearch for expensive (time-consuming) function evaluations, use the Cache
option:

options = optimoptions('patternsearch','Cache','on');

If you cannot use patternsearch, and have a relatively low-dimensional unconstrained
minimization problem, try fminsearch instead. fminsearch does not use finite differences.
However, fminsearch is not a fast or tunable solver.

Set Larger Finite Differences

You can sometimes avoid the problems in “Problems in Finite Differences” on page 4-26 by taking
larger finite difference steps than the default.

• If you have MATLAB R2011b or later, set a finite difference step size option to a value larger than
the default sqrt(eps) or eps^(1/3), such as:

• For R2011b–R2012b:

options = optimset('FinDiffRelStep',1e-3);
• For R2013a–R2015b and a solver named 'solvername':

options = optimoptions('solvername','FinDiffRelStep',1e-3);
• For R2016a onwards and a solver named 'solvername':

 Optimizing a Simulation or Ordinary Differential Equation

4-27

options = optimoptions('solvername','FiniteDifferenceStepSize',1e-3);

If you have different scales in different components, set the finite difference step size to a vector
proportional to the component scales.

• If you have MATLAB R2011a or earlier, set the DiffMinChange option to a larger value than the
default 1e-8, and possibly set the DiffMaxChange option also, such as:

options = optimset('DiffMinChange',1e-3,'DiffMaxChange',1);

Note It is difficult to know how to set these finite difference sizes.

You can also try setting central finite differences:

options = optimoptions('solvername','FiniteDifferenceType','central');

Use a Gradient Evaluation Function

To avoid the problems of finite difference estimation, you can give an approximate gradient function
in your objective and nonlinear constraints. Remember to set the SpecifyObjectiveGradient
option to true using optimoptions, and, if relevant, also set the SpecifyConstraintGradient
option to true.

• For some ODEs, you can evaluate the gradient numerically at the same time as you solve the ODE.
For example, suppose the differential equation for your objective function z(t,x) is

d
dtz(t, x) = G(z, t, x),

where x is the vector of parameters over which you minimize. Suppose x is a scalar. Then the
differential equation for its derivative y,

y(t, x) = d
dxz(t, x)

is

d
dt y(t, x) = ∂G(z, t, x)

∂z y(t, x) + ∂G(z, t, x)
∂x ,

where z(t,x) is the solution of the objective function ODE. You can solve for y(t,x) in the same
system of differential equations as z(t,x). This solution gives you an approximated derivative
without ever taking finite differences. For nonscalar x, solve one ODE per component.

For theoretical and computational aspects of this method, see Leis and Kramer [2]. For
computational experience with this and finite-difference methods, see Figure 7 of Raue et al. [3].

• For some simulations, you can estimate a derivative within the simulation. For example, the
likelihood ratio technique described in Reiman and Weiss [4] or the infinitesimal perturbation
analysis technique analyzed in Heidelberger, Cao, Zazanis, and Suri [1] estimate derivatives in the
same simulation that estimates the objective or constraint functions.

Use Tighter ODE Tolerances

You can use odeset to set the AbsTol or RelTol ODE solver tolerances to values below their
defaults. However, choosing too small a tolerance can lead to slow solutions, convergence failure, or

4 Steps to Take After Running a Solver

4-28

other problems. Never choose a tolerance less than 1e-9 for RelTol. The lower limit on each
component of AbsTol depends on the scale of your problem, so there is no advice.

Problems in Stochastic Functions

If a simulation uses random numbers, then evaluating an objective or constraint function twice can
return different results. This affects both function estimation and finite difference estimation. The
value of a finite difference might be dominated by the variation due to randomness, rather than the
variation due to different evaluation points x and x + δ.

Suggestions for Stochastic Functions

If your simulation uses random numbers from a stream you control, reset the random stream before
each evaluation of your objective or constraint functions. This practice can reduce the variability in
results. For example, in an objective function:

function f = mysimulation(x)
rng default % or any other resetting method
...
end

For details, see “Generate Random Numbers That Are Repeatable”.

Common Calculation of Objective and Constraints

Frequently, a simulation evaluates both the objective function and constraints during the same
simulation run. Or, both objective and nonlinear constraint functions use the same expensive
computation. Solvers such as fmincon separately evaluate the objective function and nonlinear
constraint functions. This can lead to a great loss of efficiency, because the solver calls the expensive
computation twice. To circumvent this problem, use the technique in “Objective and Nonlinear
Constraints in the Same Function” on page 2-48, or, when using the problem-based approach,
“Objective and Constraints Having a Common Function in Serial or Parallel, Problem-Based” on page
2-52.

Failure in Objective or Constraint Function Evaluation

Your simulation or ODE can fail for some parameter values.

Suggestions for Evaluation Failures
Set Appropriate Bounds

While you might not know all limitations on the parameter space, try to set appropriate bounds on all
parameters, both upper and lower. This can speed up your optimization, and can help the solver avoid
problematic parameter values.

Use a Solver That Respects Bounds

As described in “Iterations Can Violate Constraints” on page 2-33, some algorithms can violate bound
constraints at intermediate iterations. For optimizing simulations and ODEs, use algorithms that
always obey bound constraints. See “Algorithms That Satisfy Bound Constraints” on page 2-33.

Return NaN

If your simulation or ODE solver does not successfully evaluate an objective or nonlinear constraint
function at a point x, have your function return NaN. Most Optimization Toolbox and Global

 Optimizing a Simulation or Ordinary Differential Equation

4-29

Optimization Toolbox solvers have the robustness to attempt a different iterative step if they
encounter a NaN value. These robust solvers include:

• fmincon interior-point, sqp, and trust-region-reflective algorithms
• fminunc
• lsqcurvefit
• lsqnonlin
• patternsearch

Some people are tempted to return an arbitrary large objective function value at an unsuccessful,
infeasible, or other poor point. However, this practice can confuse a solver, because the solver does
not realize that the returned value is arbitrary. When you return NaN, the solver can attempt to
evaluate at a different point.

Bibliography

[1] Heidelberger, P., X.-R. Cao, M. A. Zazanis, and R. Suri. Convergence properties of infinitesimal
perturbation analysis estimates. Management Science 34, No. 11, pp. 1281–1302, 1988.

[2] Leis, J. R. and Kramer, M.A. The Simultaneous Solution and Sensitivity Analysis of Systems
Described by Ordinary Differential Equations. ACM Trans. Mathematical Software, Vol. 14,
No. 1, pp. 45–60, 1988.

[3] Raue, A. et al. Lessons Learned from Quantitative Dynamical Modeling in Systems Biology.
Available at https://journals.plos.org/plosone/article?id=10.1371/
journal.pone.0074335, 2013.

[4] Reiman, M. I. and A. Weiss. Sensitivity analysis via likelihood ratios. Proc. 18th Winter Simulation
Conference, ACM, New York, pp. 285–289, 1986.

4 Steps to Take After Running a Solver

4-30

https://www.jstor.org/stable/2631993
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0074335
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0074335
https://doi.acm.org/10.1145/318242.318450
https://doi.acm.org/10.1145/318242.318450

Nonlinear algorithms and examples

• “Unconstrained Nonlinear Optimization Algorithms” on page 5-2
• “fminsearch Algorithm” on page 5-9
• “Unconstrained Minimization Using fminunc” on page 5-11
• “Minimization with Gradient and Hessian” on page 5-13
• “Minimization with Gradient and Hessian Sparsity Pattern” on page 5-16
• “Constrained Nonlinear Optimization Algorithms” on page 5-19
• “Smooth Formulations of Nonsmooth Functions” on page 5-39
• “Tutorial for Optimization Toolbox” on page 5-42
• “Banana Function Minimization” on page 5-55
• “Minimizing an Expensive Optimization Problem Using Parallel Computing Toolbox” on page 5-62
• “Nonlinear Inequality Constraints” on page 5-67
• “Nonlinear Constraints with Gradients” on page 5-69
• “fmincon Interior-Point Algorithm with Analytic Hessian” on page 5-72
• “Linear or Quadratic Objective with Quadratic Constraints” on page 5-77
• “Nonlinear Equality and Inequality Constraints” on page 5-81
• “Optimize Live Editor Task with fmincon Solver” on page 5-83
• “Minimization with Bound Constraints and Banded Preconditioner” on page 5-90
• “Minimization with Linear Equality Constraints, Trust-Region Reflective Algorithm” on page 5-96
• “Minimization with Dense Structured Hessian, Linear Equalities” on page 5-99
• “Calculate Gradients and Hessians Using Symbolic Math Toolbox” on page 5-103
• “Using Symbolic Mathematics with Optimization Toolbox Solvers” on page 5-114
• “Obtain Best Feasible Point” on page 5-123
• “Solve Nonlinear Problem with Many Variables” on page 5-130
• “Code Generation in fmincon Background” on page 5-135
• “Code Generation for Optimization Basics” on page 5-138
• “Static Memory Allocation for fmincon Code Generation” on page 5-142
• “Optimization Code Generation for Real-Time Applications” on page 5-144
• “One-Dimensional Semi-Infinite Constraints” on page 5-147
• “Two-Dimensional Semi-Infinite Constraint” on page 5-150
• “Analyzing the Effect of Uncertainty Using Semi-Infinite Programming” on page 5-153

5

Unconstrained Nonlinear Optimization Algorithms
In this section...
“Unconstrained Optimization Definition” on page 5-2
“fminunc trust-region Algorithm” on page 5-2
“fminunc quasi-newton Algorithm” on page 5-4

Unconstrained Optimization Definition
Unconstrained minimization is the problem of finding a vector x that is a local minimum to a scalar
function f(x):

min
x

f (x)

The term unconstrained means that no restriction is placed on the range of x.

fminunc trust-region Algorithm
Trust-Region Methods for Nonlinear Minimization

Many of the methods used in Optimization Toolbox solvers are based on trust regions, a simple yet
powerful concept in optimization.

To understand the trust-region approach to optimization, consider the unconstrained minimization
problem, minimize f(x), where the function takes vector arguments and returns scalars. Suppose you
are at a point x in n-space and you want to improve, i.e., move to a point with a lower function value.
The basic idea is to approximate f with a simpler function q, which reasonably reflects the behavior of
function f in a neighborhood N around the point x. This neighborhood is the trust region. A trial step s
is computed by minimizing (or approximately minimizing) over N. This is the trust-region subproblem,

min
s

q(s), s ∈ N . (5-1)

The current point is updated to be x + s if f(x + s) < f(x); otherwise, the current point remains
unchanged and N, the region of trust, is shrunk and the trial step computation is repeated.

The key questions in defining a specific trust-region approach to minimizing f(x) are how to choose
and compute the approximation q (defined at the current point x), how to choose and modify the trust
region N, and how accurately to solve the trust-region subproblem. This section focuses on the
unconstrained problem. Later sections discuss additional complications due to the presence of
constraints on the variables.

In the standard trust-region method ([48]), the quadratic approximation q is defined by the first two
terms of the Taylor approximation to F at x; the neighborhood N is usually spherical or ellipsoidal in
shape. Mathematically the trust-region subproblem is typically stated

min 1
2sTHs + sTg such that Ds ≤ Δ , (5-2)

where g is the gradient of f at the current point x, H is the Hessian matrix (the symmetric matrix of
second derivatives), D is a diagonal scaling matrix, Δ is a positive scalar, and ‖ . ‖ is the 2-norm. Good

5 Nonlinear algorithms and examples

5-2

algorithms exist for solving “Equation 5-2” (see [48]); such algorithms typically involve the
computation of all eigenvalues of H and a Newton process applied to the secular equation

1
Δ −

1
s = 0.

Such algorithms provide an accurate solution to “Equation 5-2”. However, they require time
proportional to several factorizations of H. Therefore, for large-scale problems a different approach is
needed. Several approximation and heuristic strategies, based on “Equation 5-2”, have been
proposed in the literature ([42] and [50]). The approximation approach followed in Optimization
Toolbox solvers is to restrict the trust-region subproblem to a two-dimensional subspace S ([39] and
[42]). Once the subspace S has been computed, the work to solve “Equation 5-2” is trivial even if full
eigenvalue/eigenvector information is needed (since in the subspace, the problem is only two-
dimensional). The dominant work has now shifted to the determination of the subspace.

The two-dimensional subspace S is determined with the aid of a preconditioned conjugate gradient
process described below. The solver defines S as the linear space spanned by s1 and s2, where s1 is in
the direction of the gradient g, and s2 is either an approximate Newton direction, i.e., a solution to

H ⋅ s2 = − g, (5-3)

or a direction of negative curvature,

s2
T ⋅ H ⋅ s2 < 0. (5-4)

The philosophy behind this choice of S is to force global convergence (via the steepest descent
direction or negative curvature direction) and achieve fast local convergence (via the Newton step,
when it exists).

A sketch of unconstrained minimization using trust-region ideas is now easy to give:

1 Formulate the two-dimensional trust-region subproblem.
2 Solve “Equation 5-2” to determine the trial step s.
3 If f(x + s) < f(x), then x = x + s.
4 Adjust Δ.

These four steps are repeated until convergence. The trust-region dimension Δ is adjusted according
to standard rules. In particular, it is decreased if the trial step is not accepted, i.e., f(x + s) ≥ f(x). See
[46] and [49] for a discussion of this aspect.

Optimization Toolbox solvers treat a few important special cases of f with specialized functions:
nonlinear least-squares, quadratic functions, and linear least-squares. However, the underlying
algorithmic ideas are the same as for the general case. These special cases are discussed in later
sections.

Preconditioned Conjugate Gradient Method

A popular way to solve large, symmetric, positive definite systems of linear equations Hp = –g is the
method of Preconditioned Conjugate Gradients (PCG). This iterative approach requires the ability to
calculate matrix-vector products of the form H·v where v is an arbitrary vector. The symmetric
positive definite matrix M is a preconditioner for H. That is, M = C2, where C–1HC–1 is a well-
conditioned matrix or a matrix with clustered eigenvalues.

 Unconstrained Nonlinear Optimization Algorithms

5-3

In a minimization context, you can assume that the Hessian matrix H is symmetric. However, H is
guaranteed to be positive definite only in the neighborhood of a strong minimizer. Algorithm PCG
exits when it encounters a direction of negative (or zero) curvature, that is, dTHd ≤ 0. The PCG
output direction p is either a direction of negative curvature or an approximate solution to the
Newton system Hp = –g. In either case, p helps to define the two-dimensional subspace used in the
trust-region approach discussed in “Trust-Region Methods for Nonlinear Minimization” on page 5-2.

fminunc quasi-newton Algorithm
Basics of Unconstrained Optimization

Although a wide spectrum of methods exists for unconstrained optimization, methods can be broadly
categorized in terms of the derivative information that is, or is not, used. Search methods that use
only function evaluations (e.g., the simplex search of Nelder and Mead [30]) are most suitable for
problems that are not smooth or have a number of discontinuities. Gradient methods are generally
more efficient when the function to be minimized is continuous in its first derivative. Higher order
methods, such as Newton's method, are only really suitable when the second-order information is
readily and easily calculated, because calculation of second-order information, using numerical
differentiation, is computationally expensive.

Gradient methods use information about the slope of the function to dictate a direction of search
where the minimum is thought to lie. The simplest of these is the method of steepest descent in which
a search is performed in a direction, –∇f(x), where ∇f(x) is the gradient of the objective function. This
method is very inefficient when the function to be minimized has long narrow valleys as, for example,
is the case for Rosenbrock's function

f (x) = 100 x2− x1
2 2 + (1− x1)2 . (5-5)

The minimum of this function is at x = [1,1], where f(x) = 0. A contour map of this function is shown
in the figure below, along with the solution path to the minimum for a steepest descent
implementation starting at the point [-1.9,2]. The optimization was terminated after 1000 iterations,
still a considerable distance from the minimum. The black areas are where the method is continually
zigzagging from one side of the valley to another. Note that toward the center of the plot, a number of
larger steps are taken when a point lands exactly at the center of the valley.

5 Nonlinear algorithms and examples

5-4

Figure 5-1, Steepest Descent Method on Rosenbrock's Function

This function, also known as the banana function, is notorious in unconstrained examples because of
the way the curvature bends around the origin. Rosenbrock's function is used throughout this section
to illustrate the use of a variety of optimization techniques. The contours have been plotted in
exponential increments because of the steepness of the slope surrounding the U-shaped valley.

For a more complete description of this figure, including scripts that generate the iterative points, see
“Banana Function Minimization” on page 5-55.

Quasi-Newton Methods

Of the methods that use gradient information, the most favored are the quasi-Newton methods. These
methods build up curvature information at each iteration to formulate a quadratic model problem of
the form

min
x

1
2xTHx + cTx + b, (5-6)

where the Hessian matrix, H, is a positive definite symmetric matrix, c is a constant vector, and b is a
constant. The optimal solution for this problem occurs when the partial derivatives of x go to zero,
i.e.,

∇ f (x*) = Hx* + c = 0. (5-7)

The optimal solution point, x*, can be written as

x* = − H−1c . (5-8)

Newton-type methods (as opposed to quasi-Newton methods) calculate H directly and proceed in a
direction of descent to locate the minimum after a number of iterations. Calculating H numerically
involves a large amount of computation. Quasi-Newton methods avoid this by using the observed
behavior of f(x) and ∇f(x) to build up curvature information to make an approximation to H using an
appropriate updating technique.

 Unconstrained Nonlinear Optimization Algorithms

5-5

A large number of Hessian updating methods have been developed. However, the formula of
Broyden [3], Fletcher [12], Goldfarb [20], and Shanno [37] (BFGS) is thought to be the most effective
for use in a general purpose method.

The formula given by BFGS is

Hk + 1 = Hk +
qkqk

T

qk
Tsk

−
Hksksk

THk
T

sk
THksk

, (5-9)

where

sk = xk + 1− xk,
qk = ∇ f xk + 1 − ∇ f xk .

As a starting point, H0 can be set to any symmetric positive definite matrix, for example, the identity
matrix I. To avoid the inversion of the Hessian H, you can derive an updating method that avoids the
direct inversion of H by using a formula that makes an approximation of the inverse Hessian H–1 at
each update. A well-known procedure is the DFP formula of Davidon [7], Fletcher, and Powell [14].
This uses the same formula as the BFGS method (“Equation 5-9”) except that qk is substituted for sk.

The gradient information is either supplied through analytically calculated gradients, or derived by
partial derivatives using a numerical differentiation method via finite differences. This involves
perturbing each of the design variables, x, in turn and calculating the rate of change in the objective
function.

At each major iteration, k, a line search is performed in the direction

d = − Hk
−1 ⋅ ∇ f xk . (5-10)

The quasi-Newton method is illustrated by the solution path on Rosenbrock's function in “Figure 5-2,
BFGS Method on Rosenbrock's Function” on page 5-6. The method is able to follow the shape of
the valley and converges to the minimum after 140 function evaluations using only finite difference
gradients.

Figure 5-2, BFGS Method on Rosenbrock's Function

For a more complete description of this figure, including scripts that generate the iterative points, see
“Banana Function Minimization” on page 5-55.

5 Nonlinear algorithms and examples

5-6

Line Search

Line search is a search method that is used as part of a larger optimization algorithm. At each step of
the main algorithm, the line-search method searches along the line containing the current point, xk,
parallel to the search direction, which is a vector determined by the main algorithm. That is, the
method finds the next iterate xk+1 of the form

xk + 1 = xk + α*dk, (5-11)

where xk denotes the current iterate, dk is the search direction, and α* is a scalar step length
parameter.

The line search method attempts to decrease the objective function along the line xk + α*dk by
repeatedly minimizing polynomial interpolation models of the objective function. The line search
procedure has two main steps:

• The bracketing phase determines the range of points on the line xk + 1 = xk + α*dk to be searched.
The bracket corresponds to an interval specifying the range of values of α.

• The sectioning step divides the bracket into subintervals, on which the minimum of the objective
function is approximated by polynomial interpolation.

The resulting step length α satisfies the Wolfe conditions:

f xk + αdk ≤ f xk + c1α∇ fk
Tdk, (5-12)

∇ f xk + αdk
Tdk ≥ c2∇ fk

Tdk, (5-13)

where c1 and c2 are constants with 0 < c1 < c2 < 1.

The first condition (“Equation 5-12”) requires that αk sufficiently decreases the objective function.
The second condition (“Equation 5-13”) ensures that the step length is not too small. Points that
satisfy both conditions (“Equation 5-12” and “Equation 5-13”) are called acceptable points.

The line search method is an implementation of the algorithm described in Section 2-6 of [13]. See
also [31] for more information about line search.

Hessian Update

Many of the optimization functions determine the direction of search by updating the Hessian matrix
at each iteration, using the BFGS method (“Equation 5-9”). The function fminunc also provides an
option to use the DFP method given in “Quasi-Newton Methods” on page 5-5 (set HessUpdate to
'dfp' in options to select the DFP method). The Hessian, H, is always maintained to be positive
definite so that the direction of search, d, is always in a descent direction. This means that for some
arbitrarily small step α in the direction d, the objective function decreases in magnitude. You achieve
positive definiteness of H by ensuring that H is initialized to be positive definite and thereafter qk

Tsk

(from “Equation 5-14”) is always positive. The term qk
Tsk is a product of the line search step length

parameter αk and a combination of the search direction d with past and present gradient evaluations,

qk
Tsk = αk ∇ f xk + 1

Td− ∇ f xk
Td . (5-14)

You always achieve the condition that qk
Tsk is positive by performing a sufficiently accurate line

search. This is because the search direction, d, is a descent direction, so that αk and the negative

 Unconstrained Nonlinear Optimization Algorithms

5-7

gradient –∇f(xk)Td are always positive. Thus, the possible negative term –∇f(xk+1)Td can be made as
small in magnitude as required by increasing the accuracy of the line search.

LBFGS Hessian Approximation

For large problems, the BFGS Hessian approximation method can be relatively slow and use a large
amount of memory. To circumvent these issues, use the LBFGS Hessian approximation by setting the
HessianApproximation option to 'lbfgs'. This causes fminunc to use the Low-memory BFGS
Hessian approximation, described next. For the benefit of using LBFGS in a large problem, see “Solve
Nonlinear Problem with Many Variables” on page 5-130.

As described in Nocedal and Wright [31], the Low-memory BFGS Hessian approximation is similar to
the BFGS approximation described in “Quasi-Newton Methods” on page 5-5, but uses a limited
amount of memory for previous iterations. The Hessian update formula given in “Equation 5-9” is

Hk + 1 = Hk +
qkqk

T

qk
Tsk

−
Hksksk

THk
T

sk
THksk

,

where

sk = xk + 1− xk,
qk = ∇ f xk + 1 − ∇ f xk .

Another description of the BFGS procedure is

xk + 1 = xk− αkHk∇ fk, (5-15)

where ɑk is the step length chosen by line search, and Hk is an inverse Hessian approximation. The
formula for Hk:

Hk + 1 = Vk
THkVk + ρksksk

T,

where sk and qk are defined as before, and

ρk = 1
qk

Tsk

Vk = I − ρkqksk
T .

For the LBFGS algorithm, the algorithm keeps a fixed, finite number m of the parameters sk and qk
from the immediately preceding iterations. Starting from an initial H0, the algorithm computes an
approximate Hk for obtaining the step from “Equation 5-15”. The computation of Hk∇ fk proceeds as a
recursion from the preceding equations using the most recent m values of ρj, qj, and sj. For details,
see Algorithm 7.4 of Nocedal and Wright [31].

See Also
fminunc

More About
• “fminsearch Algorithm” on page 5-9

5 Nonlinear algorithms and examples

5-8

fminsearch Algorithm
fminsearch uses the Nelder-Mead simplex algorithm as described in Lagarias et al. [57]. This
algorithm uses a simplex of n + 1 points for n-dimensional vectors x. The algorithm first makes a
simplex around the initial guess x0 by adding 5% of each component x0(i) to x0, and using these n
vectors as elements of the simplex in addition to x0. (The algorithm uses 0.00025 as component i if
x0(i) = 0.) Then, the algorithm modifies the simplex repeatedly according to the following procedure.

Note The keywords for the fminsearch iterative display appear in bold after the description of the
step.

1 Let x(i) denote the list of points in the current simplex, i = 1,...,n + 1.
2 Order the points in the simplex from lowest function value f(x(1)) to highest f(x(n + 1)). At each

step in the iteration, the algorithm discards the current worst point x(n + 1), and accepts another
point into the simplex. [Or, in the case of step 7 below, it changes all n points with values above
f(x(1))].

3 Generate the reflected point

r = 2m – x(n + 1),

where

m = Σx(i)/n, i = 1...n,

and calculate f(r).
4 If f(x(1)) ≤ f(r) < f(x(n)), accept r and terminate this iteration. Reflect
5 If f(r) < f(x(1)), calculate the expansion point s

s = m + 2(m – x(n + 1)),

and calculate f(s).

a If f(s) < f(r), accept s and terminate the iteration. Expand
b Otherwise, accept r and terminate the iteration. Reflect

6 If f(r) ≥ f(x(n)), perform a contraction between m and eitherx(n + 1) or r, depending on which
has the lower objective function value.

a If f(r) < f(x(n + 1)) (that is, r is better than x(n + 1)), calculate

c = m + (r – m)/2

and calculate f(c). If f(c) < f(r), accept c and terminate the iteration. Contract outside

Otherwise, continue with Step 7 (Shrink).
b If f(r) ≥ f(x(n + 1)), calculate

cc = m + (x(n + 1) – m)/2

and calculate f(cc). If f(cc) < f(x(n + 1)), accept cc and terminate the iteration. Contract
inside

 fminsearch Algorithm

5-9

Otherwise, continue with Step 7 (Shrink).
7 Calculate the n points

v(i) = x(1) + (x(i) – x(1))/2

and calculate f(v(i)), i = 2,...,n + 1. The simplex at the next iteration is x(1), v(2),...,v(n + 1).
Shrink

The following figure shows the points that fminsearch might calculate in the procedure, along with
each possible new simplex. The original simplex has a bold outline. The iterations proceed until they
meet a stopping criterion.

See Also
fminsearch

More About
• “Unconstrained Nonlinear Optimization Algorithms” on page 5-2

5 Nonlinear algorithms and examples

5-10

Unconstrained Minimization Using fminunc
This example shows how to use fminunc to solve the nonlinear minimization problem

min
x

f (x) = ex1 4x1
2 + 2x2

2 + 4x1x2 + 2x2 + 1 .

To solve this two-dimensional problem, write a function that returns f (x). Then, invoke the
unconstrained minimization routine fminunc starting from the initial point x0 = [-1,1].

The helper function objfun at the end of this example on page 5-0 calculates f (x).

To find the minimum of f (x), set the initial point and call fminunc.

x0 = [-1,1];
[x,fval,exitflag,output] = fminunc(@objfun,x0);

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

View the results, including the first-order optimality measure in the output structure.

disp(x)

 0.5000 -1.0000

disp(fval)

 3.6609e-15

disp(exitflag)

 1

disp(output.firstorderopt)

 1.2284e-07

The exitflag output indicates whether the algorithm converges. exitflag = 1 means fminunc
finds a local minimum.

The output structure gives more details about the optimization. For fminunc, the structure
includes:

• output.iterations, the number of iterations
• output.funcCount, the number of function evaluations
• output.stepsize, the final step-size
• output.firstorderopt, a measure of first-order optimality (which, in this unconstrained case,

is the infinity norm of the gradient at the solution)
• output.algorithm, the type of algorithm used
• output.message, the reason the algorithm stopped

 Unconstrained Minimization Using fminunc

5-11

Helper Function

This code creates the objfun helper function.

function f = objfun(x)
f = exp(x(1)) * (4*x(1)^2 + 2*x(2)^2 + 4*x(1)*x(2) + 2*x(2) + 1);
end

See Also

Related Examples
• “Minimization with Gradient and Hessian” on page 5-13

More About
• “Set Options”
• “Solver Outputs and Iterative Display”

5 Nonlinear algorithms and examples

5-12

Minimization with Gradient and Hessian
This example shows how to solve a nonlinear minimization problem with an explicit tridiagonal
Hessian matrix H(x). The problem is to find x to minimize

f (x) = ∑
i = 1

n− 1
xi

2 xi + 1
2 + 1 + xi + 1

2 xi
2 + 1 ,

where n = 1000.

The helper function brownfgh at the end of this example on page 5-0 calculates f (x), its gradient
g(x), and its Hessian H(x). To specify that the fminunc solver use the derivative information, set the
SpecifyObjectiveGradient and HessianFcn options using optimoptions. To use a Hessian
with fminunc, you must use the 'trust-region' algorithm.

options = optimoptions(@fminunc,'Algorithm','trust-region',...
 'SpecifyObjectiveGradient',true,'HessianFcn','objective');

Set the parameter n to 1000, and set the initial point xstart to –1 for odd components and +1 for
even components.

n = 1000;
xstart = -ones(n,1);
xstart(2:2:n) = 1;

Find the minimum value of f .

[x,fval,exitflag,output] = fminunc(@brownfgh,xstart,options);

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

Examine the solution and solution process.

disp(fval)

 2.8709e-17

disp(exitflag)

 1

disp(output)

 iterations: 7
 funcCount: 8
 stepsize: 0.0039
 cgiterations: 7
 firstorderopt: 4.7948e-10
 algorithm: 'trust-region'
 message: 'Local minimum found....'
 constrviolation: []

The function f (x) is a sum of powers of squares, and, therefore, is nonnegative. The solution fval is
nearly zero, so it is clearly a minimum. The exit flag 1 also indicates that fminunc finds a solution.
The output structure shows that fminunc takes only seven iterations to reach the solution.

 Minimization with Gradient and Hessian

5-13

Display the largest and smallest elements of the solution.

disp(max(x))

 1.1987e-10

disp(min(x))

 -1.1987e-10

The solution is very near the point where all elements of x = 0.

Helper Function

This code creates the brownfgh helper function.

function [f,g,H] = brownfgh(x)
%BROWNFGH Nonlinear minimization problem (function, its gradients
% and Hessian)
% Documentation example

% Copyright 1990-2008 The MathWorks, Inc.

% Evaluate the function.
 n=length(x); y=zeros(n,1);
 i=1:(n-1);
 y(i)=(x(i).^2).^(x(i+1).^2+1)+(x(i+1).^2).^(x(i).^2+1);
 f=sum(y);
%
% Evaluate the gradient.
 if nargout > 1
 i=1:(n-1); g = zeros(n,1);
 g(i)= 2*(x(i+1).^2+1).*x(i).*((x(i).^2).^(x(i+1).^2))+...
 2*x(i).*((x(i+1).^2).^(x(i).^2+1)).*log(x(i+1).^2);
 g(i+1)=g(i+1)+...
 2*x(i+1).*((x(i).^2).^(x(i+1).^2+1)).*log(x(i).^2)+...
 2*(x(i).^2+1).*x(i+1).*((x(i+1).^2).^(x(i).^2));
 end
%
% Evaluate the (sparse, symmetric) Hessian matrix
 if nargout > 2
 v=zeros(n,1);
 i=1:(n-1);
 v(i)=2*(x(i+1).^2+1).*((x(i).^2).^(x(i+1).^2))+...
 4*(x(i+1).^2+1).*(x(i+1).^2).*(x(i).^2).*((x(i).^2).^((x(i+1).^2)-1))+...
 2*((x(i+1).^2).^(x(i).^2+1)).*(log(x(i+1).^2));
 v(i)=v(i)+4*(x(i).^2).*((x(i+1).^2).^(x(i).^2+1)).*((log(x(i+1).^2)).^2);
 v(i+1)=v(i+1)+...
 2*(x(i).^2).^(x(i+1).^2+1).*(log(x(i).^2))+...
 4*(x(i+1).^2).*((x(i).^2).^(x(i+1).^2+1)).*((log(x(i).^2)).^2)+...
 2*(x(i).^2+1).*((x(i+1).^2).^(x(i).^2));
 v(i+1)=v(i+1)+4*(x(i).^2+1).*(x(i+1).^2).*(x(i).^2).*((x(i+1).^2).^(x(i).^2-1));
 v0=v;
 v=zeros(n-1,1);
 v(i)=4*x(i+1).*x(i).*((x(i).^2).^(x(i+1).^2))+...
 4*x(i+1).*(x(i+1).^2+1).*x(i).*((x(i).^2).^(x(i+1).^2)).*log(x(i).^2);
 v(i)=v(i)+ 4*x(i+1).*x(i).*((x(i+1).^2).^(x(i).^2)).*log(x(i+1).^2);
 v(i)=v(i)+4*x(i).*((x(i+1).^2).^(x(i).^2)).*x(i+1);
 v1=v;

5 Nonlinear algorithms and examples

5-14

 i=[(1:n)';(1:(n-1))'];
 j=[(1:n)';(2:n)'];
 s=[v0;2*v1];
 H=sparse(i,j,s,n,n);
 H=(H+H')/2;
 end
end

See Also

Related Examples
• “Minimization with Gradient and Hessian Sparsity Pattern” on page 5-16

 Minimization with Gradient and Hessian

5-15

Minimization with Gradient and Hessian Sparsity Pattern
This example shows how to solve a nonlinear minimization problem with a tridiagonal Hessian matrix
approximated by sparse finite differences instead of explicit computation.

The problem is to find x to minimize

f (x) = ∑
i = 1

n− 1
xi

2 xi + 1
2 + 1 + xi + 1

2 xi
2 + 1 ,

where n = 1000.

n = 1000;

To use the trust-region method in fminunc, you must compute the gradient in the objective
function; it is not optional as in the quasi-newton method.

The helper function brownfg at the end of this example on page 5-0 computes the objective
function and gradient.

To allow efficient computation of the sparse finite-difference approximation of the Hessian matrix
H(x), the sparsity structure of H must be predetermined. In this case, the structure Hstr, a sparse
matrix, is available in the file brownhstr.mat. Using the spy command, you can see that Hstr is,
indeed, sparse (only 2998 nonzeros).

load brownhstr
spy(Hstr)

5 Nonlinear algorithms and examples

5-16

Set the HessPattern option to Hstr using optimoptions. When such a large problem has obvious
sparsity structure, not setting the HessPattern option uses a great amount of memory and
computation unnecessarily, because fminunc attempts to use finite differencing on a full Hessian
matrix of one million nonzero entries.

To use the Hessian sparsity pattern, you must use the trust-region algorithm of fminunc. This
algorithm also requires you to set the SpecifyObjectiveGradient option to true using
optimoptions.

options = optimoptions(@fminunc,'Algorithm','trust-region',...
 'SpecifyObjectiveGradient',true,'HessPattern',Hstr);

Set the objective function to @brownfg. Set the initial point to –1 for odd x components and +1 for
even x components.

xstart = -ones(n,1);
xstart(2:2:n,1) = 1;
fun = @brownfg;

Solve the problem by calling fminunc using the initial point xstart and options options.

[x,fval,exitflag,output] = fminunc(fun,xstart,options);

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

Examine the solution and solution process.

disp(fval)

 7.4739e-17

disp(exitflag)

 1

disp(output)

 iterations: 7
 funcCount: 8
 stepsize: 0.0046
 cgiterations: 7
 firstorderopt: 7.9822e-10
 algorithm: 'trust-region'
 message: 'Local minimum found....'
 constrviolation: []

The function f (x) is a sum of powers of squares and, therefore, is nonnegative. The solution fval is
nearly zero, so it is clearly a minimum. The exit flag 1 also indicates that fminunc finds a solution.
The output structure shows that fminunc takes only seven iterations to reach the solution.

Display the largest and smallest elements of the solution.

disp(max(x))

 1.9955e-10

 Minimization with Gradient and Hessian Sparsity Pattern

5-17

disp(min(x))

 -1.9955e-10

The solution is near the point where all elements of x = 0.

Helper Function

This code creates the brownfg helper function.

function [f,g] = brownfg(x)
% BROWNFG Nonlinear minimization test problem
%
% Evaluate the function
n=length(x); y=zeros(n,1);
i=1:(n-1);
y(i)=(x(i).^2).^(x(i+1).^2+1) + ...
 (x(i+1).^2).^(x(i).^2+1);
 f=sum(y);
% Evaluate the gradient if nargout > 1
 if nargout > 1
 i=1:(n-1); g = zeros(n,1);
 g(i) = 2*(x(i+1).^2+1).*x(i).* ...
 ((x(i).^2).^(x(i+1).^2))+ ...
 2*x(i).*((x(i+1).^2).^(x(i).^2+1)).* ...
 log(x(i+1).^2);
 g(i+1) = g(i+1) + ...
 2*x(i+1).*((x(i).^2).^(x(i+1).^2+1)).* ...
 log(x(i).^2) + ...
 2*(x(i).^2+1).*x(i+1).* ...
 ((x(i+1).^2).^(x(i).^2));
 end
end

See Also

Related Examples
• “Minimization with Gradient and Hessian” on page 5-13

5 Nonlinear algorithms and examples

5-18

Constrained Nonlinear Optimization Algorithms

In this section...
“Constrained Optimization Definition” on page 5-19
“fmincon Trust Region Reflective Algorithm” on page 5-19
“fmincon Active Set Algorithm” on page 5-22
“fmincon SQP Algorithm” on page 5-29
“fmincon Interior Point Algorithm” on page 5-30
“fminbnd Algorithm” on page 5-36
“fseminf Problem Formulation and Algorithm” on page 5-36

Constrained Optimization Definition
Constrained minimization is the problem of finding a vector x that is a local minimum to a scalar
function f(x) subject to constraints on the allowable x:

min
x

f (x)

such that one or more of the following holds: c(x) ≤ 0, ceq(x) = 0, A·x ≤ b, Aeq·x = beq, l ≤ x ≤ u.
There are even more constraints used in semi-infinite programming; see “fseminf Problem
Formulation and Algorithm” on page 5-36.

fmincon Trust Region Reflective Algorithm
Trust-Region Methods for Nonlinear Minimization

Many of the methods used in Optimization Toolbox solvers are based on trust regions, a simple yet
powerful concept in optimization.

To understand the trust-region approach to optimization, consider the unconstrained minimization
problem, minimize f(x), where the function takes vector arguments and returns scalars. Suppose you
are at a point x in n-space and you want to improve, i.e., move to a point with a lower function value.
The basic idea is to approximate f with a simpler function q, which reasonably reflects the behavior of
function f in a neighborhood N around the point x. This neighborhood is the trust region. A trial step s
is computed by minimizing (or approximately minimizing) over N. This is the trust-region subproblem,

min
s

q(s), s ∈ N . (5-16)

The current point is updated to be x + s if f(x + s) < f(x); otherwise, the current point remains
unchanged and N, the region of trust, is shrunk and the trial step computation is repeated.

The key questions in defining a specific trust-region approach to minimizing f(x) are how to choose
and compute the approximation q (defined at the current point x), how to choose and modify the trust
region N, and how accurately to solve the trust-region subproblem. This section focuses on the
unconstrained problem. Later sections discuss additional complications due to the presence of
constraints on the variables.

 Constrained Nonlinear Optimization Algorithms

5-19

In the standard trust-region method ([48]), the quadratic approximation q is defined by the first two
terms of the Taylor approximation to F at x; the neighborhood N is usually spherical or ellipsoidal in
shape. Mathematically the trust-region subproblem is typically stated

min 1
2sTHs + sTg such that Ds ≤ Δ , (5-17)

where g is the gradient of f at the current point x, H is the Hessian matrix (the symmetric matrix of
second derivatives), D is a diagonal scaling matrix, Δ is a positive scalar, and ‖ . ‖ is the 2-norm. Good
algorithms exist for solving “Equation 5-17” (see [48]); such algorithms typically involve the
computation of all eigenvalues of H and a Newton process applied to the secular equation

1
Δ −

1
s = 0.

Such algorithms provide an accurate solution to “Equation 5-17”. However, they require time
proportional to several factorizations of H. Therefore, for large-scale problems a different approach is
needed. Several approximation and heuristic strategies, based on “Equation 5-17”, have been
proposed in the literature ([42] and [50]). The approximation approach followed in Optimization
Toolbox solvers is to restrict the trust-region subproblem to a two-dimensional subspace S ([39] and
[42]). Once the subspace S has been computed, the work to solve “Equation 5-17” is trivial even if full
eigenvalue/eigenvector information is needed (since in the subspace, the problem is only two-
dimensional). The dominant work has now shifted to the determination of the subspace.

The two-dimensional subspace S is determined with the aid of a preconditioned conjugate gradient
process described below. The solver defines S as the linear space spanned by s1 and s2, where s1 is in
the direction of the gradient g, and s2 is either an approximate Newton direction, i.e., a solution to

H ⋅ s2 = − g, (5-18)

or a direction of negative curvature,

s2
T ⋅ H ⋅ s2 < 0. (5-19)

The philosophy behind this choice of S is to force global convergence (via the steepest descent
direction or negative curvature direction) and achieve fast local convergence (via the Newton step,
when it exists).

A sketch of unconstrained minimization using trust-region ideas is now easy to give:

1 Formulate the two-dimensional trust-region subproblem.
2 Solve “Equation 5-17” to determine the trial step s.
3 If f(x + s) < f(x), then x = x + s.
4 Adjust Δ.

These four steps are repeated until convergence. The trust-region dimension Δ is adjusted according
to standard rules. In particular, it is decreased if the trial step is not accepted, i.e., f(x + s) ≥ f(x). See
[46] and [49] for a discussion of this aspect.

Optimization Toolbox solvers treat a few important special cases of f with specialized functions:
nonlinear least-squares, quadratic functions, and linear least-squares. However, the underlying
algorithmic ideas are the same as for the general case. These special cases are discussed in later
sections.

5 Nonlinear algorithms and examples

5-20

Preconditioned Conjugate Gradient Method

A popular way to solve large, symmetric, positive definite systems of linear equations Hp = –g is the
method of Preconditioned Conjugate Gradients (PCG). This iterative approach requires the ability to
calculate matrix-vector products of the form H·v where v is an arbitrary vector. The symmetric
positive definite matrix M is a preconditioner for H. That is, M = C2, where C–1HC–1 is a well-
conditioned matrix or a matrix with clustered eigenvalues.

In a minimization context, you can assume that the Hessian matrix H is symmetric. However, H is
guaranteed to be positive definite only in the neighborhood of a strong minimizer. Algorithm PCG
exits when it encounters a direction of negative (or zero) curvature, that is, dTHd ≤ 0. The PCG
output direction p is either a direction of negative curvature or an approximate solution to the
Newton system Hp = –g. In either case, p helps to define the two-dimensional subspace used in the
trust-region approach discussed in “Trust-Region Methods for Nonlinear Minimization” on page 5-2.

Linear Equality Constraints

Linear constraints complicate the situation described for unconstrained minimization. However, the
underlying ideas described previously can be carried through in a clean and efficient way. The trust-
region methods in Optimization Toolbox solvers generate strictly feasible iterates.

The general linear equality constrained minimization problem can be written

min f (x) such that Ax = b , (5-20)

where A is an m-by-n matrix (m ≤ n). Some Optimization Toolbox solvers preprocess A to remove
strict linear dependencies using a technique based on the LU factorization of AT [46]. Here A is
assumed to be of rank m.

The method used to solve “Equation 5-20” differs from the unconstrained approach in two significant
ways. First, an initial feasible point x0 is computed, using a sparse least-squares step, so that Ax0 = b.
Second, Algorithm PCG is replaced with Reduced Preconditioned Conjugate Gradients (RPCG), see
[46], in order to compute an approximate reduced Newton step (or a direction of negative curvature
in the null space of A). The key linear algebra step involves solving systems of the form

C AT

A 0

s
t

=
r
0

, (5-21)

where A approximates A (small nonzeros of A are set to zero provided rank is not lost) and C is a
sparse symmetric positive-definite approximation to H, i.e., C = H. See [46] for more details.

Box Constraints

The box constrained problem is of the form

min f (x) such that l ≤ x ≤ u , (5-22)

where l is a vector of lower bounds, and u is a vector of upper bounds. Some (or all) of the
components of l can be equal to –∞ and some (or all) of the components of u can be equal to ∞. The
method generates a sequence of strictly feasible points. Two techniques are used to maintain
feasibility while achieving robust convergence behavior. First, a scaled modified Newton step
replaces the unconstrained Newton step (to define the two-dimensional subspace S). Second,
reflections are used to increase the step size.

 Constrained Nonlinear Optimization Algorithms

5-21

The scaled modified Newton step arises from examining the Kuhn-Tucker necessary conditions for
“Equation 5-22”,

D(x) −2g = 0, (5-23)

where

D(x) = diag vk
−1/2 ,

and the vector v(x) is defined below, for each 1 ≤ i ≤ n:

• If gi < 0 and ui < ∞ then vi = xi – ui

• If gi ≥ 0 and li > –∞ then vi = xi – li
• If gi < 0 and ui = ∞ then vi = –1
• If gi ≥ 0 and li = –∞ then vi = 1

The nonlinear system “Equation 5-23” is not differentiable everywhere. Nondifferentiability occurs
when vi = 0. You can avoid such points by maintaining strict feasibility, i.e., restricting l < x < u.

The scaled modified Newton step sk for the nonlinear system of equations given by “Equation 5-23” is
defined as the solution to the linear system

MDsN = − g (5-24)

at the kth iteration, where

g = D−1g = diag v 1/2 g, (5-25)

and

M = D−1HD−1 + diag(g) Jv . (5-26)

Here Jv plays the role of the Jacobian of |v|. Each diagonal component of the diagonal matrix Jv equals
0, –1, or 1. If all the components of l and u are finite, Jv = diag(sign(g)). At a point where gi = 0, vi

might not be differentiable. Jii
v = 0 is defined at such a point. Nondifferentiability of this type is not a

cause for concern because, for such a component, it is not significant which value vi takes. Further, |
vi| will still be discontinuous at this point, but the function |vi|·gi is continuous.

Second, reflections are used to increase the step size. A (single) reflection step is defined as follows.
Given a step p that intersects a bound constraint, consider the first bound constraint crossed by p;
assume it is the ith bound constraint (either the ith upper or ith lower bound). Then the reflection
step pR = p except in the ith component, where pR

i = –pi.

fmincon Active Set Algorithm
Introduction

In constrained optimization, the general aim is to transform the problem into an easier subproblem
that can then be solved and used as the basis of an iterative process. A characteristic of a large class
of early methods is the translation of the constrained problem to a basic unconstrained problem by
using a penalty function for constraints that are near or beyond the constraint boundary. In this way

5 Nonlinear algorithms and examples

5-22

the constrained problem is solved using a sequence of parametrized unconstrained optimizations,
which in the limit (of the sequence) converge to the constrained problem. These methods are now
considered relatively inefficient and have been replaced by methods that have focused on the solution
of the Karush-Kuhn-Tucker (KKT) equations. The KKT equations are necessary conditions for
optimality for a constrained optimization problem. If the problem is a so-called convex programming
problem, that is, f(x) and Gi(x), i = 1,...,m, are convex functions, then the KKT equations are both
necessary and sufficient for a global solution point.

Referring to GP (“Equation 2-1”), the Kuhn-Tucker equations can be stated as

∇ f x* + ∑
i = 1

m
λi ⋅ ∇Gi x* = 0

λi ⋅ Gi x* = 0, i = 1, ..., me
λi ≥ 0, i = me + 1, ..., m,

 (5-27)

in addition to the original constraints in “Equation 2-1”.

The first equation describes a canceling of the gradients between the objective function and the
active constraints at the solution point. For the gradients to be canceled, Lagrange multipliers (λi, i =
1,...,m) are necessary to balance the deviations in magnitude of the objective function and constraint
gradients. Because only active constraints are included in this canceling operation, constraints that
are not active must not be included in this operation and so are given Lagrange multipliers equal to
0. This is stated implicitly in the last two Kuhn-Tucker equations.

The solution of the KKT equations forms the basis to many nonlinear programming algorithms. These
algorithms attempt to compute the Lagrange multipliers directly. Constrained quasi-Newton methods
guarantee superlinear convergence by accumulating second-order information regarding the KKT
equations using a quasi-Newton updating procedure. These methods are commonly referred to as
Sequential Quadratic Programming (SQP) methods, since a QP subproblem is solved at each major
iteration (also known as Iterative Quadratic Programming, Recursive Quadratic Programming, and
Constrained Variable Metric methods).

The 'active-set' algorithm is not a large-scale algorithm; see “Large-Scale vs. Medium-Scale
Algorithms” on page 2-10.

Sequential Quadratic Programming (SQP)

SQP methods represent the state of the art in nonlinear programming methods. Schittkowski [36], for
example, has implemented and tested a version that outperforms every other tested method in terms
of efficiency, accuracy, and percentage of successful solutions, over a large number of test problems.

Based on the work of Biggs [1], Han [22], and Powell ([32] and [33]), the method allows you to closely
mimic Newton's method for constrained optimization just as is done for unconstrained optimization.
At each major iteration, an approximation is made of the Hessian of the Lagrangian function using a
quasi-Newton updating method. This is then used to generate a QP subproblem whose solution is
used to form a search direction for a line search procedure. An overview of SQP is found in
Fletcher [13], Gill et al. [19], Powell [35], and Schittkowski [23]. The general method, however, is
stated here.

Given the problem description in GP (“Equation 2-1”) the principal idea is the formulation of a QP
subproblem based on a quadratic approximation of the Lagrangian function.

 Constrained Nonlinear Optimization Algorithms

5-23

L(x, λ) = f (x) + ∑
i = 1

m
λi ⋅ gi(x) . (5-28)

Here you simplify “Equation 2-1” by assuming that bound constraints have been expressed as
inequality constraints. You obtain the QP subproblem by linearizing the nonlinear constraints.

Quadratic Programming (QP) Subproblem

min
d ∈ ℜn

1
2dTHkd + ∇ f xk

Td

∇gi xk
Td + gi xk = 0, i = 1, ..., me

∇gi xk
Td + gi xk ≤ 0, i = me + 1, ..., m .

 (5-29)

This subproblem can be solved using any QP algorithm (see, for instance, “Quadratic Programming
Solution” on page 5-26). The solution is used to form a new iterate

xk + 1 = xk + αkdk.

The step length parameter αk is determined by an appropriate line search procedure so that a
sufficient decrease in a merit function is obtained (see “Updating the Hessian Matrix” on page 5-25).
The matrix Hk is a positive definite approximation of the Hessian matrix of the Lagrangian function
(“Equation 5-28”). Hk can be updated by any of the quasi-Newton methods, although the BFGS
method (see “Updating the Hessian Matrix” on page 5-25) appears to be the most popular.

A nonlinearly constrained problem can often be solved in fewer iterations than an unconstrained
problem using SQP. One of the reasons for this is that, because of limits on the feasible area, the
optimizer can make informed decisions regarding directions of search and step length.

Consider Rosenbrock's function with an additional nonlinear inequality constraint, g(x),

x1
2 + x2

2− 1.5 ≤ 0. (5-30)

This was solved by an SQP implementation in 96 iterations compared to 140 for the unconstrained
case. “Figure 5-3, SQP Method on Nonlinearly Constrained Rosenbrock's Function” on page 5-24
shows the path to the solution point x = [0.9072,0.8228] starting at x = [–1.9,2.0].

Figure 5-3, SQP Method on Nonlinearly Constrained Rosenbrock's Function

5 Nonlinear algorithms and examples

5-24

SQP Implementation

The SQP implementation consists of three main stages, which are discussed briefly in the following
subsections:

• “Updating the Hessian Matrix” on page 5-25
• “Quadratic Programming Solution” on page 5-26
• “Initialization” on page 5-28
• “Line Search and Merit Function” on page 5-28

Updating the Hessian Matrix

At each major iteration a positive definite quasi-Newton approximation of the Hessian of the
Lagrangian function, H, is calculated using the BFGS method, where λi, i = 1,...,m, is an estimate of
the Lagrange multipliers.

Hk + 1 = Hk +
qkqk

T

qk
Tsk

−
Hksksk

THk
T

sk
THksk

, (5-31)

where

sk = xk + 1− xk

qk = ∇ f xk + 1 + ∑
i = 1

m
λi ⋅ ∇gi xk + 1 − ∇ f xk + ∑

i = 1

m
λi ⋅ ∇gi xk .

Powell [33] recommends keeping the Hessian positive definite even though it might be positive
indefinite at the solution point. A positive definite Hessian is maintained providing qk

Tsk is positive at
each update and that H is initialized with a positive definite matrix. When qk

Tsk is not positive, qk is
modified on an element-by-element basis so that qk

Tsk > 0. The general aim of this modification is to
distort the elements of qk, which contribute to a positive definite update, as little as possible.
Therefore, in the initial phase of the modification, the most negative element of qk*sk is repeatedly
halved. This procedure is continued until qk

Tsk is greater than or equal to a small negative tolerance.
If, after this procedure, qk

Tsk is still not positive, modify qk by adding a vector v multiplied by a
constant scalar w, that is,

qk = qk + wv, (5-32)

where

vi = ∇gi xk + 1 ⋅ gi xk + 1 − ∇gi xk ⋅ gi xk

 if qk i ⋅w < 0 and qk i ⋅ sk i < 0, i = 1, ..., m
vi = 0 otherwise,

and increase w systematically until qk
Tsk becomes positive.

The functions fmincon, fminimax, fgoalattain, and fseminf all use SQP. If Display is set to
'iter' in options, then various information is given such as function values and the maximum
constraint violation. When the Hessian has to be modified using the first phase of the preceding

 Constrained Nonlinear Optimization Algorithms

5-25

procedure to keep it positive definite, then Hessian modified is displayed. If the Hessian has to be
modified again using the second phase of the approach described above, then Hessian modified
twice is displayed. When the QP subproblem is infeasible, then infeasible is displayed. Such
displays are usually not a cause for concern but indicate that the problem is highly nonlinear and that
convergence might take longer than usual. Sometimes the message no update is displayed,
indicating that qk

Tsk is nearly zero. This can be an indication that the problem setup is wrong or you
are trying to minimize a noncontinuous function.

Quadratic Programming Solution

At each major iteration of the SQP method, a QP problem of the following form is solved, where Ai
refers to the ith row of the m-by-n matrix A.

min
d ∈ ℜn

q(d) = 1
2dTHd + cTd,

Aid = bi, i = 1, ..., me
Aid ≤ bi, i = me + 1, ..., m .

 (5-33)

The method used in Optimization Toolbox functions is an active set strategy (also known as a
projection method) similar to that of Gill et al., described in [18] and [17]. It has been modified for
both Linear Programming (LP) and Quadratic Programming (QP) problems.

The solution procedure involves two phases. The first phase involves the calculation of a feasible
point (if one exists). The second phase involves the generation of an iterative sequence of feasible
points that converge to the solution. In this method an active set, Ak, is maintained that is an estimate
of the active constraints (i.e., those that are on the constraint boundaries) at the solution point.
Virtually all QP algorithms are active set methods. This point is emphasized because there exist many
different methods that are very similar in structure but that are described in widely different terms.

Ak is updated at each iteration k, and this is used to form a basis for a search direction d k. Equality
constraints always remain in the active set Ak. The notation for the variable d k is used here to
distinguish it from dk in the major iterations of the SQP method. The search direction d k is calculated
and minimizes the objective function while remaining on any active constraint boundaries. The
feasible subspace for d k is formed from a basis Zk whose columns are orthogonal to the estimate of
the active set Ak (i.e., AkZk = 0). Thus a search direction, which is formed from a linear summation of
any combination of the columns of Zk, is guaranteed to remain on the boundaries of the active
constraints.

The matrix Zk is formed from the last m – l columns of the QR decomposition of the matrix Ak
T, where l

is the number of active constraints and l < m. That is, Zk is given by

Zk = Q : , l + 1:n , (5-34)

where

QTAk
T =

R
0

.

5 Nonlinear algorithms and examples

5-26

Once Zk is found, a new search direction d k is sought that minimizes q(d) where d k is in the null
space of the active constraints. That is, d k is a linear combination of the columns of Zk: d k = Zkp for
some vector p.

Then if you view the quadratic as a function of p, by substituting for d k, you have

q(p) = 1
2pTZk

THZkp + cTZkp . (5-35)

Differentiating this with respect to p yields

∇q(p) = Zk
THZkp + Zk

Tc . (5-36)

∇q(p) is referred to as the projected gradient of the quadratic function because it is the gradient
projected in the subspace defined by Zk. The term Zk

THZk is called the projected Hessian. Assuming
the Hessian matrix H is positive definite (which is the case in this implementation of SQP), then the
minimum of the function q(p) in the subspace defined by Zk occurs when ∇q(p) = 0, which is the
solution of the system of linear equations

Zk
THZkp = − Zk

Tc . (5-37)

A step is then taken of the form

xk + 1 = xk + αd k, where d k = Zkp . (5-38)

At each iteration, because of the quadratic nature of the objective function, there are only two
choices of step length α. A step of unity along d k is the exact step to the minimum of the function
restricted to the null space of Ak. If such a step can be taken, without violation of the constraints,
then this is the solution to QP (“Equation 5-33”). Otherwise, the step along d k to the nearest
constraint is less than unity and a new constraint is included in the active set at the next iteration.
The distance to the constraint boundaries in any direction d k is given by

α = min
i ∈ 1, ..., m

− Aixk− bi
Aid k

, (5-39)

which is defined for constraints not in the active set, and where the direction d k is towards the
constraint boundary, i.e., Aid k > 0, i = 1, ..., m.

When n independent constraints are included in the active set, without location of the minimum,
Lagrange multipliers, λk, are calculated that satisfy the nonsingular set of linear equations

Ak
Tλk = c + Hxk . (5-40)

If all elements of λk are positive, xk is the optimal solution of QP (“Equation 5-33”). However, if any
component of λk is negative, and the component does not correspond to an equality constraint, then
the corresponding element is deleted from the active set and a new iterate is sought.

 Constrained Nonlinear Optimization Algorithms

5-27

Initialization

The algorithm requires a feasible point to start. If the current point from the SQP method is not
feasible, then you can find a point by solving the linear programming problem

min
γ ∈ ℜ, x ∈ ℜn

γ such that

Aix = bi, i = 1, ..., me
Aix− γ ≤ bi, i = me + 1, ..., m .

 (5-41)

The notation Ai indicates the ith row of the matrix A. You can find a feasible point (if one exists) to
“Equation 5-41” by setting x to a value that satisfies the equality constraints. You can determine this
value by solving an under- or overdetermined set of linear equations formed from the set of equality
constraints. If there is a solution to this problem, then the slack variable γ is set to the maximum
inequality constraint at this point.

You can modify the preceding QP algorithm for LP problems by setting the search direction to the
steepest descent direction at each iteration, where gk is the gradient of the objective function (equal
to the coefficients of the linear objective function).

d k = − ZkZk
Tgk . (5-42)

If a feasible point is found using the preceding LP method, the main QP phase is entered. The search
direction d k is initialized with a search direction d 1 found from solving the set of linear equations

Hd 1 = − gk, (5-43)

where gk is the gradient of the objective function at the current iterate xk (i.e., Hxk + c).

If a feasible solution is not found for the QP problem, the direction of search for the main SQP routine
d k is taken as one that minimizes γ.

Line Search and Merit Function

The solution to the QP subproblem produces a vector dk, which is used to form a new iterate

xk + 1 = xk + αdk . (5-44)

The step length parameter αk is determined in order to produce a sufficient decrease in a merit
function. The merit function used by Han [22] and Powell [33] of the following form is used in this
implementation.

Ψ(x) = f (x) + ∑
i = 1

me
ri ⋅ gi(x) + ∑

i = me + 1

m
ri ⋅max[0, gi(x)] . (5-45)

Powell recommends setting the penalty parameter

ri = rk + 1 i = max
i

λi,
rk i + λi

2 , i = 1, ..., m . (5-46)

This allows positive contribution from constraints that are inactive in the QP solution but were
recently active. In this implementation, the penalty parameter ri is initially set to

5 Nonlinear algorithms and examples

5-28

ri = ∇ f (x)
∇gi(x) , (5-47)

where represents the Euclidean norm.

This ensures larger contributions to the penalty parameter from constraints with smaller gradients,
which would be the case for active constraints at the solution point.

fmincon SQP Algorithm
The sqp algorithm (and nearly identical sqp-legacy algorithm) is similar to the active-set
algorithm (for a description, see “fmincon Active Set Algorithm” on page 5-22). The basic sqp
algorithm is described in Chapter 18 of Nocedal and Wright [31].

The sqp algorithm is essentially the same as the sqp-legacy algorithm, but has a different
implementation. Usually, sqp has faster execution time and less memory usage than sqp-legacy.

The most important differences between the sqp and the active-set algorithms are:

Strict Feasibility With Respect to Bounds

The sqp algorithm takes every iterative step in the region constrained by bounds. Furthermore, finite
difference steps also respect bounds. Bounds are not strict; a step can be exactly on a boundary. This
strict feasibility can be beneficial when your objective function or nonlinear constraint functions are
undefined or are complex outside the region constrained by bounds.

Robustness to Non-Double Results

During its iterations, the sqp algorithm can attempt to take a step that fails. This means an objective
function or nonlinear constraint function you supply returns a value of Inf, NaN, or a complex value.
In this case, the algorithm attempts to take a smaller step.

Refactored Linear Algebra Routines

The sqp algorithm uses a different set of linear algebra routines to solve the quadratic programming
subproblem, “Equation 5-29”. These routines are more efficient in both memory usage and speed
than the active-set routines.

Reformulated Feasibility Routines

The sqp algorithm has two new approaches to the solution of “Equation 5-29” when constraints are
not satisfied.

• The sqp algorithm combines the objective and constraint functions into a merit function. The
algorithm attempts to minimize the merit function subject to relaxed constraints. This modified
problem can lead to a feasible solution. However, this approach has more variables than the
original problem, so the problem size in “Equation 5-29” increases. The increased size can slow
the solution of the subproblem. These routines are based on the articles by Spellucci [60] and
Tone [61]. The sqp algorithm sets the penalty parameter for the merit function “Equation 5-45”
according to the suggestion in [41].

• Suppose nonlinear constraints are not satisfied, and an attempted step causes the constraint
violation to grow. The sqp algorithm attempts to obtain feasibility using a second-order
approximation to the constraints. The second-order technique can lead to a feasible solution.

 Constrained Nonlinear Optimization Algorithms

5-29

However, this technique can slow the solution by requiring more evaluations of the nonlinear
constraint functions.

fmincon Interior Point Algorithm
Barrier Function

The interior-point approach to constrained minimization is to solve a sequence of approximate
minimization problems. The original problem is

min
x

f (x), subject to h(x) = 0 and g(x) ≤ 0. (5-48)

For each μ > 0, the approximate problem is

min
x, s

fμ(x, s) = min
x, s

f (x)− μ∑
i

ln si , subject to s ≥ 0, h(x) = 0, and g(x) + s = 0. (5-49)

There are as many slack variables si as there are inequality constraints g. The si are restricted to be
positive to keep the iterates in the interior of the feasible region. As μ decreases to zero, the
minimum of fμ should approach the minimum of f. The added logarithmic term is called a barrier
function. This method is described in [40], [41], and [51].

The approximate problem “Equation 5-49” is a sequence of equality constrained problems. These are
easier to solve than the original inequality-constrained problem “Equation 5-48”.

To solve the approximate problem, the algorithm uses one of two main types of steps at each
iteration:

• A direct step in (x, s). This step attempts to solve the KKT equations, “Equation 3-2” and
“Equation 3-3”, for the approximate problem via a linear approximation. This is also called a
Newton step.

• A CG (conjugate gradient) step, using a trust region.

By default, the algorithm first attempts to take a direct step. If it cannot, it attempts a CG step. One
case where it does not take a direct step is when the approximate problem is not locally convex near
the current iterate.

At each iteration the algorithm decreases a merit function, such as

fμ(x, s) + ν h(x), g(x) + s . (5-50)

The parameter ν may increase with iteration number in order to force the solution towards feasibility.
If an attempted step does not decrease the merit function, the algorithm rejects the attempted step,
and attempts a new step.

If either the objective function or a nonlinear constraint function returns a complex value, NaN, Inf,
or an error at an iterate xj, the algorithm rejects xj. The rejection has the same effect as if the merit
function did not decrease sufficiently: the algorithm then attempts a different, shorter step. Wrap any
code that can error in try-catch:

function val = userFcn(x)
try
 val = ... % code that can error

5 Nonlinear algorithms and examples

5-30

catch
 val = NaN;
end

The objective and constraints must yield proper (double) values at the initial point.

Direct Step

The following variables are used in defining the direct step:

• H denotes the Hessian of the Lagrangian of fμ:

H = ∇2 f (x) + ∑
i

λi∇2gi(x) + ∑
j

y j∇2h j(x) . (5-51)

• Jg denotes the Jacobian of the constraint function g.
• Jh denotes the Jacobian of the constraint function h.
• S = diag(s).
• λ denotes the Lagrange multiplier vector associated with constraints g
• Λ = diag(λ).
• y denotes the Lagrange multiplier vector associated with h.
• e denote the vector of ones the same size as g.

“Equation 5-53” defines the direct step (Δx, Δs):

H 0 Jh
T Jg

T

0 Λ 0 S
Jh 0 0 0
Jg I 0 0

Δx
Δs
Δy
Δλ

= −

∇ f + Jh
Ty + Jg

Tλ
Sλ− μe

h
g + s

. (5-52)

This equation comes directly from attempting to solve “Equation 3-2” and “Equation 3-3” using a
linearized Lagrangian.

You can symmetrize the equation by premultiplying the second variable Δs by S–1:

H 0 Jh
T Jg

T

0 SΛ 0 S
Jh 0 0 0
Jg S 0 0

Δx

S−1Δs
Δy
Δλ

= −

∇ f (x) + Jh
Ty + Jg

Tλ
Sλ− μe

h
g(x) + s

. (5-53)

In order to solve this equation for (Δx, Δs), the algorithm makes an LDL factorization of the matrix.
(See Example 3 — The Structure of D in the MATLAB ldl function reference page.) This is the most
computationally expensive step. One result of this factorization is a determination of whether the
projected Hessian is positive definite or not; if not, the algorithm uses a conjugate gradient step,
described in “Conjugate Gradient Step” on page 5-33.

Update Barrier Parameter

For the approximate problem “Equation 5-49” to approach the original problem, the barrier
parameter μ needs to decrease toward 0 as the iterations proceed. The algorithm has two barrier

 Constrained Nonlinear Optimization Algorithms

5-31

parameter update options, which you specify using the BarrierParamUpdate option: 'monotone'
(default) and 'predictor-corrector'.

The 'monotone' option decreases the parameter μ by a factor of 1/100 or 1/5 when the approximate
problem is solved with sufficient accuracy in the previous iteration. The option uses a factor of 1/100
when the algorithm takes only one or two iterations to achieve sufficient accuracy, and uses 1/5
otherwise. The measure of accuracy is the following test, which determines if the size of all terms on
the right side of “Equation 5-53” is less than μ:

max ∇ f (x) + Jh
Ty + Jg

Tλ , Sλ− μe , h , g(x) + s < μ .

Note fmincon overrides the BarrierParamUpdate setting to 'monotone' in either of these cases:

• The problem has no inequality constraints, including bound constraints.
• The SubproblemAlgorithm option is 'cg'.

The 'predictor-corrector' algorithm for updating the barrier parameter μ is similar to the
linear programming “Predictor-Corrector” on page 8-3 algorithm.

Predictor-corrector steps can accelerate the existing Fiacco-McCormick (monotone) approach by
adjusting for the linearization error in the Newton steps. The effects of the predictor-corrector
algorithm are twofold: it often improves step directions and simultaneously updates the barrier
parameter adaptively with the centering parameter σ to encourage iterates to follow the central path.
See Nocedal and Wright’s [31] discussion of predictor-corrector steps for linear programs to
understand why the central path allows larger step sizes and, consequently, faster convergence.

The predictor step uses the linearized step with μ = 0, meaning without a barrier function:

H 0 Jh
T Jg

T

0 Λ 0 S
Jh 0 0 0
Jg I 0 0

Δx
Δs
Δy
Δλ

= −

∇ f + Jh
Ty + Jg

Tλ
Sλ
h

g + s

.

Define ɑs and ɑλ to be the largest step sizes that do not violate the nonnegativity constraints.

αs = max α ∈ (0, 1]:s + αΔs ≥ 0
αλ = max α ∈ (0, 1]:λ + αΔλ ≥ 0 .

Now compute the complementarity from the predictor step.

μP =
s + αsΔs λ + αλΔλ

m , (5-54)

where m is the number of constraints.

The first corrector step adjusts for the quadratic term neglected in the Newton root-finding
linearization

s + Δs λ + Δλ = sλ + sΔλ + λΔs︸
Linear term set to 0

+ ΔsΔλ︸
Quadratic

.

5 Nonlinear algorithms and examples

5-32

To correct the quadratic error, solve the linear system for the corrector step direction.

H 0 Jh
T Jg

T

0 Λ 0 S
Jh 0 0 0
Jg I 0 0

Δxcor
Δscor
Δycor
Δλcor

= −

0
ΔsΔλ

0
0

.

The second corrector step is a centering step. The centering correction is based on the variable σ on
the right side of the equation

H 0 Jh
T Jg

T

0 Λ 0 S
Jh 0 0 0
Jg I 0 0

Δxcen
Δscen
Δycen
Δλcen

= −

∇ f + Jh
Ty + Jg

Tλ
Sλ− μeσ

h
g + s

.

Here, σ is defined as

σ =
μP
μ

3
,

where μP is defined in equation “Equation 5-54”, and μ = sTλ/m.

To prevent the barrier parameter from decreasing too quickly, potentially destabilizing the algorithm,
the algorithm keeps the centering parameter σ above 1/100. This action causes the barrier parameter
μ to decrease by no more than a factor of 1/100.

Algorithmically, the first correction and centering steps are independent of each other, so they are
computed together. Furthermore, the matrix on the left for the predictor and both corrector steps is
the same. So, algorithmically, the matrix is factorized once, and this factorization is used for all these
steps.

The algorithm can reject the proposed predictor-corrector step when the step increases the merit
function value “Equation 5-50”, increases the complementarity by at least a factor of two, or the
computed inertia is incorrect (the problem looks nonconvex). In these cases, the algorithm attempts
to take a different step or a conjugate gradient step.

Conjugate Gradient Step

The conjugate gradient approach to solving the approximate problem “Equation 5-49” is similar to
other conjugate gradient calculations. In this case, the algorithm adjusts both x and s, keeping the
slacks s positive. The approach is to minimize a quadratic approximation to the approximate problem
in a trust region, subject to linearized constraints.

Specifically, let R denote the radius of the trust region, and let other variables be defined as in “Direct
Step” on page 5-31. The algorithm obtains Lagrange multipliers by approximately solving the KKT
equations

∇xL = ∇x f (x) + ∑
i

λi∇gi(x) + ∑
j

y j∇h j(x) = 0,

in the least-squares sense, subject to λ being positive. Then it takes a step (Δx, Δs) to approximately
solve

 Constrained Nonlinear Optimization Algorithms

5-33

min
Δx, Δs

∇ f TΔx + 1
2ΔxT∇xx

2 LΔx + μeTS−1Δs + 1
2ΔsTS−1ΛΔs, (5-55)

subject to the linearized constraints

g(x) + JgΔx + Δs = 0, h(x) + JhΔx = 0. (5-56)

To solve “Equation 5-56”, the algorithm tries to minimize a norm of the linearized constraints inside a
region with radius scaled by R. Then “Equation 5-55” is solved with the constraints being to match
the residual from solving “Equation 5-56”, staying within the trust region of radius R, and keeping s
strictly positive. For details of the algorithm and the derivation, see [40], [41], and [51]. For another
description of conjugate gradients, see “Preconditioned Conjugate Gradient Method” on page 5-21.

Feasibility Mode

When the EnableFeasibilityMode option is true and the iterations do not decrease the
infeasibility quickly enough, the algorithm switches to feasibility mode. This switch happens after the
algorithm fails to decrease the infeasibility in normal mode, and then fails again after switching to
conjugate gradient mode. Therefore, for best performance when the solver fails to find a feasible
solution without feasibility mode, set the SubproblemAlgorithm to 'cg' when using feasibility
mode. Doing so avoids fruitless searching in normal mode.

The feasibility mode algorithm is based on Nocedal, Öztoprak, and Waltz [1]. The algorithm ignores
the objective function and instead tries to minimize the infeasibility, defined as the sum of the positive
parts of the inequality constraint functions and the absolute value of the equality constraint functions.
In terms of the relaxation variables r = rI, re

+, re
− , which correspond to inequalities, positive parts of

equalities, and negative parts of equalities, respectively, the problem is

min
x, r

1Tr = min
x, r
∑r

subject to the constraints

rI ≥ c(x)

re
+− re

− = ceq(x)
r ≥ 0.

To solve the relaxed problem, the software uses an interior-point formulation with a logarithmic
barrier function and the slacks s = sI, sR, se

+, se
− to minimize

min
x, r, s

1Tr − μ∑ log sI, i + log sR, i − ∑ log se, i
+ + log se, i

−

subject to the constraints

ceq(x) = re
+− re

−

c(x) = rI − sI

re
+ = se

+

re
− = se

−

rI = sR
s ≥ 0.

5 Nonlinear algorithms and examples

5-34

The solution process for the relaxed problem begins with μ initialized to the current barrier
parameter value. The slack variable sI is initialized to the current inequality slack value, inherited
from the main mode. The r variables are initialized to

rI = max sI + c(x), μ

re
+ = max ceq(x), μ

re
− = −min ceq(x), − μ .

The remaining slacks are initialized to

sR = rI

se
+ = re

+

se
− = re

− .

Starting at this initial point, the feasibility mode algorithm reuses the code for the normal interior-
point algorithm. This process requires special step computations because the r variables are linear
and, therefore, their associated second derivatives are zero. In other words, the objective function
Hessian for the feasibility problem is rank-deficient. Therefore, the algorithm cannot take a Newton
step. Instead, the algorithm takes a steepest-descent direction step. The algorithm starts with the
gradient of the objective with respect to the variables, projects the gradient onto the null space of the
Jacobian of the constraints, and rescales the resulting vector so that it has an appropriate step
length. This step can be effective at reducing the infeasibility.

The feasibility mode algorithm ends when it reduces the infeasibility by a factor of 10. When
feasibility mode ends, the algorithm passes the variables x and sI to the main algorithm, and discards
the other slack variables and relaxation variables r.

References
[1] Nocedal, Jorge, Figen Öztoprak, and Richard A. Waltz. An Interior Point Method for Nonlinear

Programming with Infeasibility Detection Capabilities. Optimization Methods & Software
29(4), July 2014, pp. 837–854.

Interior-Point Algorithm Options

Here are the meanings and effects of several options in the interior-point algorithm.

• HonorBounds — When set to true, every iterate satisfies the bound constraints you have set.
When set to false, the algorithm may violate bounds during intermediate iterations.

• HessianApproximation — When set to:

• 'bfgs', fmincon calculates the Hessian by a dense quasi-Newton approximation.
• 'lbfgs', fmincon calculates the Hessian by a limited-memory, large-scale quasi-Newton

approximation.
• 'fin-diff-grads', fmincon calculates a Hessian-times-vector product by finite differences

of the gradient(s); other options need to be set appropriately.
• HessianFcn — fmincon uses the function handle you specify in HessianFcn to compute the

Hessian. See “Including Hessians” on page 2-21.
• HessianMultiplyFcn — Give a separate function for Hessian-times-vector evaluation. For

details, see “Including Hessians” on page 2-21 and “Hessian Multiply Function” on page 2-23.

 Constrained Nonlinear Optimization Algorithms

5-35

• SubproblemAlgorithm — Determines whether or not to attempt the direct Newton step. The
default setting 'factorization' allows this type of step to be attempted. The setting 'cg'
allows only conjugate gradient steps.

For a complete list of options see Interior-Point Algorithm in fmincon options.

fminbnd Algorithm
fminbnd is a solver available in any MATLAB installation. It solves for a local minimum in one
dimension within a bounded interval. It is not based on derivatives. Instead, it uses golden-section
search and parabolic interpolation.

fseminf Problem Formulation and Algorithm
fseminf Problem Formulation

fseminf addresses optimization problems with additional types of constraints compared to those
addressed by fmincon. The formulation of fmincon is

min
x

f (x)

such that c(x) ≤ 0, ceq(x) = 0, A·x ≤ b, Aeq·x = beq, and l ≤ x ≤ u.

fseminf adds the following set of semi-infinite constraints to those already given. For wj in a one- or
two-dimensional bounded interval or rectangle Ij, for a vector of continuous functions K(x, w), the
constraints are

Kj(x, wj) ≤ 0 for all wj∈Ij.

The term “dimension” of an fseminf problem means the maximal dimension of the constraint set I: 1
if all Ij are intervals, and 2 if at least one Ij is a rectangle. The size of the vector of K does not enter
into this concept of dimension.

The reason this is called semi-infinite programming is that there are a finite number of variables (x
and wj), but an infinite number of constraints. This is because the constraints on x are over a set of
continuous intervals or rectangles Ij, which contains an infinite number of points, so there are an
infinite number of constraints: Kj(x, wj) ≤ 0 for an infinite number of points wj.

You might think a problem with an infinite number of constraints is impossible to solve. fseminf
addresses this by reformulating the problem to an equivalent one that has two stages: a maximization
and a minimization. The semi-infinite constraints are reformulated as

max
wj ∈ I j

K j(x, w j) ≤ 0 for all j = 1, ..., K , (5-57)

where |K| is the number of components of the vector K; i.e., the number of semi-infinite constraint
functions. For fixed x, this is an ordinary maximization over bounded intervals or rectangles.

fseminf further simplifies the problem by making piecewise quadratic or cubic approximations κj(x,
wj) to the functions Kj(x, wj), for each x that the solver visits. fseminf considers only the maxima of
the interpolation function κj(x, wj), instead of Kj(x, wj), in “Equation 5-57”. This reduces the original
problem, minimizing a semi-infinitely constrained function, to a problem with a finite number of
constraints.

5 Nonlinear algorithms and examples

5-36

Sampling Points

Your semi-infinite constraint function must provide a set of sampling points, points used in making
the quadratic or cubic approximations. To accomplish this, it should contain:

• The initial spacing s between sampling points w
• A way of generating the set of sampling points w from s

The initial spacing s is a |K|-by-2 matrix. The jth row of s represents the spacing for neighboring
sampling points for the constraint function Kj. If Kj depends on a one-dimensional wj, set
s(j,2) = 0. fseminf updates the matrix s in subsequent iterations.

fseminf uses the matrix s to generate the sampling points w, which it then uses to create the
approximation κj(x, wj). Your procedure for generating w from s should keep the same intervals or
rectangles Ij during the optimization.

Example of Creating Sampling Points

Consider a problem with two semi-infinite constraints, K1 and K2. K1 has one-dimensional w1, and K2
has two-dimensional w2. The following code generates a sampling set from w1 = 2 to 12:

% Initial sampling interval
if isnan(s(1,1))
 s(1,1) = .2;
 s(1,2) = 0;
end

% Sampling set
w1 = 2:s(1,1):12;

fseminf specifies s as NaN when it first calls your constraint function. Checking for this allows you
to set the initial sampling interval.

The following code generates a sampling set from w2 in a square, with each component going from 1
to 100, initially sampled more often in the first component than the second:

% Initial sampling interval
if isnan(s(1,1))
 s(2,1) = 0.2;
 s(2,2) = 0.5;
end

% Sampling set
w2x = 1:s(2,1):100;
w2y = 1:s(2,2):100;
[wx,wy] = meshgrid(w2x,w2y);

The preceding code snippets can be simplified as follows:

% Initial sampling interval
if isnan(s(1,1))
 s = [0.2 0;0.2 0.5];
end

% Sampling set
w1 = 2:s(1,1):12;
w2x = 1:s(2,1):100;

 Constrained Nonlinear Optimization Algorithms

5-37

w2y = 1:s(2,2):100;
[wx,wy] = meshgrid(w2x,w2y);

fseminf Algorithm

fseminf essentially reduces the problem of semi-infinite programming to a problem addressed by
fmincon. fseminf takes the following steps to solve semi-infinite programming problems:

1 At the current value of x, fseminf identifies all the wj,i such that the interpolation κj(x, wj,i) is a
local maximum. (The maximum refers to varying w for fixed x.)

2 fseminf takes one iteration step in the solution of the fmincon problem:

min
x

f (x)

such that c(x) ≤ 0, ceq(x) = 0, A·x ≤ b, Aeq·x = beq, and l ≤ x ≤ u, where c(x) is augmented with
all the maxima of κj(x, wj) taken over all wj∈Ij, which is equal to the maxima over j and i of
κj(x, wj,i).

3 fseminf checks if any stopping criterion is met at the new point x (to halt the iterations); if not,
it continues to step 4.

4 fseminf checks if the discretization of the semi-infinite constraints needs updating, and updates
the sampling points appropriately. This provides an updated approximation κj(x, wj). Then it
continues at step 1.

5 Nonlinear algorithms and examples

5-38

Smooth Formulations of Nonsmooth Functions
To smooth an otherwise nonsmooth problem, you can sometimes add auxiliary variables. For example,

f(x) = max(g(x),h(x))

can be a nonsmooth function even when g(x) and h(x) are smooth, as illustrated by the following
functions.

g(x) = sin(x)
h(x) = cos(x)
f (x) = max g(x), h(x) .

f(x) is nonsmooth at the points x = π/4 and x = 5π/4.

Code for Creating the Figure

x = linspace(0,2*pi);
g = @sin;
h = @cos;
f = @(x)max(g(x),h(x));
plot(x,g(x),'b.-',x,h(x),'r.-')
hold on
plot(x,f(x),'k--',"LineWidth",2)
t = [pi,5*pi]/4;
plot(t,sin(t),'mo',"MarkerSize",15)

 Smooth Formulations of Nonsmooth Functions

5-39

legend("sin","cos","max","nonsmooth","Location","north")
hold off

This lack of smoothness can cause problems for Optimization Toolbox solvers, all of which assume
that objective functions and nonlinear constraint functions are continuously differentiable. So, if you
try to solve

x = mint(f(t)) starting from the point x0 = 1,

you do not get an exit flag of 1, because the solution is not differentiable at the locally minimizing
point x = π/4.

fun1 = @sin;
fun2 = @cos;
fun = @(x)max(fun1(x),fun2(x));
[x1,fval1,eflag1] = fminunc(fun,1)

Local minimum possible.

fminunc stopped because it cannot decrease the objective function
along the current search direction.

<stopping criteria details>

x1 =

 0.7854

fval1 =

 0.7071

eflag1 =

 5

Sometimes, you can use an auxiliary variable to turn a nonsmooth problem into a smooth problem.
For the previous example, consider the auxiliary variable y with the smooth constraints

y ≥ g(x)
y ≥ h(x) .

Consider the optimization problem, subject to these constraints,

min
x

y .

The resulting solution x, y is the solution to the original problem

min
x

f (x) = min
x

max g(x), h(x) .

This formulation uses the problem-based approach.

myvar = optimvar("myvar");
auxvar = optimvar("auxvar");

5 Nonlinear algorithms and examples

5-40

smprob = optimproblem("Objective",auxvar);
smprob.Constraints.cons1 = auxvar >= sin(myvar);
smprob.Constraints.cons2 = auxvar >= cos(myvar);
x0.myvar = 1;
x0.auxvar = 1;
[sol2,fval2,eflag2] = solve(smprob,x0)

Solving problem using fmincon.

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

sol2 =

 struct with fields:

 auxvar: 0.7071
 myvar: 0.7854

fval2 =

 0.7071

eflag2 =

 OptimalSolution

This same concept underlies the formulation of the fminimax function; see “Goal Attainment
Method” on page 7-3.

See Also
fgoalattain | fminimax

Related Examples
• “Goal Attainment Method” on page 7-3

 Smooth Formulations of Nonsmooth Functions

5-41

Tutorial for Optimization Toolbox
This tutorial includes multiple examples that show how to use two nonlinear optimization solvers,
fminunc and fmincon, and how to set options. The principles outlined in this tutorial apply to the
other nonlinear solvers, such as fgoalattain, fminimax, lsqnonlin, lsqcurvefit, and fsolve.

The tutorial examples cover these tasks:

• Minimizing an objective function
• Minimizing the same function with additional parameters
• Minimizing the objective function with a constraint
• Obtaining a more efficient or accurate solution by providing gradients or a Hessian, or by

changing options

Unconstrained Optimization Example

Consider the problem of finding a minimum of the function

xexp(− (x2 + y2)) + (x2 + y2)/20 .

Plot the function to see where it is minimized.

f = @(x,y) x.*exp(-x.^2-y.^2)+(x.^2+y.^2)/20;
fsurf(f,[-2,2],'ShowContours','on')

5 Nonlinear algorithms and examples

5-42

The plot shows that the minimum is near the point (–1/2,0).

Usually you define the objective function as a MATLAB® file. In this case, the function is simple
enough to define as an anonymous function.

fun = @(x) f(x(1),x(2));

Set an initial point for finding the solution.

x0 = [-.5; 0];

Set optimization options to use the fminunc default 'quasi-newton' algorithm. This step ensures
that the tutorial works the same in every MATLAB version.

options = optimoptions('fminunc','Algorithm','quasi-newton');

View the iterations as the solver performs its calculations.

options.Display = 'iter';

Call fminunc, an unconstrained nonlinear minimizer.

[x, fval, exitflag, output] = fminunc(fun,x0,options);

 First-order
 Iteration Func-count f(x) Step-size optimality
 0 3 -0.3769 0.339
 1 6 -0.379694 1 0.286
 2 9 -0.405023 1 0.0284
 3 12 -0.405233 1 0.00386
 4 15 -0.405237 1 3.17e-05
 5 18 -0.405237 1 3.35e-08

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

Display the solution found by the solver.

uncx = x

uncx = 2×1

 -0.6691
 0.0000

View the function value at the solution.

uncf = fval

uncf = -0.4052

The examples use the number of function evaluations as a measure of efficiency. View the total
number of function evaluations.

output.funcCount

ans = 18

 Tutorial for Optimization Toolbox

5-43

Unconstrained Optimization Example with Additional Parameters

Next, pass extra parameters as additional arguments to the objective function, first by using a
MATLAB file, and then by using a nested function.

Consider the objective function from the previous example.

f (x, y) = xexp(− (x2 + y2)) + (x2 + y2)/20 .

Parameterize the function with (a,b,c) as follows:

f (x, y, a, b, c) = (x− a)exp(− ((x− a)2 + (y − b)2)) + ((x− a)2 + (y − b)2)/c .

This function is a shifted and scaled version of the original objective function.

MATLAB File Function

Consider a MATLAB file objective function named bowlpeakfun defined as follows.

type bowlpeakfun

function y = bowlpeakfun(x, a, b, c)
%BOWLPEAKFUN Objective function for parameter passing in TUTDEMO.

% Copyright 2008 The MathWorks, Inc.

y = (x(1)-a).*exp(-((x(1)-a).^2+(x(2)-b).^2))+((x(1)-a).^2+(x(2)-b).^2)/c;

Define the parameters.

a = 2;
b = 3;
c = 10;

Create an anonymous function handle to the MATLAB file.

f = @(x)bowlpeakfun(x,a,b,c)

f = function_handle with value:
 @(x)bowlpeakfun(x,a,b,c)

Call fminunc to find the minimum.

x0 = [-.5; 0];
options = optimoptions('fminunc','Algorithm','quasi-newton');
[x, fval] = fminunc(f,x0,options)

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

x = 2×1

 1.3639
 3.0000

5 Nonlinear algorithms and examples

5-44

fval = -0.3840

Nested Function

Consider the nestedbowlpeak function, which implements the objective as a nested function.

type nestedbowlpeak

function [x,fval] = nestedbowlpeak(a,b,c,x0,options)
%NESTEDBOWLPEAK Nested function for parameter passing in TUTDEMO.

% Copyright 2008 The MathWorks, Inc.

[x,fval] = fminunc(@nestedfun,x0,options);
 function y = nestedfun(x)
 y = (x(1)-a).*exp(-((x(1)-a).^2+(x(2)-b).^2))+((x(1)-a).^2+(x(2)-b).^2)/c;
 end
end

The parameters (a,b,c) are visible to the nested objective function nestedfun. The outer function,
nestedbowlpeak, calls fminunc and passes the objective function, nestedfun.

Define the parameters, initial guess, and options:

a = 2;
b = 3;
c = 10;
x0 = [-.5; 0];
options = optimoptions('fminunc','Algorithm','quasi-newton');

Run the optimization:

[x,fval] = nestedbowlpeak(a,b,c,x0,options)

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

x = 2×1

 1.3639
 3.0000

fval = -0.3840

Both approaches produce the same answers, so you can use the one you find most convenient.

Constrained Optimization Example: Inequalities

Consider the previous problem with a constraint:

minimize xexp(− (x2 + y2)) + (x2 + y2)/20,

subject to xy/2 + (x + 2)2 + (y − 2)2/2 ≤ 2 .

The constraint set is the interior of a tilted ellipse. View the contours of the objective function plotted
together with the tilted ellipse.

 Tutorial for Optimization Toolbox

5-45

f = @(x,y) x.*exp(-x.^2-y.^2)+(x.^2+y.^2)/20;
g = @(x,y) x.*y/2+(x+2).^2+(y-2).^2/2-2;
fimplicit(g)
axis([-6 0 -1 7])
hold on
fcontour(f)
plot(-.9727,.4685,'ro');
legend('constraint','f contours','minimum');
hold off

The plot shows that the lowest value of the objective function within the ellipse occurs near the
lower-right part of the ellipse. Before calculating the plotted minimum, make a guess at the solution.

x0 = [-2 1];

Set optimization options to use the interior-point algorithm and display the results at each iteration.

options = optimoptions('fmincon','Algorithm','interior-point','Display','iter');

Solvers require that nonlinear constraint functions give two outputs, one for nonlinear inequalities
and one for nonlinear equalities. To give both outputs, write the constraint using the deal function.

gfun = @(x) deal(g(x(1),x(2)),[]);

Call the nonlinear constrained solver. The problem has no linear equalities or inequalities or bounds,
so pass [] for those arguments.

[x,fval,exitflag,output] = fmincon(fun,x0,[],[],[],[],[],[],gfun,options);

5 Nonlinear algorithms and examples

5-46

 First-order Norm of
 Iter F-count f(x) Feasibility optimality step
 0 3 2.365241e-01 0.000e+00 1.972e-01
 1 6 1.748504e-01 0.000e+00 1.734e-01 2.260e-01
 2 10 -1.570560e-01 0.000e+00 2.608e-01 9.347e-01
 3 14 -6.629160e-02 0.000e+00 1.241e-01 3.103e-01
 4 17 -1.584082e-01 0.000e+00 7.934e-02 1.826e-01
 5 20 -2.349124e-01 0.000e+00 1.912e-02 1.571e-01
 6 23 -2.255299e-01 0.000e+00 1.955e-02 1.993e-02
 7 26 -2.444225e-01 0.000e+00 4.293e-03 3.821e-02
 8 29 -2.446931e-01 0.000e+00 8.100e-04 4.035e-03
 9 32 -2.446933e-01 0.000e+00 1.999e-04 8.126e-04
 10 35 -2.448531e-01 0.000e+00 4.004e-05 3.289e-04
 11 38 -2.448927e-01 0.000e+00 4.036e-07 8.156e-05

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

Display the solution found by the solver.

x

x = 1×2

 -0.9727 0.4686

View the function value at the solution.

fval

fval = -0.2449

View the total number of function evaluations.

Fevals = output.funcCount

Fevals = 38

The inequality constraint is satisfied at the solution.

[c, ceq] = gfun(x)

c = -2.4608e-06

ceq =

 []

Because c(x) is close to 0, the constraint is active, meaning it affects the solution. Recall the
unconstrained solution.

uncx

uncx = 2×1

 -0.6691

 Tutorial for Optimization Toolbox

5-47

 0.0000

Recall the unconstrained objective function.

uncf

uncf = -0.4052

See how much the constraint moved the solution and increased the objective.

fval-uncf

ans = 0.1603

Constrained Optimization Example: User-Supplied Gradients

You can solve optimization problems more efficiently and accurately by supplying gradients. This
example, like the previous one, solves the inequality-constrained problem

minimize xexp(− (x2 + y2)) + (x2 + y2)/20,

subject to xy/2 + (x + 2)2 + (y − 2)2/2 ≤ 2 .

To provide the gradient of f(x) to fmincon, write the objective function in the form of a MATLAB file.

type onehump

function [f,gf] = onehump(x)
% ONEHUMP Helper function for Tutorial for the Optimization Toolbox demo

% Copyright 2008-2009 The MathWorks, Inc.

r = x(1)^2 + x(2)^2;
s = exp(-r);
f = x(1)*s+r/20;

if nargout > 1
 gf = [(1-2*x(1)^2)*s+x(1)/10;
 -2*x(1)*x(2)*s+x(2)/10];
end

The constraint and its gradient are contained in the MATLAB file tiltellipse.

type tiltellipse

function [c,ceq,gc,gceq] = tiltellipse(x)
% TILTELLIPSE Helper function for Tutorial for the Optimization Toolbox demo

% Copyright 2008-2009 The MathWorks, Inc.

c = x(1)*x(2)/2 + (x(1)+2)^2 + (x(2)-2)^2/2 - 2;
ceq = [];

if nargout > 2
 gc = [x(2)/2+2*(x(1)+2);
 x(1)/2+x(2)-2];
 gceq = [];
end

5 Nonlinear algorithms and examples

5-48

Set an initial point for finding the solution.

x0 = [-2; 1];

Set optimization options to use the same algorithm as in the previous example for comparison
purposes.

options = optimoptions('fmincon','Algorithm','interior-point');

Set options to use the gradient information in the objective and constraint functions. Note: these
options must be turned on or the gradient information will be ignored.

options = optimoptions(options,...
 'SpecifyObjectiveGradient',true,...
 'SpecifyConstraintGradient',true);

Because fmincon does not need to estimate gradients using finite differences, the solver should have
fewer function counts. Set options to display the results at each iteration.

options.Display = 'iter';

Call the solver.

[x,fval,exitflag,output] = fmincon(@onehump,x0,[],[],[],[],[],[], ...
 @tiltellipse,options);

 First-order Norm of
 Iter F-count f(x) Feasibility optimality step
 0 1 2.365241e-01 0.000e+00 1.972e-01
 1 2 1.748504e-01 0.000e+00 1.734e-01 2.260e-01
 2 4 -1.570560e-01 0.000e+00 2.608e-01 9.347e-01
 3 6 -6.629161e-02 0.000e+00 1.241e-01 3.103e-01
 4 7 -1.584082e-01 0.000e+00 7.934e-02 1.826e-01
 5 8 -2.349124e-01 0.000e+00 1.912e-02 1.571e-01
 6 9 -2.255299e-01 0.000e+00 1.955e-02 1.993e-02
 7 10 -2.444225e-01 0.000e+00 4.293e-03 3.821e-02
 8 11 -2.446931e-01 0.000e+00 8.100e-04 4.035e-03
 9 12 -2.446933e-01 0.000e+00 1.999e-04 8.126e-04
 10 13 -2.448531e-01 0.000e+00 4.004e-05 3.289e-04
 11 14 -2.448927e-01 0.000e+00 4.036e-07 8.156e-05

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

fmincon estimated gradients well in the previous example, so the iterations in this example are
similar.

Display the solution found by the solver.

xold = x

xold = 2×1

 -0.9727
 0.4686

 Tutorial for Optimization Toolbox

5-49

View the function value at the solution.

minfval = fval

minfval = -0.2449

View the total number of function evaluations.

Fgradevals = output.funcCount

Fgradevals = 14

Compare this number to the number of function evaluations without gradients.

Fevals

Fevals = 38

Constrained Optimization Example: Changing the Default Termination Tolerances

This example continues to use gradients and solves the same constrained problem

minimize xexp(− (x2 + y2)) + (x2 + y2)/20,

subject to xy/2 + (x + 2)2 + (y − 2)2/2 ≤ 2.

In this case, you achieve a more accurate solution by overriding the default termination criteria
(options.StepTolerance and options.OptimalityTolerance). The default values for the
fmincon interior-point algorithm are options.StepTolerance = 1e-10 and
options.OptimalityTolerance = 1e-6.

Override these two default termination criteria.

options = optimoptions(options,...
 'StepTolerance',1e-15,...
 'OptimalityTolerance',1e-8);

Call the solver.

[x,fval,exitflag,output] = fmincon(@onehump,x0,[],[],[],[],[],[], ...
 @tiltellipse,options);

 First-order Norm of
 Iter F-count f(x) Feasibility optimality step
 0 1 2.365241e-01 0.000e+00 1.972e-01
 1 2 1.748504e-01 0.000e+00 1.734e-01 2.260e-01
 2 4 -1.570560e-01 0.000e+00 2.608e-01 9.347e-01
 3 6 -6.629161e-02 0.000e+00 1.241e-01 3.103e-01
 4 7 -1.584082e-01 0.000e+00 7.934e-02 1.826e-01
 5 8 -2.349124e-01 0.000e+00 1.912e-02 1.571e-01
 6 9 -2.255299e-01 0.000e+00 1.955e-02 1.993e-02
 7 10 -2.444225e-01 0.000e+00 4.293e-03 3.821e-02
 8 11 -2.446931e-01 0.000e+00 8.100e-04 4.035e-03
 9 12 -2.446933e-01 0.000e+00 1.999e-04 8.126e-04
 10 13 -2.448531e-01 0.000e+00 4.004e-05 3.289e-04
 11 14 -2.448927e-01 0.000e+00 4.036e-07 8.156e-05
 12 15 -2.448931e-01 0.000e+00 4.000e-09 8.230e-07

5 Nonlinear algorithms and examples

5-50

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

To see the difference made by the new tolerances more accurately, display more decimals in the
solution.

format long

Display the solution found by the solver.

x

x = 2×1

 -0.972742227363546
 0.468569289098342

Compare these values to the values in the previous example.

xold

xold = 2×1

 -0.972742694488360
 0.468569966693330

Determine the change in values.

x - xold

ans = 2×1
10-6 ×

 0.467124813385844
 -0.677594988729435

View the function value at the solution.

fval

fval =
 -0.244893137879894

See how much the solution improved.

fval - minfval

ans =
 -3.996450220755676e-07

The answer is negative because the new solution is smaller.

 Tutorial for Optimization Toolbox

5-51

View the total number of function evaluations.

output.funcCount

ans =
 15

Compare this number to the number of function evaluations in the example solved with user-provided
gradients and the default tolerances.

Fgradevals

Fgradevals =
 14

Constrained Optimization Example: User-Supplied Hessian

If you supply a Hessian in addition to a gradient, solvers are even more accurate and efficient.

The fmincon interior-point algorithm takes a Hessian matrix as a separate function (not part of the
objective function). The Hessian function H(x,lambda) evaluates the Hessian of the Lagrangian; see
“Hessian for fmincon interior-point algorithm” on page 2-21.

Solvers calculate the values lambda.ineqnonlin and lambda.eqlin; your Hessian function tells
solvers how to use these values.

This example has one inequality constraint, so the Hessian is defined as given in the hessfordemo
function.

type hessfordemo

function H = hessfordemo(x,lambda)
% HESSFORDEMO Helper function for Tutorial for the Optimization Toolbox demo

% Copyright 2008-2009 The MathWorks, Inc.

s = exp(-(x(1)^2+x(2)^2));
H = [2*x(1)*(2*x(1)^2-3)*s+1/10, 2*x(2)*(2*x(1)^2-1)*s;
 2*x(2)*(2*x(1)^2-1)*s, 2*x(1)*(2*x(2)^2-1)*s+1/10];
hessc = [2,1/2;1/2,1];
H = H + lambda.ineqnonlin(1)*hessc;

In order to use the Hessian, you need to set options appropriately.

options = optimoptions('fmincon',...
 'Algorithm','interior-point',...
 'SpecifyConstraintGradient',true,...
 'SpecifyObjectiveGradient',true,...
 'HessianFcn',@hessfordemo);

The tolerances are set to their defaults, which should result in fewer function counts. Set options to
display the results at each iteration.

options.Display = 'iter';

Call the solver.

5 Nonlinear algorithms and examples

5-52

[x,fval,exitflag,output] = fmincon(@onehump,x0,[],[],[],[],[],[], ...
 @tiltellipse,options);

 First-order Norm of
 Iter F-count f(x) Feasibility optimality step
 0 1 2.365241e-01 0.000e+00 1.972e-01
 1 3 5.821325e-02 0.000e+00 1.443e-01 8.728e-01
 2 5 -1.218829e-01 0.000e+00 1.007e-01 4.927e-01
 3 6 -1.421167e-01 0.000e+00 8.486e-02 5.165e-02
 4 7 -2.261916e-01 0.000e+00 1.989e-02 1.667e-01
 5 8 -2.433609e-01 0.000e+00 1.537e-03 3.486e-02
 6 9 -2.446875e-01 0.000e+00 2.057e-04 2.727e-03
 7 10 -2.448911e-01 0.000e+00 2.068e-06 4.191e-04
 8 11 -2.448931e-01 0.000e+00 2.001e-08 4.218e-06

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

The results show fewer and different iterations.

Display the solution found by the solver.

x

x = 2×1

 -0.972742246093537
 0.468569316215571

View the function value at the solution.

fval

fval =
 -0.244893121872758

View the total number of function evaluations.

output.funcCount

ans =
 11

Compare this number to the number of function evaluations in the example solved using only
gradient evaluations, with the same default tolerances.

Fgradevals

 Tutorial for Optimization Toolbox

5-53

Fgradevals =
 14

See Also

More About
• “Passing Extra Parameters” on page 2-57
• “Solver-Based Optimization Problem Setup”

5 Nonlinear algorithms and examples

5-54

Banana Function Minimization
This example shows how to minimize Rosenbrock's "banana function":

f (x) = 100(x(2)− x(1)2)2 + (1− x(1))2 .

f (x) is called the banana function because of its curvature around the origin. It is notorious in
optimization examples because of the slow convergence most methods exhibit when trying to solve
this problem.

f (x) has a unique minimum at the point x = [1, 1] where f (x) = 0. This example shows a number of
ways to minimize f (x) starting at the point x0 = [− 1 . 9, 2].

Optimization Without Derivatives

The fminsearch function finds a minimum for a problem without constraints. It uses an algorithm
that does not estimate any derivatives of the objective function. Rather, it uses a geometric search
method described in “fminsearch Algorithm” on page 5-9.

Minimize the banana function using fminsearch. Include an output function to report the sequence
of iterations.

fun = @(x)(100*(x(2) - x(1)^2)^2 + (1 - x(1))^2);
options = optimset('OutputFcn',@bananaout,'Display','off');
x0 = [-1.9,2];
[x,fval,eflag,output] = fminsearch(fun,x0,options);
title 'Rosenbrock solution via fminsearch'

 Banana Function Minimization

5-55

Fcount = output.funcCount;
disp(['Number of function evaluations for fminsearch was ',num2str(Fcount)])

Number of function evaluations for fminsearch was 210

disp(['Number of solver iterations for fminsearch was ',num2str(output.iterations)])

Number of solver iterations for fminsearch was 114

Optimization with Estimated Derivatives

The fminunc function finds a minimum for a problem without constraints. It uses a derivative-based
algorithm. The algorithm attempts to estimate not only the first derivative of the objective function,
but also the matrix of second derivatives. fminunc is usually more efficient than fminsearch.

Minimize the banana function using fminunc.

options = optimoptions('fminunc','Display','off',...
 'OutputFcn',@bananaout,'Algorithm','quasi-newton');
[x,fval,eflag,output] = fminunc(fun,x0,options);
title 'Rosenbrock solution via fminunc'

Fcount = output.funcCount;
disp(['Number of function evaluations for fminunc was ',num2str(Fcount)])

Number of function evaluations for fminunc was 150

disp(['Number of solver iterations for fminunc was ',num2str(output.iterations)])

5 Nonlinear algorithms and examples

5-56

Number of solver iterations for fminunc was 34

Optimization with Steepest Descent

If you attempt to minimize the banana function using a steepest descent algorithm, the high
curvature of the problem makes the solution process very slow.

You can run fminunc with the steepest descent algorithm by setting the hidden HessUpdate option
to the value 'steepdesc' for the 'quasi-newton' algorithm. Set a larger-than-default maximum
number of function evaluations, because the solver does not find the solution quickly. In this case, the
solver does not find the solution even after 600 function evaluations.

options = optimoptions(options,'HessUpdate','steepdesc',...
 'MaxFunctionEvaluations',600);
[x,fval,eflag,output] = fminunc(fun,x0,options);
title 'Rosenbrock solution via steepest descent'

Fcount = output.funcCount;
disp(['Number of function evaluations for steepest descent was ',...
 num2str(Fcount)])

Number of function evaluations for steepest descent was 600

disp(['Number of solver iterations for steepest descent was ',...
 num2str(output.iterations)])

Number of solver iterations for steepest descent was 45

 Banana Function Minimization

5-57

Optimization with Analytic Gradient

If you provide a gradient, fminunc solves the optimization using fewer function evaluations. When
you provide a gradient, you can use the 'trust-region' algorithm, which is often faster and uses
less memory than the 'quasi-newton' algorithm. Reset the HessUpdate and
MaxFunctionEvaluations options to their default values.

grad = @(x)[-400*(x(2) - x(1)^2)*x(1) - 2*(1 - x(1));
 200*(x(2) - x(1)^2)];
fungrad = @(x)deal(fun(x),grad(x));
options = resetoptions(options,{'HessUpdate','MaxFunctionEvaluations'});
options = optimoptions(options,'SpecifyObjectiveGradient',true,...
 'Algorithm','trust-region');
[x,fval,eflag,output] = fminunc(fungrad,x0,options);
title 'Rosenbrock solution via fminunc with gradient'

Fcount = output.funcCount;
disp(['Number of function evaluations for fminunc with gradient was ',...
 num2str(Fcount)])

Number of function evaluations for fminunc with gradient was 32

disp(['Number of solver iterations for fminunc with gradient was ',...
 num2str(output.iterations)])

Number of solver iterations for fminunc with gradient was 31

5 Nonlinear algorithms and examples

5-58

Optimization with Analytic Hessian

If you provide a Hessian (matrix of second derivatives), fminunc can solve the optimization using
even fewer function evaluations. For this problem the results are the same with or without the
Hessian.

hess = @(x)[1200*x(1)^2 - 400*x(2) + 2, -400*x(1);
 -400*x(1), 200];
fungradhess = @(x)deal(fun(x),grad(x),hess(x));
options.HessianFcn = 'objective';
[x,fval,eflag,output] = fminunc(fungradhess,x0,options);
title 'Rosenbrock solution via fminunc with Hessian'

Fcount = output.funcCount;
disp(['Number of function evaluations for fminunc with gradient and Hessian was ',...
 num2str(Fcount)])

Number of function evaluations for fminunc with gradient and Hessian was 32

disp(['Number of solver iterations for fminunc with gradient and Hessian was ',num2str(output.iterations)])

Number of solver iterations for fminunc with gradient and Hessian was 31

Optimization with a Least Squares Solver

The recommended solver for a nonlinear sum of squares is lsqnonlin. This solver is even more
efficient than fminunc without a gradient for this special class of problems. To use lsqnonlin, do

 Banana Function Minimization

5-59

not write your objective as a sum of squares. Instead, write the underlying vector that lsqnonlin
internally squares and sums.

options = optimoptions('lsqnonlin','Display','off','OutputFcn',@bananaout);
vfun = @(x)[10*(x(2) - x(1)^2),1 - x(1)];
[x,resnorm,residual,eflag,output] = lsqnonlin(vfun,x0,[],[],options);
title 'Rosenbrock solution via lsqnonlin'

Fcount = output.funcCount;
disp(['Number of function evaluations for lsqnonlin was ',...
 num2str(Fcount)])

Number of function evaluations for lsqnonlin was 87

disp(['Number of solver iterations for lsqnonlin was ',num2str(output.iterations)])

Number of solver iterations for lsqnonlin was 28

Optimization with a Least Squares Solver and Jacobian

As in the minimization using a gradient for fminunc, lsqnonlin can use derivative information to
lower the number of function evaluations. Provide the Jacobian of the nonlinear objective function
vector and run the optimization again.

jac = @(x)[-20*x(1),10;
 -1,0];
vfunjac = @(x)deal(vfun(x),jac(x));
options.SpecifyObjectiveGradient = true;

5 Nonlinear algorithms and examples

5-60

[x,resnorm,residual,eflag,output] = lsqnonlin(vfunjac,x0,[],[],options);
title 'Rosenbrock solution via lsqnonlin with Jacobian'

Fcount = output.funcCount;
disp(['Number of function evaluations for lsqnonlin with Jacobian was ',...
 num2str(Fcount)])

Number of function evaluations for lsqnonlin with Jacobian was 29

disp(['Number of solver iterations for lsqnonlin with Jacobian was ',...
 num2str(output.iterations)])

Number of solver iterations for lsqnonlin with Jacobian was 28

Copyright 2006–2020 The MathWorks, Inc.

See Also

More About
• “Solve a Constrained Nonlinear Problem, Solver-Based” on page 1-11
• “Calculate Gradients and Hessians Using Symbolic Math Toolbox” on page 5-103

 Banana Function Minimization

5-61

Minimizing an Expensive Optimization Problem Using Parallel
Computing Toolbox

This example shows how to speed up the minimization of an expensive optimization problem using
functions in Optimization Toolbox™ and Global Optimization Toolbox. In the first part of the example
we solve the optimization problem by evaluating functions in a serial fashion, and in the second part
of the example we solve the same problem using the parallel for loop (parfor) feature by evaluating
functions in parallel. We compare the time taken by the optimization function in both cases.

Expensive Optimization Problem

For the purpose of this example, we solve a problem in four variables, where the objective and
constraint functions are made artificially expensive by pausing.

function f = expensive_objfun(x)
%EXPENSIVE_OBJFUN An expensive objective function used in optimparfor example.

% Copyright 2007-2013 The MathWorks, Inc.

% Simulate an expensive function by pausing
pause(0.1)
% Evaluate objective function
f = exp(x(1)) * (4*x(3)^2 + 2*x(4)^2 + 4*x(1)*x(2) + 2*x(2) + 1);

function [c,ceq] = expensive_confun(x)
%EXPENSIVE_CONFUN An expensive constraint function used in optimparfor example.

% Copyright 2007-2013 The MathWorks, Inc.

% Simulate an expensive function by pausing
pause(0.1);
% Evaluate constraints
c = [1.5 + x(1)*x(2)*x(3) - x(1) - x(2) - x(4);
 -x(1)*x(2) + x(4) - 10];
% No nonlinear equality constraints:
ceq = [];

Minimizing Using fmincon

We are interested in measuring the time taken by fmincon in serial so that we can compare it to the
parallel time.

startPoint = [-1 1 1 -1];
options = optimoptions('fmincon','Display','iter','Algorithm','interior-point');
startTime = tic;
xsol = fmincon(@expensive_objfun,startPoint,[],[],[],[],[],[],@expensive_confun,options);
time_fmincon_sequential = toc(startTime);
fprintf('Serial FMINCON optimization takes %g seconds.\n',time_fmincon_sequential);

 First-order Norm of
 Iter F-count f(x) Feasibility optimality step
 0 5 1.839397e+00 1.500e+00 3.211e+00

5 Nonlinear algorithms and examples

5-62

 1 11 -9.760099e-01 3.708e+00 7.902e-01 2.362e+00
 2 16 -1.480976e+00 0.000e+00 8.344e-01 1.069e+00
 3 21 -2.601599e+00 0.000e+00 8.390e-01 1.218e+00
 4 29 -2.823630e+00 0.000e+00 2.598e+00 1.118e+00
 5 34 -3.905339e+00 0.000e+00 1.210e+00 7.302e-01
 6 39 -6.212992e+00 3.934e-01 7.372e-01 2.405e+00
 7 44 -5.948762e+00 0.000e+00 1.784e+00 1.905e+00
 8 49 -6.940062e+00 1.233e-02 7.668e-01 7.553e-01
 9 54 -6.973887e+00 0.000e+00 2.549e-01 3.920e-01
 10 59 -7.142993e+00 0.000e+00 1.903e-01 4.735e-01
 11 64 -7.155325e+00 0.000e+00 1.365e-01 2.626e-01
 12 69 -7.179122e+00 0.000e+00 6.336e-02 9.115e-02
 13 74 -7.180116e+00 0.000e+00 1.069e-03 4.670e-02
 14 79 -7.180409e+00 0.000e+00 7.799e-04 2.815e-03
 15 84 -7.180410e+00 0.000e+00 6.189e-06 3.122e-04

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

Serial FMINCON optimization takes 17.0722 seconds.

Minimizing Using Genetic Algorithm

Since ga usually takes many more function evaluations than fmincon, we remove the expensive
constraint from this problem and perform unconstrained optimization instead. Pass empty matrices
[] for constraints. In addition, we limit the maximum number of generations to 15 for ga so that ga
can terminate in a reasonable amount of time. We are interested in measuring the time taken by ga
so that we can compare it to the parallel ga evaluation. Note that running ga requires Global
Optimization Toolbox.

rng default % for reproducibility
try
 gaAvailable = false;
 nvar = 4;
 gaoptions = optimoptions('ga','MaxGenerations',15,'Display','iter');
 startTime = tic;
 gasol = ga(@expensive_objfun,nvar,[],[],[],[],[],[],[],gaoptions);
 time_ga_sequential = toc(startTime);
 fprintf('Serial GA optimization takes %g seconds.\n',time_ga_sequential);
 gaAvailable = true;
catch ME
 warning(message('optimdemos:optimparfor:gaNotFound'));
end

 Best Mean Stall
Generation Func-count f(x) f(x) Generations
 1 100 -5.546e+05 1.483e+15 0
 2 150 -5.581e+17 -1.116e+16 0
 3 200 -7.556e+17 6.679e+22 0
 4 250 -7.556e+17 -7.195e+16 1
 5 300 -9.381e+27 -1.876e+26 0
 6 350 -9.673e+27 -7.497e+26 0
 7 400 -4.511e+36 -9.403e+34 0
 8 450 -5.111e+36 -3.011e+35 0

 Minimizing an Expensive Optimization Problem Using Parallel Computing Toolbox

5-63

 9 500 -7.671e+36 9.346e+37 0
 10 550 -1.52e+43 -3.113e+41 0
 11 600 -2.273e+45 -4.67e+43 0
 12 650 -2.589e+47 -6.281e+45 0
 13 700 -2.589e+47 -1.015e+46 1
 14 750 -8.149e+47 -5.855e+46 0
 15 800 -9.503e+47 -1.29e+47 0
Optimization terminated: maximum number of generations exceeded.
Serial GA optimization takes 80.2351 seconds.

Setting Parallel Computing Toolbox

The finite differencing used by the functions in Optimization Toolbox to approximate derivatives is
done in parallel using the parfor feature if Parallel Computing Toolbox™ is available and there is a
parallel pool of workers. Similarly, ga, gamultiobj, and patternsearch solvers in Global
Optimization Toolbox evaluate functions in parallel. To use the parfor feature, we use the parpool
function to set up the parallel environment. The computer on which this example is published has
four cores, so parpool starts four MATLAB® workers. If there is already a parallel pool when you
run this example, we use that pool; see the documentation for parpool for more information.

if max(size(gcp)) == 0 % parallel pool needed
 parpool % create the parallel pool
end

Minimizing Using Parallel fmincon

To minimize our expensive optimization problem using the parallel fmincon function, we need to
explicitly indicate that our objective and constraint functions can be evaluated in parallel and that we
want fmincon to use its parallel functionality wherever possible. Currently, finite differencing can be
done in parallel. We are interested in measuring the time taken by fmincon so that we can compare
it to the serial fmincon run.

options = optimoptions(options,'UseParallel',true);
startTime = tic;
xsol = fmincon(@expensive_objfun,startPoint,[],[],[],[],[],[],@expensive_confun,options);
time_fmincon_parallel = toc(startTime);
fprintf('Parallel FMINCON optimization takes %g seconds.\n',time_fmincon_parallel);

 First-order Norm of
 Iter F-count f(x) Feasibility optimality step
 0 5 1.839397e+00 1.500e+00 3.211e+00
 1 11 -9.760099e-01 3.708e+00 7.902e-01 2.362e+00
 2 16 -1.480976e+00 0.000e+00 8.344e-01 1.069e+00
 3 21 -2.601599e+00 0.000e+00 8.390e-01 1.218e+00
 4 29 -2.823630e+00 0.000e+00 2.598e+00 1.118e+00
 5 34 -3.905339e+00 0.000e+00 1.210e+00 7.302e-01
 6 39 -6.212992e+00 3.934e-01 7.372e-01 2.405e+00
 7 44 -5.948762e+00 0.000e+00 1.784e+00 1.905e+00
 8 49 -6.940062e+00 1.233e-02 7.668e-01 7.553e-01
 9 54 -6.973887e+00 0.000e+00 2.549e-01 3.920e-01
 10 59 -7.142993e+00 0.000e+00 1.903e-01 4.735e-01
 11 64 -7.155325e+00 0.000e+00 1.365e-01 2.626e-01
 12 69 -7.179122e+00 0.000e+00 6.336e-02 9.115e-02
 13 74 -7.180116e+00 0.000e+00 1.069e-03 4.670e-02
 14 79 -7.180409e+00 0.000e+00 7.799e-04 2.815e-03
 15 84 -7.180410e+00 0.000e+00 6.189e-06 3.122e-04

5 Nonlinear algorithms and examples

5-64

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

Parallel FMINCON optimization takes 8.11945 seconds.

Minimizing Using Parallel Genetic Algorithm

To minimize our expensive optimization problem using the ga function, we need to explicitly indicate
that our objective function can be evaluated in parallel and that we want ga to use its parallel
functionality wherever possible. To use the parallel ga we also require that the 'Vectorized' option be
set to the default (i.e., 'off'). We are again interested in measuring the time taken by ga so that we
can compare it to the serial ga run. Though this run may be different from the serial one because ga
uses a random number generator, the number of expensive function evaluations is the same in both
runs. Note that running ga requires Global Optimization Toolbox.

rng default % to get the same evaluations as the previous run
if gaAvailable
 gaoptions = optimoptions(gaoptions,'UseParallel',true);
 startTime = tic;
 gasol = ga(@expensive_objfun,nvar,[],[],[],[],[],[],[],gaoptions);
 time_ga_parallel = toc(startTime);
 fprintf('Parallel GA optimization takes %g seconds.\n',time_ga_parallel);
end

 Best Mean Stall
Generation Func-count f(x) f(x) Generations
 1 100 -5.546e+05 1.483e+15 0
 2 150 -5.581e+17 -1.116e+16 0
 3 200 -7.556e+17 6.679e+22 0
 4 250 -7.556e+17 -7.195e+16 1
 5 300 -9.381e+27 -1.876e+26 0
 6 350 -9.673e+27 -7.497e+26 0
 7 400 -4.511e+36 -9.403e+34 0
 8 450 -5.111e+36 -3.011e+35 0
 9 500 -7.671e+36 9.346e+37 0
 10 550 -1.52e+43 -3.113e+41 0
 11 600 -2.273e+45 -4.67e+43 0
 12 650 -2.589e+47 -6.281e+45 0
 13 700 -2.589e+47 -1.015e+46 1
 14 750 -8.149e+47 -5.855e+46 0
 15 800 -9.503e+47 -1.29e+47 0
Optimization terminated: maximum number of generations exceeded.
Parallel GA optimization takes 15.6984 seconds.

Compare Serial and Parallel Time

X = [time_fmincon_sequential time_fmincon_parallel];
Y = [time_ga_sequential time_ga_parallel];
t = [0 1];
plot(t,X,'r--',t,Y,'k-')
ylabel('Time in seconds')
legend('fmincon','ga')
ax = gca;
ax.XTick = [0 1];

 Minimizing an Expensive Optimization Problem Using Parallel Computing Toolbox

5-65

ax.XTickLabel = {'Serial' 'Parallel'};
axis([0 1 0 ceil(max([X Y]))])
title('Serial Vs. Parallel Times')

Utilizing parallel function evaluation via parfor improved the efficiency of both fmincon and ga.
The improvement is typically better for expensive objective and constraint functions.

See Also

More About
• “Parallel Computing”

5 Nonlinear algorithms and examples

5-66

Nonlinear Inequality Constraints
This example shows how to solve a scalar minimization problem with nonlinear inequality constraints.
The problem is to find x that solves

min
x

f (x) = ex1 4x1
2 + 2x2

2 + 4x1x2 + 2x2 + 1 ,

subject to the constraints

x1x2− x1− x2 ≤ − 1 . 5
x1x2 ≥ − 10 .

Because neither of the constraints is linear, create a function, confun.m, that returns the value of
both constraints in a vector c. Because the fmincon solver expects the constraints to be written in
the form c(x) ≤ 0, write your constraint function to return the following value:

c x =
x1x2− x1− x2 + 1 . 5

−10− x1x2
.

Create Objective Function

The helper function objfun is the objective function; it appears at the end of this example on page 5-
0 . Set the fun argument as a function handle to the objfun function.

fun = @objfun;

Create Nonlinear Constraint Function

Nonlinear constraint functions must return two arguments: c, the inequality constraint, and ceq, the
equality constraint. Because this problem has no equality constraint, the helper function confun at
the end of this example on page 5-0 returns [] as the equality constraint.

Solve Problem

Set the initial point to [-1,1].

x0 = [-1,1];

The problem has no bounds or linear constraints. Set those arguments to [].

A = [];
b = [];
Aeq = [];
beq = [];
lb = [];
ub = [];

Solve the problem using fmincon.

[x,fval] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,@confun)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

 Nonlinear Inequality Constraints

5-67

feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

x = 1×2

 -9.5473 1.0474

fval = 0.0236

Examine Solution

The exit message indicates that the solution is feasible with respect to the constraints. To double-
check, evaluate the nonlinear constraint function at the solution. Negative values indicate satisfied
constraints.

[c,ceq] = confun(x)

c = 2×1
10-4 ×

 -0.3179
 -0.3062

ceq =

 []

Both nonlinear constraints are negative and close to zero, indicating that the solution is feasible and
that both constraints are active at the solution.

Helper Functions

This code creates the objfun helper function.

function f = objfun(x)
f = exp(x(1))*(4*x(1)^2 + 2*x(2)^2 + 4*x(1)*x(2) + 2*x(2) + 1);
end

This code creates the confun helper function.

function [c,ceq] = confun(x)
% Nonlinear inequality constraints
c = [1.5 + x(1)*x(2) - x(1) - x(2);
 -x(1)*x(2) - 10];
% Nonlinear equality constraints
ceq = [];
end

See Also

Related Examples
• “Nonlinear Equality and Inequality Constraints” on page 5-81
• “Nonlinear Constraints with Gradients” on page 5-69

5 Nonlinear algorithms and examples

5-68

Nonlinear Constraints with Gradients
This example shows how to solve a nonlinear problem with nonlinear constraints using derivative
information.

Ordinarily, minimization routines use numerical gradients calculated by finite-difference
approximation. This procedure systematically perturbs each variable in order to calculate function
and constraint partial derivatives. Alternatively, you can provide a function to compute partial
derivatives analytically. Typically, when you provide derivative information, solvers work more
accurately and efficiently.

Objective Function and Nonlinear Constraint

The problem is to solve

min
x

f (x) = ex1 4x1
2 + 2x2

2 + 4x1x2 + 2x2 + 1 ,

subject to the constraints

x1x2− x1− x2 ≤ − 1 . 5
x1x2 ≥ − 10 .

Because the fmincon solver expects the constraints to be written in the form c(x) ≤ 0, write your
constraint function to return the following value:

c x =
x1x2− x1− x2 + 1 . 5

−10− x1x2
.

Objective Function with Gradient

The objective function is

f (x) = ex1 4x1
2 + 2x2

2 + 4x1x2 + 2x2 + 1 .

Compute the gradient of f (x) with respect to the variables x1 and x2.

∇ f x =
f x + exp x1 8x1 + 4x2
exp x1 4x1 + 4x2 + 2

.

The objfungrad helper function at the end of this example on page 5-0 returns both the objective
function f (x) and its gradient in the second output gradf. Set @objfungrad as the objective.

fun = @objfungrad;

Constraint Function with Gradient

The helper function confungrad is the nonlinear constraint function; it appears at the end of this
example on page 5-0 .

The derivative information for the inequality constraint has each column correspond to one
constraint. In other words, the gradient of the constraints is in the following format:

 Nonlinear Constraints with Gradients

5-69

∂c1
∂x1

∂c2
∂x1

∂c1
∂x2

∂c2
∂x2

=
x2− 1 −x2
x1− 1 −x1

.

Set @confungrad as the nonlinear constraint function.

nonlcon = @confungrad;

Set Options to Use Derivative Information

Indicate to the fmincon solver that the objective and constraint functions provide derivative
information. To do so, use optimoptions to set the SpecifyObjectiveGradient and
SpecifyConstraintGradient option values to true.

options = optimoptions('fmincon',...
 'SpecifyObjectiveGradient',true,'SpecifyConstraintGradient',true);

Solve Problem

Set the initial point to [-1,1].

x0 = [-1,1];

The problem has no bounds or linear constraints, so set those argument values to [].

A = [];
b = [];
Aeq = [];
beq = [];
lb = [];
ub = [];

Call fmincon to solve the problem.

[x,fval] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

x = 1×2

 -9.5473 1.0474

fval = 0.0236

The solution is the same as in the example “Nonlinear Inequality Constraints” on page 5-67, which
solves the problem without using derivative information. The advantage of using derivatives is that
solving the problem takes fewer function evaluations while gaining robustness, although this
advantage is not obvious in this example. Using even more derivative information, as in “fmincon
Interior-Point Algorithm with Analytic Hessian” on page 5-72, gives even more benefit, such as
fewer solver iterations.

5 Nonlinear algorithms and examples

5-70

Helper Functions

This code creates the objfungrad helper function.

function [f,gradf] = objfungrad(x)
f = exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);
% Gradient of the objective function:
if nargout > 1
 gradf = [f + exp(x(1)) * (8*x(1) + 4*x(2)),
 exp(x(1))*(4*x(1)+4*x(2)+2)];
end
end

This code creates the confungrad helper function.

function [c,ceq,DC,DCeq] = confungrad(x)
c(1) = 1.5 + x(1) * x(2) - x(1) - x(2); % Inequality constraints
c(2) = -x(1) * x(2)-10;
% No nonlinear equality constraints
ceq=[];
% Gradient of the constraints:
if nargout > 2
 DC= [x(2)-1, -x(2);
 x(1)-1, -x(1)];
 DCeq = [];
end
end

See Also

Related Examples
• “Nonlinear Inequality Constraints” on page 5-67
• “fmincon Interior-Point Algorithm with Analytic Hessian” on page 5-72

 Nonlinear Constraints with Gradients

5-71

fmincon Interior-Point Algorithm with Analytic Hessian
This example shows how to use derivative information to make the solution process faster and more
robust. The fmincon interior-point algorithm can accept a Hessian function as an input. When you
supply a Hessian, you can obtain a faster, more accurate solution to a constrained minimization
problem.

The helper function bigtoleft is an objective function that grows rapidly negative as the x(1)
coordinate becomes negative. Its gradient is a three-element vector. The code for the bigtoleft
helper function appears at the end of this example on page 5-0 .

The constraint set for this example is the intersection of the interiors of two cones—one pointing up,
and one pointing down. The constraint function is a two-component vector containing one component
for each cone. Because this example is three-dimensional, the gradient of the constraint is a 3-by-2
matrix. The code for the twocone helper function appears at the end of this example on page 5-0 .

Create a figure of the constraints, colored using the objective function.

% Create figure
figure1 = figure;

% Create axes
axes1 = axes('Parent',figure1);
view([-63.5 18]);
grid('on');
hold('all');

% Set up polar coordinates and two cones
r=0:.1:6.5;
th=2*pi*(0:.01:1);
x=r'*cos(th);
y=r'*sin(th);
z=-10+sqrt(x.^2+y.^2);
zz=3-sqrt(x.^2+y.^2);

% Evaluate objective function on cone surfaces
newxf=reshape(bigtoleft([x(:),y(:),z(:)]),66,101)/3000;
newxg=reshape(bigtoleft([x(:),y(:),z(:)]),66,101)/3000;

% Create lower surf with color set by objective
surf(x,y,z,newxf,'Parent',axes1,'EdgeAlpha',0.25);

% Create upper surf with color set by objective
surf(x,y,zz,newxg,'Parent',axes1,'EdgeAlpha',0.25);
axis equal

5 Nonlinear algorithms and examples

5-72

Create Hessian Function

To use second-order derivative information in the fmincon solver, you must create a Hessian that is
the Hessian of the Lagrangian. The Hessian of the Lagrangian is given by the equation

∇xx
2 L(x, λ) = ∇2 f (x) + ∑λi∇2ci(x) + ∑λi∇2ceqi(x) .

Here, f (x) is the bigtoleft function, and the ci(x) are the two cone constraint functions. The
hessinterior helper function at the end of this example on page 5-0 computes the Hessian of the
Lagrangian at a point x with the Lagrange multiplier structure lambda. The function first computes
∇2 f (x). It then computes the two constraint Hessians ∇2c1(x) and ∇2c2(x), multiplies them by their
corresponding Lagrange multipliers lambda.ineqnonlin(1) and lambda.ineqnonlin(2), and
adds them. You can see from the definition of the twocone constraint function that ∇2c1(x) = ∇2c2(x),
which simplifies the calculation.

Create Options to Use Derivatives

To enable fmincon to use the objective gradient, constraint gradients, and Hessian, you must set
appropriate options. The HessianFcn option using the Hessian of the Lagrangian is available only
for the interior-point algorithm.

options = optimoptions('fmincon','Algorithm','interior-point',...
 "SpecifyConstraintGradient",true,"SpecifyObjectiveGradient",true,...
 'HessianFcn',@hessinterior);

 fmincon Interior-Point Algorithm with Analytic Hessian

5-73

Minimize Using All Derivative Information

Set the initial point x0 = [-1,-1,-1].

x0 = [-1,-1,-1];

The problem has no linear constraints or bounds. Set those arguments to [].

A = [];
b = [];
Aeq = [];
beq = [];
lb = [];
ub = [];

Solve the problem.

[x,fval,eflag,output] = fmincon(@bigtoleft,x0,...
 A,b,Aeq,beq,lb,ub,@twocone,options);

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

Examine Solution and Solution Process

Examine the solution, objective function value, exit flag, and number of function evaluations and
iterations.

disp(x)

 -6.5000 -0.0000 -3.5000

disp(fval)

 -2.8941e+03

disp(eflag)

 1

disp([output.funcCount,output.iterations])

 7 6

If you do not use a Hessian function, fmincon takes more iterations to converge and requires more
function evaluations.

options.HessianFcn = [];
[x2,fval2,eflag2,output2] = fmincon(@bigtoleft,x0,...
 A,b,Aeq,beq,lb,ub,@twocone,options);

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

5 Nonlinear algorithms and examples

5-74

disp([output2.funcCount,output2.iterations])

 13 9

If you also do not include the gradient information, fmincon takes the same number of iterations, but
requires many more function evaluations.

options.SpecifyConstraintGradient = false;
options.SpecifyObjectiveGradient = false;
[x3,fval3,eflag3,output3] = fmincon(@bigtoleft,x0,...
 A,b,Aeq,beq,lb,ub,@twocone,options);

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

disp([output3.funcCount,output3.iterations])

 43 9

Helper Functions

This code creates the bigtoleft helper function.

function [f gradf] = bigtoleft(x)
% This is a simple function that grows rapidly negative
% as x(1) becomes negative
%
f = 10*x(:,1).^3+x(:,1).*x(:,2).^2+x(:,3).*(x(:,1).^2+x(:,2).^2);

if nargout > 1

 gradf=[30*x(1)^2+x(2)^2+2*x(3)*x(1);
 2*x(1)*x(2)+2*x(3)*x(2);
 (x(1)^2+x(2)^2)];

end
end

This code creates the twocone helper function.

function [c ceq gradc gradceq] = twocone(x)
% This constraint is two cones, z > -10 + r
% and z < 3 - r

ceq = [];
r = sqrt(x(1)^2 + x(2)^2);
c = [-10+r-x(3);
 x(3)-3+r];

if nargout > 2

 gradceq = [];
 gradc = [x(1)/r,x(1)/r;
 x(2)/r,x(2)/r;
 -1,1];

 fmincon Interior-Point Algorithm with Analytic Hessian

5-75

end
end

This code creates the hessinterior helper function.

function h = hessinterior(x,lambda)

h = [60*x(1)+2*x(3),2*x(2),2*x(1);
 2*x(2),2*(x(1)+x(3)),2*x(2);
 2*x(1),2*x(2),0];% Hessian of f
r = sqrt(x(1)^2+x(2)^2);% radius
rinv3 = 1/r^3;
hessc = [(x(2))^2*rinv3,-x(1)*x(2)*rinv3,0;
 -x(1)*x(2)*rinv3,x(1)^2*rinv3,0;
 0,0,0];% Hessian of both c(1) and c(2)
h = h + lambda.ineqnonlin(1)*hessc + lambda.ineqnonlin(2)*hessc;
end

See Also

Related Examples
• “Linear or Quadratic Objective with Quadratic Constraints” on page 5-77
• “Calculate Gradients and Hessians Using Symbolic Math Toolbox” on page 5-103

5 Nonlinear algorithms and examples

5-76

Linear or Quadratic Objective with Quadratic Constraints
This example shows how to solve an optimization problem that has a linear or quadratic objective and
quadratic inequality constraints. The example generates and uses the gradient and Hessian of the
objective and constraint functions.

Quadratic Constrained Problem

Suppose that your problem has the form

min
x

1
2xTQx + f Tx + c

subject to

1
2xTHix + ki

Tx + di ≤ 0,

where 1 ≤ i ≤ m. Assume that at least one Hi is nonzero; otherwise, you can use quadprog or
linprog to solve this problem. With nonzero Hi, the constraints are nonlinear, which means fmincon
is the appropriate solver according to the “Optimization Decision Table” on page 2-4.

The example assumes that the quadratic matrices are symmetric without loss of generality. You can
replace a nonsymmetric H (or Q) matrix with an equivalent symmetrized version (H + HT)/2.

If x has N components, then Q and Hi are N-by-N matrices, f and ki are N-by-1 vectors, and c and di
are scalars.

Objective Function

Formulate the problem using fmincon syntax. Assume that x and f are column vectors. (x is a
column vector when the initial vector x0 is a column vector.)

function [y,grady] = quadobj(x,Q,f,c)
y = 1/2*x'*Q*x + f'*x + c;
if nargout > 1
 grady = Q*x + f;
end

Constraint Function

For consistency and easy indexing, place every quadratic constraint matrix in one cell array. Similarly,
place the linear and constant terms in cell arrays.

function [y,yeq,grady,gradyeq] = quadconstr(x,H,k,d)
jj = length(H); % jj is the number of inequality constraints
y = zeros(1,jj);
for i = 1:jj
 y(i) = 1/2*x'*H{i}*x + k{i}'*x + d{i};
end
yeq = [];

if nargout > 2
 grady = zeros(length(x),jj);
 for i = 1:jj
 grady(:,i) = H{i}*x + k{i};

 Linear or Quadratic Objective with Quadratic Constraints

5-77

 end
end
gradyeq = [];

Numeric Example

Suppose that you have the following problem.

Q = [3,2,1;
 2,4,0;
 1,0,5];
f = [-24;-48;-130];
c = -2;

rng default % For reproducibility
% Two sets of random quadratic constraints:
H{1} = gallery('randcorr',3); % Random positive definite matrix
H{2} = gallery('randcorr',3);
k{1} = randn(3,1);
k{2} = randn(3,1);
d{1} = randn;
d{2} = randn;

Hessian

Create a Hessian function. The Hessian of the Lagrangian is given by the equation

∇xx
2 L(x, λ) = ∇2 f (x) + ∑λi∇2ci(x) + ∑λi∇2ceqi(x) .

fmincon calculates an approximate set of Lagrange multipliers λi, and packages them in a structure.
To include the Hessian, use the following function.

function hess = quadhess(x,lambda,Q,H)
hess = Q;
jj = length(H); % jj is the number of inequality constraints
for i = 1:jj
 hess = hess + lambda.ineqnonlin(i)*H{i};
end

Solution

Use the fmincon interior-point algorithm to solve the problem most efficiently. This algorithm
accepts a Hessian function that you supply. Set these options.

options = optimoptions(@fmincon,'Algorithm','interior-point',...
 'SpecifyObjectiveGradient',true,'SpecifyConstraintGradient',true,...
 'HessianFcn',@(x,lambda)quadhess(x,lambda,Q,H));

Call fmincon to solve the problem.

fun = @(x)quadobj(x,Q,f,c);
nonlconstr = @(x)quadconstr(x,H,k,d);
x0 = [0;0;0]; % Column vector
[x,fval,eflag,output,lambda] = fmincon(fun,x0,...
 [],[],[],[],[],[],nonlconstr,options);

Examine the Lagrange multipliers.

lambda.ineqnonlin

5 Nonlinear algorithms and examples

5-78

ans =

 12.8412
 39.2337

Both nonlinear inequality multipliers are nonzero, so both quadratic constraints are active at the
solution.

Efficiency When Providing a Hessian

The interior-point algorithm with gradients and a Hessian is efficient. View the number of function
evaluations.

output

output =

 iterations: 9
 funcCount: 10
 constrviolation: 0
 stepsize: 5.3547e-04
 algorithm: 'interior-point'
 firstorderopt: 1.5851e-05
 cgiterations: 0
 message: 'Local minimum found that satisfies the constraints.

Optimization compl...'

fmincon takes only 10 function evaluations to solve the problem.

Compare this result to the solution without the Hessian.

options.HessianFcn = [];
[x2,fval2,eflag2,output2,lambda2] = fmincon(fun,[0;0;0],...
 [],[],[],[],[],[],nonlconstr,options);
output2

output2 =

 iterations: 17
 funcCount: 22
 constrviolation: 0
 stepsize: 2.8475e-04
 algorithm: 'interior-point'
 firstorderopt: 1.7680e-05
 cgiterations: 0
 message: 'Local minimum found that satisfies the constraints.

Optimization compl...'

In this case, fmincon takes about twice as many iterations and function evaluations. The solutions
are the same to within tolerances.

Extension to Quadratic Equality Constraints

If you also have quadratic equality constraints, you can use essentially the same technique. The
problem is the same, with the additional constraints

 Linear or Quadratic Objective with Quadratic Constraints

5-79

1
2xT Jix + pi

Tx + qi = 0.

Reformulate your constraints to use the Ji, pi, and qi variables. The lambda.eqnonlin(i) structure
has the Lagrange multipliers for equality constraints.

See Also

Related Examples
• “fmincon Interior-Point Algorithm with Analytic Hessian” on page 5-72
• “Including Gradients and Hessians” on page 2-19
• “Including Gradients in Constraint Functions” on page 2-38

5 Nonlinear algorithms and examples

5-80

Nonlinear Equality and Inequality Constraints
This example shows how to solve an optimization problem containing nonlinear constraints. Include
nonlinear constraints by writing a function that computes both equality and inequality constraint
values. A nonlinear constraint function has the syntax

[c,ceq] = nonlinconstr(x)

The function c(x) represents the constraint c(x) <= 0. The function ceq(x) represents the
constraint ceq(x) = 0.

Note: You must have the nonlinear constraint function return both c(x) and ceq(x), even if you
have only one type of nonlinear constraint. If a constraint does not exist, have the function return []
for that constraint.

Nonlinear Constraints

Suppose you have the nonlinear equality constraint

x1
2 + x2 = 1

and the nonlinear inequality constraint

x1x2 ≥ − 10.

Rewrite these constraints as

x1
2 + x2− 1 = 0

−x1x2− 10 ≤ 0 .

The confuneq helper function at the end of this example on page 5-0 implements these
inequalities in the correct syntax.

Objective Function

Solve the problem

min
x

f (x) = ex1 4x1
2 + 2x2

2 + 4x1x2 + 2x2 + 1

subject to the constraints. The objfun helper function at the end of this example on page 5-0
implements this objective function.

Solve Problem

Solve the problem by calling the fmincon solver. This solver requires an initial point; use the point
x0 = [-1,-1].

x0 = [-1,-1];

The problem has no bounds or linear constraints, so set those inputs to [].

A = [];
b = [];
Aeq = [];

 Nonlinear Equality and Inequality Constraints

5-81

beq = [];
lb = [];
ub = [];

Call the solver.

[x,fval] = fmincon(@objfun,x0,A,b,Aeq,beq,lb,ub,@confuneq)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

x = 1×2

 -0.7529 0.4332

fval = 1.5093

The solver reports that the constraints are satisfied at the solution. Check the nonlinear constraints at
the solution.

[c,ceq] = confuneq(x)

c = -9.6739

ceq = 2.0666e-12

c is less than 0, as required. ceq is equal to 0 within the default constraint tolerance of 1e-6.

Helper Functions

The following code creates the confuneq helper function.

function [c,ceq] = confuneq(x)
% Nonlinear inequality constraints
c = -x(1)*x(2) - 10;
% Nonlinear equality constraints
ceq = x(1)^2 + x(2) - 1;
end

The following code creates the objfun helper function.

function f = objfun(x)
f = exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);
end

See Also

Related Examples
• “Nonlinear Inequality Constraints” on page 5-67
• “Optimize Live Editor Task with fmincon Solver” on page 5-83

5 Nonlinear algorithms and examples

5-82

Optimize Live Editor Task with fmincon Solver
This example shows how to use the solver-based Optimize Live Editor task with the fmincon solver
to minimize a quadratic subject to linear and nonlinear constraints and bounds.

Consider the problem of finding [x1, x2] that solves

min
x

f (x) = x1
2 + x2

2

subject to the constraints

0.5 ≤ x1 (bound)
−x1− x2 + 1 ≤ 0 (linear inequality)

−x1
2− x2

2 + 1 ≤ 0

−9x1
2− x2

2 + 9 ≤ 0

−x1
2 + x2 ≤ 0

−x2
2 + x1 ≤ 0

(nonlinear inequality)

The starting point x0 for this problem is x1 = 3 and x2 = 1.

Start Optimize Live Editor Task
Create a new live Script by clicking the New Live Script button in the File section on the Home tab.

Insert an Optimize Live Editor task. Click the Insert tab and then, in the Code section, select Task
> Optimize.

 Optimize Live Editor Task with fmincon Solver

5-83

For this example, choose the solver-based task.

5 Nonlinear algorithms and examples

5-84

For later use in entering problem data, select Insert > Section Break. New sections appear above
and below the task.

Enter Problem Data
1 Starting from the top of the task, enter the problem type and constraint types. Click the

Objective > Quadratic button and the Constraints > Lower bounds, Linear inequality, and
Nonlinear buttons. The task shows that the recommended solver is fmincon.

2 Objective Function

The objective function is simple enough to represent as an anonymous function. Position the
cursor in the section above the task and enter this code.

fun = @(x)sum(x.^2);

 Optimize Live Editor Task with fmincon Solver

5-85

3 Lower Bound

The problem contains the lower bound x1 ≥ 0.5. Express this bound as a variable lb. With the
cursor at the end of the line defining the objective function, press Enter, and enter the following
code to specify the lower bound.

lb = [0.5 -Inf];
4 Initial Point

With the cursor at the end of the line defining the lower bound, press Enter, and enter the
following code to set the initial point.

x0 = [3,1];
5 Linear Constraint

With the cursor at the end of the line defining the initial point, press Enter, and enter the
following code to set the linear constraint.

A = [-1,-1];
b = -1;

6 Run Section

The top section now includes five parameters.

Next, you need to run the section to place the parameters in the workspace as variables. To do
so, click the left-most area of the section, which contains a bar of diagonal stripes. After you click
this area, the bar becomes a solid bar, indicating the variables are now in the workspace. (Note:
You can also press Ctrl+Enter to run the section.)

7 Set Problem Data

Enter the variables in the Select problem data section of the task. To specify the objective
function, select Objective function > Function handle and choose fun.

8 Set the initial point x0.
9 Select Lower bounds > From workspace and select lb.
10 Set the linear inequality constraint variables A and b in the Linear inequality area.
11 Now specify the nonlinear inequality constraints. In the Select problem data section, select

Nonlinear > Local function, and then click the New button. The function appears in a new
section below the task. Edit the resulting code to contain the following uncommented lines.

function [c,ceq] = constraintFcn(x)
% You can include commented code lines or not.
% Be sure that just these uncommented lines remain:
c = [-x(1)^2 - x(2)^2 + 1;
 -9*x(1)^2 - x(2)^2 + 9;
 -x(1)^2 + x(2);
 -x(2)^2 + x(1)];
ceq = [];
end

5 Nonlinear algorithms and examples

5-86

12 In the Select problem data section, select the constraintFcn function.
13 Monitor Progress

In the Display progress section of the task, select Text display > Each iteration so you can
monitor the solver progress. Select Objective value for the plot.

Your setup looks like this:

Run Solver and Examine Results
To run the solver, click the options button ⁝ at the top right of the task window, and select Run
Section.

 Optimize Live Editor Task with fmincon Solver

5-87

The plot appears in a separate figure window and in the task output area.

To see where the solution variables are returned, look at the top of the task.

5 Nonlinear algorithms and examples

5-88

The final point and its associated objective function value appear in the solution and
objectiveValue variables in the workspace. View these values by entering this code in the live
editor section below the task.

solution, objectiveValue

Press Ctrl+Enter to run the section.

See Also
Optimize | fmincon

Related Examples
• “Solve a Constrained Nonlinear Problem, Solver-Based” on page 1-11
• “Use Solver-Based Optimize Live Editor Task Effectively” on page 1-41
• “Add Interactive Tasks to a Live Script”

 Optimize Live Editor Task with fmincon Solver

5-89

Minimization with Bound Constraints and Banded
Preconditioner

This example shows how to solve a nonlinear problem with bounds using the fmincon trust-
region-reflective algorithm. This algorithm provides additional efficiency when the problem is
sparse, and has both an analytic gradient and a known structure, such as its Hessian pattern.

Objective Function with Gradient

For a given n that is a positive multiple of 4, the objective function is

f (x) = 1 + ∑
i = 1

n
3− 2xi xi− xi− 1− xi + 1 + 1 p + ∑

i = 1

n/2
xi + xi + n/2

p,

where p = 7/3, x0 = 0, and xn + 1 = 0. The tbroyfg helper function at the end of this example on
page 5-0 implements the objective function, including its gradient.

The problem has the bounds −10 ≤ xi ≤ 10 for all i. Use n = 800.

n = 800;
lb = -10*ones(n,1);
ub = -lb;

Hessian Pattern

The sparsity pattern of the Hessian matrix is predetermined and stored in the file tbroyhstr.mat.
The sparsity structure for the Hessian of this problem is banded, as you can see in the following spy
plot.

load tbroyhstr
spy(Hstr)

5 Nonlinear algorithms and examples

5-90

In this plot, the center stripe is itself a five-banded matrix. The following plot shows the matrix more
clearly.

spy(Hstr(1:20,1:20))

 Minimization with Bound Constraints and Banded Preconditioner

5-91

Problem Options

Set options to use the trust-region-reflective algorithm. This algorithm requires you to set the
SpecifyObjectiveGradient option to true.

Also, use optimoptions to set the HessPattern option to Hstr. If you do not set this option for
such a large problem with an obvious sparsity structure, the problem uses a great amount of memory
and computation because fmincon attempts to use finite differencing on a full Hessian matrix of
640,000 nonzero entries.

options = optimoptions('fmincon','SpecifyObjectiveGradient',true,'HessPattern',Hstr,...
 'Algorithm','trust-region-reflective');

Solve Problem

Set the initial point to –1 for odd indices and +1 for even indices.

x0 = -ones(n,1);
x0(2:2:n) = 1;

The problem has no linear or nonlinear constraints, so set those parameters to [].

A = [];
b = [];
Aeq = [];
beq = [];
nonlcon = [];

5 Nonlinear algorithms and examples

5-92

Call fmincon to solve the problem.

[x,fval,exitflag,output] = ...
 fmincon(@tbroyfg,x0,A,b,Aeq,beq,lb,ub,nonlcon,options);

Local minimum possible.

fmincon stopped because the final change in function value relative to
its initial value is less than the value of the function tolerance.

Examine Solution and Solution Process

Examine the exit flag, objective function value, first-order optimality measure, and number of solver
iterations.

disp(exitflag);

 3

disp(fval)

 270.4790

disp(output.firstorderopt)

 0.0163

disp(output.iterations)

 7

fmincon does not take many iterations to reach a solution. However, the solution has a relatively
high first-order optimality measure, which is why the exit flag does not have the preferred value of 1.

Improve Solution

Try using a five-banded preconditioner instead of the default diagonal preconditioner. Using
optimoptions, set the PrecondBandWidth option to 2 and solve the problem again. (The
bandwidth is the number of upper or lower diagonals, not counting the main diagonal.)

options.PrecondBandWidth = 2;
[x2,fval2,exitflag2,output2] = ...
 fmincon(@tbroyfg,x0,A,b,Aeq,beq,lb,ub,nonlcon,options);

Local minimum possible.

fmincon stopped because the final change in function value relative to
its initial value is less than the value of the function tolerance.

disp(exitflag2);

 3

disp(fval2)

 270.4790

disp(output2.firstorderopt)

 7.5340e-05

 Minimization with Bound Constraints and Banded Preconditioner

5-93

disp(output2.iterations)

 9

The exit flag and objective function value do not appear to change. However, the number of iterations
increases, and the first-order optimality measure decreases considerably. Compute the difference in
objective function value.

disp(fval2 - fval)

 -2.9005e-07

The objective function value decreases by a tiny amount. The solution mainly improves the first-order
optimality measure, not the objective function.

Helper Function

This code creates the tbroyfg helper function.

function [f,grad] = tbroyfg(x,dummy)
%TBROYFG Objective function and its gradients for nonlinear minimization
% with bound constraints and banded preconditioner.
% Documentation example.

% Copyright 1990-2008 The MathWorks, Inc.

n = length(x); % n should be a multiple of 4
p = 7/3;
y=zeros(n,1);
i = 2:(n-1);
y(i) = abs((3-2*x(i)).*x(i) - x(i-1) - x(i+1)+1).^p;
y(n) = abs((3-2*x(n)).*x(n) - x(n-1)+1).^p;
y(1) = abs((3-2*x(1)).*x(1) - x(2)+1).^p;
j = 1:(n/2);
z = zeros(length(j),1);
z(j) = abs(x(j) + x(j+n/2)).^p;
f = 1 + sum(y) + sum(z);
%
% Evaluate the gradient.
if nargout > 1
 g = zeros(n,1);
 t = zeros(n,1);
 i = 2:(n-1);
 t(i) = (3-2*x(i)).*x(i) - x(i-1) - x(i+1) + 1;
 g(i) = p*abs(t(i)).^(p-1).*sign(t(i)).*(3-4*x(i));
 g(i-1) = g(i-1) - p*abs(t(i)).^(p-1).*sign(t(i));
 g(i+1) = g(i+1) - p*abs(t(i)).^(p-1).*sign(t(i));
 tt = (3-2*x(n)).*x(n) - x(n-1) + 1;
 g(n) = g(n) + p*abs(tt).^(p-1).*sign(tt).*(3-4*x(n));
 g(n-1) = g(n-1) - p*abs(tt).^(p-1).*sign(tt);
 tt = (3-2*x(1)).*x(1)-x(2)+1;
 g(1) = g(1) + p*abs(tt).^(p-1).*sign(tt).*(3-4*x(1));
 g(2) = g(2) - p*abs(tt).^(p-1).*sign(tt);
 j = 1:(n/2);
 t(j) = x(j) + x(j+n/2);
 g(j) = g(j) + p*abs(t(j)).^(p-1).*sign(t(j));
 jj = j + (n/2);
 g(jj) = g(jj) + p*abs(t(j)).^(p-1).*sign(t(j));

5 Nonlinear algorithms and examples

5-94

 grad = g;
end
end

 Minimization with Bound Constraints and Banded Preconditioner

5-95

Minimization with Linear Equality Constraints, Trust-Region
Reflective Algorithm

The fmincon trust-region-reflective algorithm can minimize a nonlinear objective function
subject to linear equality constraints only (no bounds or any other constraints). For example,
minimize

f (x) = ∑
i = 1

n− 1
xi

2 xi + 1
2 + 1 + xi + 1

2 xi
2 + 1 ,

subject to some linear equality constraints. This example takes n = 1000.

Create Problem

The browneq.mat file contains the matrices Aeq and beq, which represent the linear constraints
Aeq*x = beq. The Aeq matrix has 100 rows representing 100 linear constraints (so Aeq is a 100-
by-1000 matrix). Load the browneq.mat data.

load browneq.mat

The brownfgh helper function at the end of this example on page 5-0 implements the objective
function, including its gradient and Hessian.

Set Options

The trust-region-reflective algorithm requires the objective function to include a gradient.
The algorithm accepts a Hessian in the objective function. Set the options to include all of the
derivative information.

options = optimoptions('fmincon','Algorithm','trust-region-reflective',...
 'SpecifyObjectiveGradient',true,'HessianFcn','objective');

Solve Problem

Set the initial point to –1 for odd indices and +1 for even indices.

n = 1000;
x0 = -ones(n,1);
x0(2:2:n) = 1;

The problem has no bounds, linear inequality constraints, or nonlinear constraints, so set those
parameters to [].

A = [];
b = [];
lb = [];
ub = [];
nonlcon = [];

Call fmincon to solve the problem.

[x,fval,exitflag,output] = ...
 fmincon(@brownfgh,x0,A,b,Aeq,beq,lb,ub,nonlcon,options);

Local minimum possible.

5 Nonlinear algorithms and examples

5-96

fmincon stopped because the final change in function value relative to
its initial value is less than the value of the function tolerance.

Examine Solution and Solution Process

Examine the exit flag, objective function value, and constraint violation.

disp(exitflag)

 3

disp(fval)

 205.9313

disp(output.constrviolation)

 2.2027e-13

The exitflag value of 3 indicates that fmincon stops because the change in the objective function
value is less than the tolerance FunctionTolerance. The final objective function value is given by
fval. Constraints are satisfied, as shown in output.constrviolation, which displays a very small
number.

To calculate the constraint violation yourself, execute the following code.

norm(Aeq*x-beq,Inf)

ans = 2.2027e-13

Helper Function

The following code creates the brownfgh helper function.

function [f,g,H] = brownfgh(x)
%BROWNFGH Nonlinear minimization problem (function, its gradients
% and Hessian).
% Documentation example.

% Copyright 1990-2019 The MathWorks, Inc.

% Evaluate the function.
 n = length(x);
 y = zeros(n,1);
 i = 1:(n-1);
 y(i) = (x(i).^2).^(x(i+1).^2+1)+(x(i+1).^2).^(x(i).^2+1);
 f = sum(y);

% Evaluate the gradient.
 if nargout > 1
 i=1:(n-1);
 g = zeros(n,1);
 g(i) = 2*(x(i+1).^2+1).*x(i).*((x(i).^2).^(x(i+1).^2))+...
 2*x(i).*((x(i+1).^2).^(x(i).^2+1)).*log(x(i+1).^2);
 g(i+1) = g(i+1)+...
 2*x(i+1).*((x(i).^2).^(x(i+1).^2+1)).*log(x(i).^2)+...
 2*(x(i).^2+1).*x(i+1).*((x(i+1).^2).^(x(i).^2));
 end

 Minimization with Linear Equality Constraints, Trust-Region Reflective Algorithm

5-97

% Evaluate the (sparse, symmetric) Hessian matrix
 if nargout > 2
 v = zeros(n,1);
 i = 1:(n-1);
 v(i) = 2*(x(i+1).^2+1).*((x(i).^2).^(x(i+1).^2))+...
 4*(x(i+1).^2+1).*(x(i+1).^2).*(x(i).^2).*((x(i).^2).^((x(i+1).^2)-1))+...
 2*((x(i+1).^2).^(x(i).^2+1)).*(log(x(i+1).^2));
 v(i) = v(i)+4*(x(i).^2).*((x(i+1).^2).^(x(i).^2+1)).*((log(x(i+1).^2)).^2);
 v(i+1) = v(i+1)+...
 2*(x(i).^2).^(x(i+1).^2+1).*(log(x(i).^2))+...
 4*(x(i+1).^2).*((x(i).^2).^(x(i+1).^2+1)).*((log(x(i).^2)).^2)+...
 2*(x(i).^2+1).*((x(i+1).^2).^(x(i).^2));
 v(i+1) = v(i+1)+4*(x(i).^2+1).*(x(i+1).^2).*(x(i).^2).*((x(i+1).^2).^(x(i).^2-1));
 v0 = v;
 v = zeros(n-1,1);
 v(i) = 4*x(i+1).*x(i).*((x(i).^2).^(x(i+1).^2))+...
 4*x(i+1).*(x(i+1).^2+1).*x(i).*((x(i).^2).^(x(i+1).^2)).*log(x(i).^2);
 v(i) = v(i)+ 4*x(i+1).*x(i).*((x(i+1).^2).^(x(i).^2)).*log(x(i+1).^2);
 v(i) = v(i)+4*x(i).*((x(i+1).^2).^(x(i).^2)).*x(i+1);
 v1 = v;
 i = [(1:n)';(1:(n-1))'];
 j = [(1:n)';(2:n)'];
 s = [v0;2*v1];
 H = sparse(i,j,s,n,n);
 H = (H+H')/2;
 end
end

See Also

More About
• “Problem-Based Nonlinear Minimization with Linear Constraints” on page 6-19

5 Nonlinear algorithms and examples

5-98

Minimization with Dense Structured Hessian, Linear Equalities

In this section...
“Hessian Multiply Function for Lower Memory” on page 5-99
“Step 1: Write a file brownvv.m that computes the objective function, the gradient, and the sparse
part of the Hessian.” on page 5-100
“Step 2: Write a function to compute Hessian-matrix products for H given a matrix Y.” on page 5-100
“Step 3: Call a nonlinear minimization routine with a starting point and linear equality constraints.”
on page 5-100
“Preconditioning” on page 5-102

Hessian Multiply Function for Lower Memory
The fmincon interior-point and trust-region-reflective algorithms, and the fminunc
trust-region algorithm can solve problems where the Hessian is dense but structured. For these
problems, fmincon and fminunc do not compute H*Y with the Hessian H directly, because forming
H would be memory-intensive. Instead, you must provide fmincon or fminunc with a function that,
given a matrix Y and information about H, computes W = H*Y.

In this example, the objective function is nonlinear and linear equalities exist so fmincon is used.
The description applies to the trust-region reflective algorithm; the fminunc trust-region
algorithm is similar. For the interior-point algorithm, see the HessianMultiplyFcn option in
“Hessian Multiply Function” on page 15-106. The objective function has the structure

f x = f x − 1
2xTVVTx,

where V is a 1000-by-2 matrix. The Hessian of f is dense, but the Hessian of f is sparse. If the
Hessian of f is H , then H, the Hessian of f, is

H = H − VVT .

To avoid excessive memory usage that could happen by working with H directly, the example provides
a Hessian multiply function, hmfleq1. This function, when passed a matrix Y, uses sparse matrices
Hinfo, which corresponds to H , and V to compute the Hessian matrix product

W = H*Y = (Hinfo - V*V')*Y

In this example, the Hessian multiply function needs H and V to compute the Hessian matrix product.
V is a constant, so you can capture V in a function handle to an anonymous function.

However, H is not a constant and must be computed at the current x. You can do this by computing H
in the objective function and returning H as Hinfo in the third output argument. By using
optimoptions to set the 'Hessian' options to 'on', fmincon knows to get the Hinfo value from
the objective function and pass it to the Hessian multiply function hmfleq1.

 Minimization with Dense Structured Hessian, Linear Equalities

5-99

Step 1: Write a file brownvv.m that computes the objective function,
the gradient, and the sparse part of the Hessian.
The example passes brownvv to fmincon as the objective function. The brownvv.m file is long and
is not included here. You can view the code with the command

type brownvv

Because brownvv computes the gradient as well as the objective function, the example (Step 3 on
page 5-100) uses optimoptions to set the SpecifyObjectiveGradient option to true.

Step 2: Write a function to compute Hessian-matrix products for H
given a matrix Y.
Now, define a function hmfleq1 that uses Hinfo, which is computed in brownvv, and V, which you
can capture in a function handle to an anonymous function, to compute the Hessian matrix product W
where W = H*Y = (Hinfo - V*V')*Y. This function must have the form

W = hmfleq1(Hinfo,Y)

The first argument must be the same as the third argument returned by the objective function
brownvv. The second argument to the Hessian multiply function is the matrix Y (of W = H*Y).

Because fmincon expects the second argument Y to be used to form the Hessian matrix product, Y is
always a matrix with n rows where n is the number of dimensions in the problem. The number of
columns in Y can vary. Finally, you can use a function handle to an anonymous function to capture V,
so V can be the third argument to 'hmfleqq'.

function W = hmfleq1(Hinfo,Y,V);
%HMFLEQ1 Hessian-matrix product function for BROWNVV objective.
% W = hmfleq1(Hinfo,Y,V) computes W = (Hinfo-V*V')*Y
% where Hinfo is a sparse matrix computed by BROWNVV
% and V is a 2 column matrix.
W = Hinfo*Y - V*(V'*Y);

Note The function hmfleq1 is available in the optimdemos folder as hmfleq1.m.

Step 3: Call a nonlinear minimization routine with a starting point and
linear equality constraints.
Load the problem parameter, V, and the sparse equality constraint matrices, Aeq and beq, from
fleq1.mat, which is available in the optimdemos folder. Use optimoptions to set the
SpecifyObjectiveGradient option to true and to set the HessianMultiplyFcn option to a
function handle that points to hmfleq1. Call fmincon with objective function brownvv and with V as
an additional parameter:

function [fval,exitflag,output,x] = runfleq1
% RUNFLEQ1 demonstrates 'HessMult' option for FMINCON with linear
% equalities.

problem = load('fleq1'); % Get V, Aeq, beq
V = problem.V; Aeq = problem.Aeq; beq = problem.beq;

5 Nonlinear algorithms and examples

5-100

matlab:edit brownvv.m

n = 1000; % problem dimension
xstart = -ones(n,1); xstart(2:2:n,1) = ones(length(2:2:n),1); % starting point
options = optimoptions(@fmincon,...
 'Algorithm','trust-region-reflective',...
 'SpecifyObjectiveGradient',true, ...
 'HessianMultiplyFcn',@(Hinfo,Y)hmfleq1(Hinfo,Y,V),...
 'Display','iter',...
 'OptimalityTolerance',1e-9,...
 'FunctionTolerance',1e-9);
[x,fval,exitflag,output] = fmincon(@(x)brownvv(x,V),xstart,[],[],Aeq,beq,[],[], ...
 [],options);

To run the preceding code, enter

[fval,exitflag,output,x] = runfleq1;

Because the iterative display was set using optimoptions, this command generates the following
iterative display:

 Norm of First-order
 Iteration f(x) step optimality CG-iterations
 0 2297.63 1.41e+03
 1 1084.59 6.3903 578 1
 2 1084.59 100 578 3
 3 1084.59 25 578 0
 4 1084.59 6.25 578 0
 5 1047.61 1.5625 240 0
 6 761.592 3.125 62.4 2
 7 761.592 6.25 62.4 4
 8 746.478 1.5625 163 0
 9 546.578 3.125 84.1 2
 10 274.311 6.25 26.9 2
 11 55.6193 11.6597 40 2
 12 55.6193 25 40 3
 13 22.2964 6.25 26.3 0
 14 -49.516 6.25 78 1
 15 -93.2772 1.5625 68 1
 16 -207.204 3.125 86.5 1
 17 -434.162 6.25 70.7 1
 18 -681.359 6.25 43.7 2
 19 -681.359 6.25 43.7 4
 20 -698.041 1.5625 191 0
 21 -723.959 3.125 256 7
 22 -751.33 0.78125 154 3
 23 -793.974 1.5625 24.4 3
 24 -820.831 2.51937 6.11 3
 25 -823.069 0.562132 2.87 3
 26 -823.237 0.196753 0.486 3
 27 -823.245 0.0621202 0.386 3
 28 -823.246 0.0199951 0.11 6
 29 -823.246 0.00731333 0.0404 7
 30 -823.246 0.00505883 0.0185 8
 31 -823.246 0.00126471 0.00268 9
 32 -823.246 0.00149326 0.00521 9
 33 -823.246 0.000373314 0.00091 9

Local minimum possible.

 Minimization with Dense Structured Hessian, Linear Equalities

5-101

fmincon stopped because the final change in function value relative to
its initial value is less than the value of the function tolerance.

Convergence is rapid for a problem of this size with the PCG iteration cost increasing modestly as the
optimization progresses. Feasibility of the equality constraints is maintained at the solution.

problem = load('fleq1'); % Get V, Aeq, beq
V = problem.V; Aeq = problem.Aeq; beq = problem.beq;
norm(Aeq*x-beq,inf)

ans =
 1.8874e-14

Preconditioning
In this example, fmincon cannot use H to compute a preconditioner because H only exists implicitly.
Instead of H, fmincon uses Hinfo, the third argument returned by brownvv, to compute a
preconditioner. Hinfo is a good choice because it is the same size as H and approximates H to some
degree. If Hinfo were not the same size as H, fmincon would compute a preconditioner based on
some diagonal scaling matrices determined from the algorithm. Typically, this would not perform as
well.

5 Nonlinear algorithms and examples

5-102

Calculate Gradients and Hessians Using Symbolic Math Toolbox
This example shows how to obtain faster and more robust solutions to nonlinear optimization
problems using fmincon along with Symbolic Math Toolbox™ functions. If you have a Symbolic Math
Toolbox license, you can easily calculate analytic gradients and Hessians for objective and constraint
functions using these Symbolic Math Toolbox functions:

• jacobian (Symbolic Math Toolbox) generates the gradient of a scalar function, and generates a
matrix of the partial derivatives of a vector function. So, for example, you can obtain the Hessian
matrix (the second derivatives of the objective function) by applying jacobian to the gradient.
This example shows how to use jacobian to generate symbolic gradients and Hessians of
objective and constraint functions.

• matlabFunction (Symbolic Math Toolbox) generates either an anonymous function or a file that
calculates the values of a symbolic expression. This example shows how to use matlabFunction
to generate files that evaluate the objective and constraint functions and their derivatives at
arbitrary points.

Symbolic Math Toolbox functions have different syntaxes and structures compared to Optimization
Toolbox™ functions. In particular, symbolic variables are real or complex scalars, whereas
Optimization Toolbox functions pass vector arguments. So, you need to take several steps to
symbolically generate the objective function, constraints, and all their requisite derivatives, in a form
suitable for the interior-point algorithm of fmincon.

Problem-based optimization can calculate and use gradients automatically; see “Automatic
Differentiation in Optimization Toolbox” on page 9-41. For a problem-based approach to this
problem using automatic differentiation, see “Constrained Electrostatic Nonlinear Optimization,
Problem-Based” on page 6-14.

Problem Description

Consider the electrostatics problem of placing 10 electrons in a conducting body. The electrons
arrange themselves in a way that minimizes their total potential energy, subject to the constraint of
lying inside the body. All the electrons are on the boundary of the body at a minimum. The electrons
are indistinguishable, so no unique minimum exists for this problem (permuting the electrons in one
solution gives another valid solution). This example is inspired by Dolan, Moré, and Munson [58].

This example is a conducting body defined by the inequalities

z ≤ − |x | − | y|

x2 + y2 + (z + 1)2 ≤ 1.

This body looks like a pyramid on a sphere.

[X,Y] = meshgrid(-1:.01:1);
Z1 = -abs(X) - abs(Y);
Z2 = -1 - sqrt(1 - X.^2 - Y.^2);
Z2 = real(Z2);
W1 = Z1; W2 = Z2;
W1(Z1 < Z2) = nan; % Only plot points where Z1 > Z2
W2(Z1 < Z2) = nan; % Only plot points where Z1 > Z2
hand = figure; % Handle to the figure, for more plotting later
set(gcf,'Color','w') % White background
surf(X,Y,W1,'LineStyle','none');

 Calculate Gradients and Hessians Using Symbolic Math Toolbox

5-103

hold on
surf(X,Y,W2,'LineStyle','none');
view(-44,18)

A slight gap exists between the upper and lower surfaces of the figure. This gap is an artifact of the
general plotting routine used to create the figure. The routine erases any rectangular patch on one
surface that touches the other surface.

Create Variables

Generate a symbolic vector x as a 30-by-1 vector composed of real symbolic variables xij, with i
between 1 and 10, and j between 1 and 3. These variables represent the three coordinates of
electron i: xi1 corresponds to the x coordinate, xi2 corresponds to the y coordinate, and xi3
corresponds to the z coordinate.

x = cell(3, 10);
for i = 1:10
 for j = 1:3
 x{j,i} = sprintf('x%d%d',i,j);
 end
end
x = x(:); % Now x is a 30-by-1 vector
x = sym(x, 'real');

Display the vector x.

x

5 Nonlinear algorithms and examples

5-104

x =
x11
x12
x13
x21
x22
x23
x31
x32
x33
x41
x42
x43
x51
x52
x53
x61
x62
x63
x71
x72
x73
x81
x82
x83
x91
x92
x93
x101
x102
x103

Include Linear Constraints

Write the linear constraints

z ≤ − |x | − | y|

as a set of four linear inequalities for each electron:

xi3 - xi1 - xi2 ≤ 0
xi3 - xi1 + xi2 ≤ 0
xi3 + xi1 - xi2 ≤ 0
xi3 + xi1 + xi2 ≤ 0

So, this problem has a total of 40 linear inequalities.

 Calculate Gradients and Hessians Using Symbolic Math Toolbox

5-105

Write the inequalities in a structured way.

B = [1,1,1;-1,1,1;1,-1,1;-1,-1,1];

A = zeros(40,30);
for i=1:10
 A(4*i-3:4*i,3*i-2:3*i) = B;
end

b = zeros(40,1);

You can see that A*x ≤ b represents the inequalities.

disp(A*x)

5 Nonlinear algorithms and examples

5-106

x11 + x12 + x13
x12− x11 + x13
x11− x12 + x13
x13− x12− x11
x21 + x22 + x23
x22− x21 + x23
x21− x22 + x23
x23− x22− x21
x31 + x32 + x33
x32− x31 + x33
x31− x32 + x33
x33− x32− x31
x41 + x42 + x43
x42− x41 + x43
x41− x42 + x43
x43− x42− x41
x51 + x52 + x53
x52− x51 + x53
x51− x52 + x53
x53− x52− x51
x61 + x62 + x63
x62− x61 + x63
x61− x62 + x63
x63− x62− x61
x71 + x72 + x73
x72− x71 + x73
x71− x72 + x73
x73− x72− x71
x81 + x82 + x83
x82− x81 + x83
x81− x82 + x83
x83− x82− x81
x91 + x92 + x93
x92− x91 + x93
x91− x92 + x93
x93− x92− x91

x101 + x102 + x103
x102− x101 + x103
x101− x102 + x103
x103− x102− x101

 Calculate Gradients and Hessians Using Symbolic Math Toolbox

5-107

Create the Nonlinear Constraints and Their Gradients and Hessians

The nonlinear constraints are also structured.

x2 + y2 + (z + 1)2 ≤ 1.

Generate the constraints and their gradients and Hessians.

c = sym(zeros(1,10));
i = 1:10;
c = (x(3*i-2).^2 + x(3*i-1).^2 + (x(3*i)+1).^2 - 1).';

gradc = jacobian(c,x).'; % .' performs transpose

hessc = cell(1, 10);
for i = 1:10
 hessc{i} = jacobian(gradc(:,i),x);
end

The constraint vector c is a row vector, and the gradient of c(i) is represented in the ith column of
the matrix gradc. This form is correct, as described in “Nonlinear Constraints” on page 2-37.

The Hessian matrices, hessc{1}, ..., hessc{10}, are square and symmetric. This example stores
them in a cell array, which is better than storing them in separate variables such as hessc1, ...,
hessc10.

Use the .' syntax to transpose. The ' syntax means conjugate transpose, which has different
symbolic derivatives.

Create the Objective Function and Its Gradient and Hessian

The objective function, potential energy, is the sum of the inverses of the distances between each
electron pair.

energy = ∑
i < j

1
xi− x j

.

The distance is the square root of the sum of the squares of the differences in the components of the
vectors.

Calculate the energy (objective function) and its gradient and Hessian.

energy = sym(0);
for i = 1:3:25
 for j = i+3:3:28
 dist = x(i:i+2) - x(j:j+2);
 energy = energy + 1/sqrt(dist.'*dist);
 end
end

gradenergy = jacobian(energy,x).';

hessenergy = jacobian(gradenergy,x);

Create the Objective Function File

The objective function has two outputs, energy and gradenergy. Put both functions in one vector
when calling matlabFunction to reduce the number of subexpressions that matlabFunction

5 Nonlinear algorithms and examples

5-108

generates, and to return the gradient only when the calling function (fmincon in this case) requests
both outputs. You can place the resulting files in any folder on the MATLAB path. In this case, place
them in your current folder.

currdir = [pwd filesep]; % You might need to use currdir = pwd
filename = [currdir,'demoenergy.m'];
matlabFunction(energy,gradenergy,'file',filename,'vars',{x});

matlabFunction returns energy as the first output and gradenergy as the second. The function
also takes a single input vector {x} instead of a list of inputs x11, ..., x103.

The resulting file demoenergy.m contains the following lines or similar ones:

function [energy,gradenergy] = demoenergy(in1)
%DEMOENERGY
% [ENERGY,GRADENERGY] = DEMOENERGY(IN1)
...
x101 = in1(28,:);
...
energy = 1./t140.^(1./2) + ...;
if nargout > 1
 ...
 gradenergy = [(t174.*(t185 - 2.*x11))./2 - ...];
end

This function has the correct form for an objective function with a gradient; see “Writing Scalar
Objective Functions” on page 2-17.

Create the Constraint Function File

Generate the nonlinear constraint function, and put it in the correct format.

filename = [currdir,'democonstr.m'];
matlabFunction(c,[],gradc,[],'file',filename,'vars',{x},...
 'outputs',{'c','ceq','gradc','gradceq'});

The resulting file democonstr.m contains the following lines or similar ones:

function [c,ceq,gradc,gradceq] = democonstr(in1)
%DEMOCONSTR
% [C,CEQ,GRADC,GRADCEQ] = DEMOCONSTR(IN1)
...
x101 = in1(28,:);
...
c = [t417.^2 + ...];
if nargout > 1
 ceq = [];
end
if nargout > 2
 gradc = [2.*x11,...];
end
if nargout > 3
 gradceq = [];
end

This function has the correct form for a constraint function with a gradient; see “Nonlinear
Constraints” on page 2-37.

 Calculate Gradients and Hessians Using Symbolic Math Toolbox

5-109

Generate the Hessian Files

To generate the Hessian of the Lagrangian for the problem, first generate files for the energy Hessian
and the constraint Hessians.

The Hessian of the objective function, hessenergy, is a large symbolic expression containing over
150,000 symbols, as shown by evaluating size(char(hessenergy)). So, running
matlabFunction(hessenergy) takes a substantial amount of time.

Generate the file hessenergy.m.

filename = [currdir,'hessenergy.m'];
matlabFunction(hessenergy,'file',filename,'vars',{x});

In contrast, the Hessians of the constraint functions are small and fast to compute.

for i = 1:10
 ii = num2str(i);
 thename = ['hessc',ii];
 filename = [currdir,thename,'.m'];
 matlabFunction(hessc{i},'file',filename,'vars',{x});
end

After generating all the files for the objective and constraints, put them together with the appropriate
Lagrange multipliers in the helper function hessfinal.m, whose code appears at the end of this
example on page 5-0 .

Run the Optimization

Start the optimization with the electrons distributed randomly on a sphere of radius 1/2 centered at
[0,0,–1].

rng default % For reproducibility
Xinitial = randn(3,10); % Columns are normal 3-D vectors
for j=1:10
 Xinitial(:,j) = Xinitial(:,j)/norm(Xinitial(:,j))/2;
 % This normalizes to a 1/2-sphere
end
Xinitial(3,:) = Xinitial(3,:) - 1; % Center at [0,0,-1]
Xinitial = Xinitial(:); % Convert to a column vector

Set options to use the interior-point algorithm, and to use gradients and the Hessian.

options = optimoptions(@fmincon,'Algorithm','interior-point','SpecifyObjectiveGradient',true,...
 'SpecifyConstraintGradient',true,'HessianFcn',@hessfinal,'Display','final');

Call fmincon.

[xfinal,fval,exitflag,output] = fmincon(@demoenergy,Xinitial,...
 A,b,[],[],[],[],@democonstr,options);

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>

5 Nonlinear algorithms and examples

5-110

View the objective function value, exit flag, number of iterations, and number of function evaluations.

disp(fval)

 34.1365

disp(exitflag)

 1

disp(output.iterations)

 19

disp(output.funcCount)

 28

Even though the initial positions of the electrons are random, the final positions are nearly
symmetric.

for i = 1:10
 plot3(xfinal(3*i-2),xfinal(3*i-1),xfinal(3*i),'r.','MarkerSize',25);
end

To examine the entire 3-D geometry, rotate the figure.

rotate3d

figure(hand)

 Calculate Gradients and Hessians Using Symbolic Math Toolbox

5-111

Compare to Optimization Without Gradients and Hessians

The use of gradients and Hessians makes the optimization run faster and more accurately. To
compare the same optimization using no gradient or Hessian information, set options to not use
gradients and Hessians.

options = optimoptions(@fmincon,'Algorithm','interior-point',...
 'Display','final');
[xfinal2,fval2,exitflag2,output2] = fmincon(@demoenergy,Xinitial,...
 A,b,[],[],[],[],@democonstr,options);

Feasible point with lower objective function value found.

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>

View the objective function value, exit flag, number of iterations, and number of function evaluations.

disp(fval2)

 34.1365

disp(exitflag2)

 1

disp(output2.iterations)

 77

disp(output2.funcCount)

 2434

Compare the number of iterations and number of function evaluations with and without derivative
information.

tbl = table([output.iterations;output2.iterations],[output.funcCount;output2.funcCount],...
 'RowNames',{'With Derivatives','Without Derivatives'},'VariableNames',{'Iterations','Fevals'})

tbl=2×2 table
 Iterations Fevals
 __________ ______

 With Derivatives 19 28
 Without Derivatives 77 2434

Clear the Symbolic Variable Assumptions

The symbolic variables in this example have the assumption that they are real in the symbolic engine
workspace. Deleting the variables does not clear this assumption from the symbolic engine
workspace. Clear the variable assumptions by using syms.

5 Nonlinear algorithms and examples

5-112

syms x

Verify that the assumptions are empty.

assumptions(x)

ans =

Empty sym: 1-by-0

Helper Function

The following code creates the hessfinal helper function.

function H = hessfinal(X,lambda)
%
% Call the function hessenergy to start
H = hessenergy(X);

% Add the Lagrange multipliers * the constraint Hessians
H = H + hessc1(X) * lambda.ineqnonlin(1);
H = H + hessc2(X) * lambda.ineqnonlin(2);
H = H + hessc3(X) * lambda.ineqnonlin(3);
H = H + hessc4(X) * lambda.ineqnonlin(4);
H = H + hessc5(X) * lambda.ineqnonlin(5);
H = H + hessc6(X) * lambda.ineqnonlin(6);
H = H + hessc7(X) * lambda.ineqnonlin(7);
H = H + hessc8(X) * lambda.ineqnonlin(8);
H = H + hessc9(X) * lambda.ineqnonlin(9);
H = H + hessc10(X) * lambda.ineqnonlin(10);
end

See Also

Related Examples
• “Using Symbolic Mathematics with Optimization Toolbox Solvers” on page 5-114
• “Constrained Electrostatic Nonlinear Optimization, Problem-Based” on page 6-14

 Calculate Gradients and Hessians Using Symbolic Math Toolbox

5-113

Using Symbolic Mathematics with Optimization Toolbox Solvers
This example shows how to use the Symbolic Math Toolbox™ functions jacobian and
matlabFunction to provide analytical derivatives to optimization solvers. Optimization Toolbox™
solvers are usually more accurate and efficient when you supply gradients and Hessians of the
objective and constraint functions.

Problem-based optimization can calculate and use gradients automatically; see “Automatic
Differentiation in Optimization Toolbox” on page 9-41. For a problem-based example using automatic
differentiation, see “Constrained Electrostatic Nonlinear Optimization, Problem-Based” on page 6-
14.

There are several considerations in using symbolic calculations with optimization functions:

1 Optimization objective and constraint functions should be defined in terms of a vector, say x.
However, symbolic variables are scalar or complex-valued, not vector-valued. This requires you to
translate between vectors and scalars.

2 Optimization gradients, and sometimes Hessians, are supposed to be calculated within the body
of the objective or constraint functions. This means that a symbolic gradient or Hessian has to be
placed in the appropriate place in the objective or constraint function file or function handle.

3 Calculating gradients and Hessians symbolically can be time-consuming. Therefore you should
perform this calculation only once, and generate code, via matlabFunction, to call during
execution of the solver.

4 Evaluating symbolic expressions with the subs function is time-consuming. It is much more
efficient to use matlabFunction.

5 matlabFunction generates code that depends on the orientation of input vectors. Since
fmincon calls the objective function with column vectors, you must be careful to call
matlabFunction with column vectors of symbolic variables.

First Example: Unconstrained Minimization with Hessian

The objective function to minimize is:

f (x1, x2) = log 1 + 3 x2− (x1
3− x1) 2 + (x1− 4/3)2 .

This function is positive, with a unique minimum value of zero attained at x1 = 4/3, x2 =(4/3)^3 - 4/3
= 1.0370...

We write the independent variables as x1 and x2 because in this form they can be used as symbolic
variables. As components of a vector x they would be written x(1) and x(2). The function has a
twisty valley as depicted in the plot below.

syms x1 x2 real
x = [x1;x2]; % column vector of symbolic variables
f = log(1 + 3*(x2 - (x1^3 - x1))^2 + (x1 - 4/3)^2)

f =

log x1−
4
3

2
+ 3 −x13 + x1 + x2

2 + 1

fsurf(f,[-2 2],'ShowContours','on')
view(127,38)

5 Nonlinear algorithms and examples

5-114

Compute the gradient and Hessian of f:

gradf = jacobian(f,x).' % column gradf

gradf =

−
6 3 x12− 1 −x13 + x1 + x2 − 2 x1 + 8

3
σ1

−6 x13 + 6 x1 + 6 x2
σ1

where

 σ1 = x1−
4
3

2
+ 3 −x13 + x1 + x2

2 + 1

hessf = jacobian(gradf,x)

hessf =

 Using Symbolic Mathematics with Optimization Toolbox Solvers

5-115

6 3 x12− 1 2− 36 x1 −x13 + x1 + x2 + 2
σ2

−
σ32

σ22 σ1

σ1
6
σ2
−
−6 x13 + 6 x1 + 6 x2

2

σ22

where

 σ1 =
−6 x13 + 6 x1 + 6 x2 σ3

σ22 −
18 x12− 6

σ2

 σ2 = x1−
4
3

2
+ 3 −x13 + x1 + x2

2 + 1

 σ3 = 6 3 x12− 1 −x13 + x1 + x2 − 2 x1 + 8
3

The fminunc solver expects to pass in a vector x, and, with the SpecifyObjectiveGradient
option set to true and HessianFcn option set to 'objective', expects a list of three outputs:
[f(x),gradf(x),hessf(x)].

matlabFunction generates exactly this list of three outputs from a list of three inputs. Furthermore,
using the vars option, matlabFunction accepts vector inputs.

fh = matlabFunction(f,gradf,hessf,'vars',{x});

Now solve the minimization problem starting at the point [-1,2]:

options = optimoptions('fminunc', ...
 'SpecifyObjectiveGradient', true, ...
 'HessianFcn', 'objective', ...
 'Algorithm','trust-region', ...
 'Display','final');
[xfinal,fval,exitflag,output] = fminunc(fh,[-1;2],options)

Local minimum possible.

fminunc stopped because the final change in function value relative to
its initial value is less than the value of the function tolerance.

xfinal = 2×1

 1.3333
 1.0370

fval = 7.6623e-12

exitflag = 3

output = struct with fields:
 iterations: 14
 funcCount: 15
 stepsize: 0.0027
 cgiterations: 11
 firstorderopt: 3.4391e-05
 algorithm: 'trust-region'
 message: 'Local minimum possible....'

5 Nonlinear algorithms and examples

5-116

 constrviolation: []

Compare this with the number of iterations using no gradient or Hessian information. This requires
the 'quasi-newton' algorithm.

options = optimoptions('fminunc','Display','final','Algorithm','quasi-newton');
fh2 = matlabFunction(f,'vars',{x});
% fh2 = objective with no gradient or Hessian
[xfinal,fval,exitflag,output2] = fminunc(fh2,[-1;2],options)

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

xfinal = 2×1

 1.3333
 1.0371

fval = 2.1985e-11

exitflag = 1

output2 = struct with fields:
 iterations: 18
 funcCount: 81
 stepsize: 2.1164e-04
 lssteplength: 1
 firstorderopt: 2.4587e-06
 algorithm: 'quasi-newton'
 message: 'Local minimum found....'

The number of iterations is lower when using gradients and Hessians, and there are dramatically
fewer function evaluations:

sprintf(['There were %d iterations using gradient' ...
 ' and Hessian, but %d without them.'], ...
 output.iterations,output2.iterations)

ans =
'There were 14 iterations using gradient and Hessian, but 18 without them.'

sprintf(['There were %d function evaluations using gradient' ...
 ' and Hessian, but %d without them.'], ...
 output.funcCount,output2.funcCount)

ans =
'There were 15 function evaluations using gradient and Hessian, but 81 without them.'

Second Example: Constrained Minimization Using the fmincon Interior-Point Algorithm

We consider the same objective function and starting point, but now have two nonlinear constraints:

5sinh(x2/5) ≥ x1
4

 Using Symbolic Mathematics with Optimization Toolbox Solvers

5-117

5tanh(x1/5) ≥ x2
2− 1 .

The constraints keep the optimization away from the global minimum point [1.333,1.037]. Visualize
the two constraints:

[X,Y] = meshgrid(-2:.01:3);
Z = (5*sinh(Y./5) >= X.^4);
% Z=1 where the first constraint is satisfied, Z=0 otherwise
Z = Z+ 2*(5*tanh(X./5) >= Y.^2 - 1);
% Z=2 where the second is satisfied, Z=3 where both are
surf(X,Y,Z,'LineStyle','none');
fig = gcf;
fig.Color = 'w'; % white background
view(0,90)
hold on
plot3(.4396, .0373, 4,'o','MarkerEdgeColor','r','MarkerSize',8);
% best point
xlabel('x')
ylabel('y')
hold off

We plotted a small red circle around the optimal point.

Here is a plot of the objective function over the feasible region, the region that satisfies both
constraints, pictured above in dark red, along with a small red circle around the optimal point:

W = log(1 + 3*(Y - (X.^3 - X)).^2 + (X - 4/3).^2);
% W = the objective function

5 Nonlinear algorithms and examples

5-118

W(Z < 3) = nan; % plot only where the constraints are satisfied
surf(X,Y,W,'LineStyle','none');
view(68,20)
hold on
plot3(.4396, .0373, .8152,'o','MarkerEdgeColor','r', ...
 'MarkerSize',8); % best point
xlabel('x')
ylabel('y')
zlabel('z')
hold off

The nonlinear constraints must be written in the form c(x) <= 0. We compute all the symbolic
constraints and their derivatives, and place them in a function handle using matlabFunction.

The gradients of the constraints should be column vectors; they must be placed in the objective
function as a matrix, with each column of the matrix representing the gradient of one constraint
function. This is the transpose of the form generated by jacobian, so we take the transpose below.

We place the nonlinear constraints into a function handle. fmincon expects the nonlinear constraints
and gradients to be output in the order [c ceq gradc gradceq]. Since there are no nonlinear
equality constraints, we output [] for ceq and gradceq.

c1 = x1^4 - 5*sinh(x2/5);
c2 = x2^2 - 5*tanh(x1/5) - 1;
c = [c1 c2];
gradc = jacobian(c,x).'; % transpose to put in correct form
constraint = matlabFunction(c,[],gradc,[],'vars',{x});

 Using Symbolic Mathematics with Optimization Toolbox Solvers

5-119

The interior-point algorithm requires its Hessian function to be written as a separate function,
instead of being part of the objective function. This is because a nonlinearly constrained function
needs to include those constraints in its Hessian. Its Hessian is the Hessian of the Lagrangian; see
the User's Guide for more information.

The Hessian function takes two input arguments: the position vector x, and the Lagrange multiplier
structure lambda. The parts of the lambda structure that you use for nonlinear constraints are
lambda.ineqnonlin and lambda.eqnonlin. For the current constraint, there are no linear
equalities, so we use the two multipliers lambda.ineqnonlin(1) and lambda.ineqnonlin(2).

We calculated the Hessian of the objective function in the first example. Now we calculate the
Hessians of the two constraint functions, and make function handle versions with matlabFunction.

hessc1 = jacobian(gradc(:,1),x); % constraint = first c column
hessc2 = jacobian(gradc(:,2),x);

hessfh = matlabFunction(hessf,'vars',{x});
hessc1h = matlabFunction(hessc1,'vars',{x});
hessc2h = matlabFunction(hessc2,'vars',{x});

To make the final Hessian, we put the three Hessians together, adding the appropriate Lagrange
multipliers to the constraint functions.

myhess = @(x,lambda)(hessfh(x) + ...
 lambda.ineqnonlin(1)*hessc1h(x) + ...
 lambda.ineqnonlin(2)*hessc2h(x));

Set the options to use the interior-point algorithm, the gradient, and the Hessian, have the objective
function return both the objective and the gradient, and run the solver:

options = optimoptions('fmincon', ...
 'Algorithm','interior-point', ...
 'SpecifyObjectiveGradient',true, ...
 'SpecifyConstraintGradient',true, ...
 'HessianFcn',myhess, ...
 'Display','final');
% fh2 = objective without Hessian
fh2 = matlabFunction(f,gradf,'vars',{x});
[xfinal,fval,exitflag,output] = fmincon(fh2,[-1;2],...
 [],[],[],[],[],[],constraint,options)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

xfinal = 2×1

 0.4396
 0.0373

fval = 0.8152

exitflag = 1

output = struct with fields:
 iterations: 10

5 Nonlinear algorithms and examples

5-120

 funcCount: 13
 constrviolation: 0
 stepsize: 1.9160e-06
 algorithm: 'interior-point'
 firstorderopt: 1.9217e-08
 cgiterations: 0
 message: 'Local minimum found that satisfies the constraints....'
 bestfeasible: [1x1 struct]

Again, the solver makes many fewer iterations and function evaluations with gradient and Hessian
supplied than when they are not:

options = optimoptions('fmincon','Algorithm','interior-point',...
 'Display','final');
% fh3 = objective without gradient or Hessian
fh3 = matlabFunction(f,'vars',{x});
% constraint without gradient:
constraint = matlabFunction(c,[],'vars',{x});
[xfinal,fval,exitflag,output2] = fmincon(fh3,[-1;2],...
 [],[],[],[],[],[],constraint,options)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

xfinal = 2×1

 0.4396
 0.0373

fval = 0.8152

exitflag = 1

output2 = struct with fields:
 iterations: 17
 funcCount: 54
 constrviolation: 0
 stepsize: 8.6490e-07
 algorithm: 'interior-point'
 firstorderopt: 3.8841e-07
 cgiterations: 0
 message: 'Local minimum found that satisfies the constraints....'
 bestfeasible: [1x1 struct]

sprintf(['There were %d iterations using gradient' ...
 ' and Hessian, but %d without them.'],...
 output.iterations,output2.iterations)

ans =
'There were 10 iterations using gradient and Hessian, but 17 without them.'

 Using Symbolic Mathematics with Optimization Toolbox Solvers

5-121

sprintf(['There were %d function evaluations using gradient' ...
 ' and Hessian, but %d without them.'], ...
 output.funcCount,output2.funcCount)

ans =
'There were 13 function evaluations using gradient and Hessian, but 54 without them.'

Cleaning Up Symbolic Variables

The symbolic variables used in this example were assumed to be real. To clear this assumption from
the symbolic engine workspace, it is not sufficient to delete the variables. You must clear the
assumptions of variables using the syntax

assume([x1,x2],'clear')

All assumptions are cleared when the output of the following command is empty

assumptions([x1,x2])

ans =

Empty sym: 1-by-0

See Also

More About
• “Calculate Gradients and Hessians Using Symbolic Math Toolbox” on page 5-103

5 Nonlinear algorithms and examples

5-122

Obtain Best Feasible Point
This example shows how to obtain the best feasible point encountered by fmincon.

The helper function bigtoleft is a cubic polynomial objective function in a three-dimensional
variable x that grows rapidly negative as the x(1) coordinate becomes negative. Its gradient is a
three-element vector. The code for the bigtoleft helper function appears at the end of this example
on page 5-0 .

The constraint set for this example is the intersection of the interiors of two cones—one pointing up,
and one pointing down. The constraint function is a two-component vector containing one component
for each cone. Because this example is three-dimensional, the gradient of the constraint is a 3-by-2
matrix. The code for the twocone helper function appears at the end of this example on page 5-0 .

Create a figure of the constraints colored using the objective function by calling the
plottwoconecons function, whose code appears at the end of this example on page 5-0 .

figure1 = plottwoconecons;

Create Options To Use Derivatives

To enable fmincon to use the objective gradient and constraint gradients, set appropriate options.
Choose the 'sqp' algorithm.

options = optimoptions('fmincon','Algorithm','sqp',...
 "SpecifyConstraintGradient",true,"SpecifyObjectiveGradient",true);

 Obtain Best Feasible Point

5-123

To examine the solution process, set options to return iterative display.

options.Display = 'iter';

Minimize Using Derivative Information

Set the initial point x0 = [-1/20,-1/20,-1/20].

x0 = -1/20*ones(1,3);

The problem has no linear constraints or bounds. Set those arguments to [].

A = [];
b = [];
Aeq = [];
beq = [];
lb = [];
ub = [];

Solve the problem.

[x,fval,eflag,output] = fmincon(@bigtoleft,x0,...
 A,b,Aeq,beq,lb,ub,@twocone,options);

 Iter Func-count Fval Feasibility Step Length Norm of First-order
 step optimality
 0 1 -1.625000e-03 0.000e+00 1.000e+00 0.000e+00 8.250e-02
 1 3 -2.490263e-02 0.000e+00 1.000e+00 8.325e-02 5.449e-01
 2 5 -2.529919e+02 0.000e+00 1.000e+00 2.802e+00 2.585e+02
 3 7 -6.408576e+03 9.472e+00 1.000e+00 1.538e+01 1.771e+03
 4 9 -1.743599e+06 5.301e+01 1.000e+00 5.991e+01 9.216e+04
 5 11 -5.552305e+09 1.893e+03 1.000e+00 1.900e+03 1.761e+07
 6 13 -1.462524e+15 5.632e+04 1.000e+00 5.636e+04 8.284e+10
 7 15 -2.573346e+24 1.471e+08 1.000e+00 1.471e+08 1.058e+17
 8 17 -1.467510e+41 2.617e+13 1.000e+00 2.617e+13 1.789e+28
 9 19 -8.716877e+72 2.210e+24 1.000e+00 2.210e+24 2.387e+49
 10 21 -2.426511e+135 8.214e+44 1.000e+00 6.596e+44 1.167e+91
 11 23 -7.428634e+134 4.785e+44 1.000e+00 2.543e+44 5.301e+90
 12 25 -6.128293e+133 2.010e+44 1.000e+00 2.518e+44 1.003e+90
 13 27 -5.589950e+131 9.249e+43 1.000e+00 1.509e+44 3.657e+88
 14 34 2.149685e+130 1.006e+44 1.681e-01 5.456e+43 1.548e+88
 15 36 -3.016774e+137 3.618e+45 1.000e+00 3.206e+45 2.907e+92
 16 38 -3.628884e+137 3.577e+45 1.000e+00 4.039e+44 3.288e+92
 17 87 -3.628884e+137 3.577e+45 2.569e-08 4.560e+37 3.288e+92

Feasible point with lower objective function value found.

Converged to an infeasible point.

fmincon stopped because the size of the current step is less than
the value of the step size tolerance but constraints are not
satisfied to within the value of the constraint tolerance.

Examine Solution and Solution Process

Examine the solution, objective function value, exit flag, and number of function evaluations and
iterations.

5 Nonlinear algorithms and examples

5-124

disp(x)

 1.0e+45 *

 -3.3193 -0.0383 0.2577

disp(fval)

 -3.6289e+137

disp(eflag)

 -2

disp(output.constrviolation)

 3.5773e+45

The objective function value is smaller than –1e250, a very negative value. The constraint violation is
larger than 1e85, a large amount that is still much smaller in magnitude than the objective function
value. The exit flag also shows that the returned solution is infeasible.

To recover the best feasible point that fmincon encounters, along with its objective function value,
display the output.bestfeasible structure.

disp(output.bestfeasible)

 x: [-2.9297 -0.1813 -0.1652]
 fval: -252.9919
 constrviolation: 0
 firstorderopt: 258.5032

The bestfeasible point is not a good solution, as you see in the next section. It is simply the best
feasible point that fmincon encountered in its iterations. In this case, even though bestfeasible is
not a solution, it is a better point than the returned infeasible solution.

table([fval;output.bestfeasible.fval],...
 [output.constrviolation;output.bestfeasible.constrviolation],...
 'VariableNames',["Fval" "Constraint Violation"],'RowNames',["Final Point" "Best Feasible"])

ans=2×2 table
 Fval Constraint Violation
 ____________ ____________________

 Final Point -3.6289e+137 3.5773e+45
 Best Feasible -252.99 0

Improve Solution: Set Bounds

There are several ways to obtain a feasible solution. One way is to set bounds on the variables.

lb = -10*ones(3,1);
ub = -lb;
[xb,fvalb,eflagb,outputb] = fmincon(@bigtoleft,x0,...
 A,b,Aeq,beq,lb,ub,@twocone,options);

 Iter Func-count Fval Feasibility Step Length Norm of First-order
 step optimality
 0 1 -1.625000e-03 0.000e+00 1.000e+00 0.000e+00 8.250e-02

 Obtain Best Feasible Point

5-125

 1 3 -2.490263e-02 0.000e+00 1.000e+00 8.325e-02 5.449e-01
 2 5 -2.529919e+02 0.000e+00 1.000e+00 2.802e+00 2.585e+02
 3 7 -4.867942e+03 5.782e+00 1.000e+00 1.151e+01 1.525e+03
 4 9 -1.035980e+04 3.536e+00 1.000e+00 9.587e+00 1.387e+03
 5 12 -5.270039e+03 2.143e+00 7.000e-01 4.865e+00 2.804e+02
 6 14 -2.538946e+03 2.855e-02 1.000e+00 2.229e+00 1.715e+03
 7 16 -2.703320e+03 2.330e-02 1.000e+00 5.517e-01 2.521e+02
 8 19 -2.845099e+03 0.000e+00 1.000e+00 1.752e+00 8.873e+01
 9 21 -2.896934e+03 2.150e-03 1.000e+00 1.709e-01 1.608e+01
 10 23 -2.894135e+03 7.954e-06 1.000e+00 1.039e-02 2.028e+00
 11 25 -2.894126e+03 4.113e-07 1.000e+00 2.312e-03 2.100e-01
 12 27 -2.894125e+03 4.619e-09 1.000e+00 2.450e-04 1.471e-04

Feasible point with lower objective function value found.

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

The iterative display shows that fmincon starts at a feasible point (feasibility 0), spends a few
iterations infeasible, again reaches 0 feasibility, then has small but nonzero infeasibility for the
remaining iterations. The solver again reports that it found a lower feasible value at a point other
than the final point xb. View the final point and objective function value, and the reported feasible
point with lower objective function value.

disp(xb)

 -6.5000 -0.0000 -3.5000

disp(fvalb)

 -2.8941e+03

disp(outputb.bestfeasible)

 x: [-6.5000 2.4500e-04 -3.5000]
 fval: -2.8941e+03
 constrviolation: 4.1127e-07
 firstorderopt: 0.2100

The constraint violation at the bestfeasible point is about 4.113e-7. In the iterative display, this
infeasibiliity occurs at iteration 11. The reported objective function value at that iteration is
-2.894126e3, which is slightly less than the final value of -2.894125e3. The final point has lower
infeasibility and first-order optimality measure. Which point is better? They are nearly the same, but
each point has some claim to being better. To see the solution details, set the display format to long.

format long
table([fvalb;outputb.bestfeasible.fval],...
 [outputb.constrviolation;outputb.bestfeasible.constrviolation],...
 [outputb.firstorderopt;outputb.bestfeasible.firstorderopt],...
 'VariableNames',["Function Value" "Constraint Violation" "First-Order Optimality"],...
 'RowNames',["Final Point" "Best Feasible"])

ans=2×3 table
 Function Value Constraint Violation First-Order Optimality

5 Nonlinear algorithms and examples

5-126

 _________________ ____________________ ______________________

 Final Point -2894.12500606454 4.61884486213648e-09 0.000147102542086941
 Best Feasible -2894.12553454177 4.11274928779903e-07 0.210022995438408

Improve Solution: Use Another Algorithm

Another way to obtain a feasible solution is to use the 'interior-point' algorithm, even without
bounds,

lb = [];
ub = [];
options.Algorithm = "interior-point";
[xip,fvalip,eflagip,outputip] = fmincon(@bigtoleft,x0,...
 A,b,Aeq,beq,lb,ub,@twocone,options);

 First-order Norm of
 Iter F-count f(x) Feasibility optimality step
 0 1 -1.625000e-03 0.000e+00 7.807e-02
 1 2 -2.374253e-02 0.000e+00 5.222e-01 8.101e-02
 2 3 -2.232989e+02 0.000e+00 2.379e+02 2.684e+00
 3 4 -3.838433e+02 1.768e-01 3.198e+02 5.573e-01
 4 5 -3.115565e+03 1.810e-01 1.028e+03 4.660e+00
 5 6 -3.143463e+03 2.013e-01 8.965e+01 5.734e-01
 6 7 -2.917730e+03 1.795e-02 6.140e+01 5.231e-01
 7 8 -2.894095e+03 0.000e+00 9.206e+00 1.821e-02
 8 9 -2.894107e+03 0.000e+00 2.500e+00 3.899e-03
 9 10 -2.894142e+03 1.299e-05 2.136e-03 1.371e-02
 10 11 -2.894125e+03 3.614e-08 4.070e-03 1.739e-05
 11 12 -2.894125e+03 0.000e+00 5.994e-06 5.832e-08

Feasible point with lower objective function value found.

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

The iterative display again shows fmincon reaching points that are infeasible in its search for a
solution, and fmincon again issues a message that it encountered a feasible point with lower
objective function value.

 disp(xip)

 -6.499999996950366 -0.000000032933161 -3.500000000098132

disp(fvalip)

 -2.894124995999976e+03

disp(outputip.bestfeasible)

 x: [-6.500000035892771 -7.634107876983749e-08 ...]
 fval: -2.894125047137580e+03
 constrviolation: 3.613823373882497e-08
 firstorderopt: 0.004069724065403

 Obtain Best Feasible Point

5-127

Again, the two solutions are nearly the same, and the bestfeasible solution comes from the
iteration before the end. The final solution xip has better first-order optimality measure and
feasibility, but the bestfeasible solution has slightly lower objective function value and an
infeasibility that it not too large.

table([fvalip;outputip.bestfeasible.fval],...
 [outputip.constrviolation;outputip.bestfeasible.constrviolation],...
 [outputip.firstorderopt;outputip.bestfeasible.firstorderopt],...
 'VariableNames',["Function Value" "Constraint Violation" "First-Order Optimality"],...
 'RowNames',["Final Point" "Best Feasible"])

ans=2×3 table
 Function Value Constraint Violation First-Order Optimality
 _________________ ____________________ ______________________

 Final Point -2894.12499599998 0 5.99383541448297e-06
 Best Feasible -2894.12504713758 3.6138233738825e-08 0.00406972406540262

Finally, reset the format to the default short.

format short

Helper Functions

This code creates the bigtoleft helper function.

function [f gradf] = bigtoleft(x)
% This is a simple function that grows rapidly negative
% as x(1) becomes negative
%
f = 10*x(:,1).^3 + x(:,1).*x(:,2).^2 + x(:,3).*(x(:,1).^2 + x(:,2).^2);

if nargout > 1

 gradf=[30*x(1)^2+x(2)^2+2*x(3)*x(1);
 2*x(1)*x(2)+2*x(3)*x(2);
 (x(1)^2+x(2)^2)];

end
end

This code creates the twocone helper function.

function [c ceq gradc gradceq] = twocone(x)
% This constraint is two cones, z > -10 + r
% and z < 3 - r

ceq = [];
r = sqrt(x(1)^2 + x(2)^2);
c = [-10+r-x(3);
 x(3)-3+r];

if nargout > 2

 gradceq = [];
 gradc = [x(1)/r,x(1)/r;
 x(2)/r,x(2)/r;

5 Nonlinear algorithms and examples

5-128

 -1,1];

end
end

This code creates the function that plots the nonlinear constraints.

function figure1 = plottwoconecons
% Create figure
figure1 = figure;

% Create axes
axes1 = axes('Parent',figure1);
view([-63.5 18]);
grid('on');
hold('all');

% Set up polar coordinates and two cones
r = linspace(0,6.5,14);
th = 2*pi*linspace(0,1,40);
x = r'*cos(th);
y = r'*sin(th);
z = -10+sqrt(x.^2+y.^2);
zz = 3-sqrt(x.^2+y.^2);

% Evaluate objective function on cone surfaces
newxf = reshape(bigtoleft([x(:),y(:),z(:)]),14,40)/3000;
newxg = reshape(bigtoleft([x(:),y(:),z(:)]),14,40)/3000;

% Create lower surf with color set by objective
surf(x,y,z,newxf,'Parent',axes1,'EdgeAlpha',0.25);

% Create upper surf with color set by objective
surf(x,y,zz,newxg,'Parent',axes1,'EdgeAlpha',0.25);
axis equal
xlabel 'x(1)'
ylabel 'x(2)'
zlabel 'x(3)'
end

See Also
fmincon

More About
• “When the Solver Might Have Succeeded” on page 4-12

 Obtain Best Feasible Point

5-129

Solve Nonlinear Problem with Many Variables
This example shows how to handle a large number of variables in a nonlinear problem. In general, for
this type of problem:

• Use the Low-memory BFGS (LBFGS) Hessian approximation. This option is available in the default
fminunc and fmincon algorithms.

• If you have an explicit gradient, you can also use a finite-difference Hessian and the 'cg'
subproblem algorithm.

• If you have an explicit Hessian, formulate the Hessian as sparse.
• Although not part of this example, if you have a structured problem and can evaluate the product

of the Hessian with an arbitrary vector, try using a Hessian multiply function. See “Minimization
with Dense Structured Hessian, Linear Equalities” on page 5-99.

The example uses the hfminunc0obj helper function shown at the end of this example on page 5-
0 for the general nonlinear solvers fminunc and fmincon. This function is an N-dimensional
generalization of Rosenbrock's function, a difficult function to minimize numerically. The minimum
value of 0 is attained at the unique point x = ones(N,1).

The function is an explicit sum of squares. Therefore, the example also shows the efficiency of using a
least-squares solver. For the least-squares solver lsqnonlin, the example uses the
hlsqnonlin0obj helper function shown at the end of this example on page 5-0 as a vector
objective function that is equivalent to the hfminunc0obj function.

Problem Setup

Set the problem to use the hfminunc0obj objective function for 1000 variables. Set the initial point
x0 to –2 for each variable.

fun = @hfminunc0obj;
N = 1e3;
x0 = -2*ones(N,1);

For the initial option, specify no display and no limit to the number of function evaluations or
iterations.

options = optimoptions("fminunc",Display="none",...
 MaxFunctionEvaluations=Inf,MaxIterations=Inf);

Set up a table to hold the data. Specify labels for the eight solver runs, and define places to collect
the run time, returned function value, exit flag, number of iterations, and time per iteration.

ExperimentLabels = ["BFGS_NoGrad", "LBFGS_NoGrad",...
 "BFGS_Grad", "LBFGS_Grad", "Analytic", "fin-diff-grads",...
 "LSQ_NoJacob", "LSQ_Jacob"];
timetable = table('Size',[8 5],'VariableTypes',["double" "double" "double" "double" "double"],...
 'VariableNames',["Time" "Fval" "Eflag" "Iters" "TimePerIter"],...
 'RowNames',ExperimentLabels);

The following code sections create the appropriate options for each solver run, and collect the output
directly into the table whenever possible.

BFGS Hessian Approximation, No Gradient
opts = options;
opts.HessianApproximation = 'bfgs';

5 Nonlinear algorithms and examples

5-130

opts.SpecifyObjectiveGradient = false;
overallTime = tic;
[~,timetable.Fval("BFGS_NoGrad"),timetable.Eflag("BFGS_NoGrad"),output] =...
 fminunc(fun, x0, opts);
timetable.Time("BFGS_NoGrad") = toc(overallTime);
timetable.Iters("BFGS_NoGrad") = output.iterations;
timetable.TimePerIter("BFGS_NoGrad") =...
 timetable.Time("BFGS_NoGrad")/timetable.Iters("BFGS_NoGrad");

LBFGS Hessian Approximation, No Gradient

opts = options;
opts.HessianApproximation = 'lbfgs';
opts.SpecifyObjectiveGradient = false;
overallTime = tic;
[~,timetable.Fval("LBFGS_NoGrad"),timetable.Eflag("LBFGS_NoGrad"),output] =...
 fminunc(fun, x0, opts);
timetable.Time("LBFGS_NoGrad") = toc(overallTime);
timetable.Iters("LBFGS_NoGrad") = output.iterations;
timetable.TimePerIter("LBFGS_NoGrad") =...
 timetable.Time("LBFGS_NoGrad")/timetable.Iters("LBFGS_NoGrad");

BFGS with Gradient

opts = options;
opts.HessianApproximation = 'bfgs';
opts.SpecifyObjectiveGradient = true;
overallTime = tic;
[~,timetable.Fval("BFGS_Grad"),timetable.Eflag("BFGS_Grad"),output] =...
 fminunc(fun, x0, opts);
timetable.Time("BFGS_Grad") = toc(overallTime);
timetable.Iters("BFGS_Grad") = output.iterations;
timetable.TimePerIter("BFGS_Grad") =...
 timetable.Time("BFGS_Grad")/timetable.Iters("BFGS_Grad");

LBFGS with Gradient

opts = options;
opts.HessianApproximation = 'lbfgs';
opts.SpecifyObjectiveGradient = true;
overallTime = tic;
[~,timetable.Fval("LBFGS_Grad"),timetable.Eflag("LBFGS_Grad"),output] =...
 fminunc(fun, x0, opts);
timetable.Time("LBFGS_Grad") = toc(overallTime);
timetable.Iters("LBFGS_Grad") = output.iterations;
timetable.TimePerIter("LBFGS_Grad") =...
 timetable.Time("LBFGS_Grad")/timetable.Iters("LBFGS_Grad");

Analytic Hessian, 'trust-region' Algorithm

opts = options;
opts.Algorithm = 'trust-region';
opts.SpecifyObjectiveGradient = true;
opts.HessianFcn = "objective";
overallTime = tic;
[~,timetable.Fval("Analytic"),timetable.Eflag("Analytic"),output] =...
 fminunc(fun, x0, opts);
timetable.Time("Analytic") = toc(overallTime);
timetable.Iters("Analytic") = output.iterations;

 Solve Nonlinear Problem with Many Variables

5-131

timetable.TimePerIter("Analytic") =...
 timetable.Time("Analytic")/timetable.Iters("Analytic");

Finite-Difference Hessian with Gradient, fmincon Solver

opts = optimoptions("fmincon","SpecifyObjectiveGradient",true,...
 "Display","none","HessianApproximation","finite-difference",...
 SubproblemAlgorithm="cg",MaxFunctionEvaluations=Inf,MaxIterations=Inf);
overallTime = tic;
[~,timetable.Fval("fin-diff-grads"),timetable.Eflag("fin-diff-grads"),output] =...
 fmincon(fun, x0, [],[],[],[],[],[],[],opts);
timetable.Time("fin-diff-grads") = toc(overallTime);
timetable.Iters("fin-diff-grads") = output.iterations;
timetable.TimePerIter("fin-diff-grads") =...
 timetable.Time("fin-diff-grads")/timetable.Iters("fin-diff-grads");

Least Squares, No Jacobian

lsqopts = optimoptions("lsqnonlin","Display","none",...
 "MaxFunctionEvaluations",Inf,"MaxIterations",Inf);
fun = @hlsqnonlin0obj;
overallTime = tic;
[~,timetable.Fval("LSQ_NoJacob"),~,timetable.Eflag("LSQ_NoJacob"),output] =...
 lsqnonlin(fun, x0, [],[],lsqopts);
timetable.Time("LSQ_NoJacob") = toc(overallTime);
timetable.Iters("LSQ_NoJacob") = output.iterations;
timetable.TimePerIter("LSQ_NoJacob") =...
 timetable.Time("LSQ_NoJacob")/timetable.Iters("LSQ_NoJacob");

Least Squares with Jacobian

lsqopts.SpecifyObjectiveGradient = true;
overallTime = tic;
[~,timetable.Fval("LSQ_Jacob"),~,timetable.Eflag("LSQ_Jacob"),output] =...
 lsqnonlin(fun, x0, [],[],lsqopts);
timetable.Time("LSQ_Jacob") = toc(overallTime);
timetable.Iters("LSQ_Jacob") = output.iterations;
timetable.TimePerIter("LSQ_Jacob") =...
 timetable.Time("LSQ_Jacob")/timetable.Iters("LSQ_Jacob");

Examine Results

disp(timetable)

 Time Fval Eflag Iters TimePerIter
 ______ __________ _____ _____ ___________

 BFGS_NoGrad 110.44 5.0083e-08 1 7137 0.015475
 LBFGS_NoGrad 53.143 2.476e-07 1 4902 0.010841
 BFGS_Grad 35.491 2.9865e-08 1 7105 0.0049952
 LBFGS_Grad 1.2056 9.7505e-08 1 4907 0.0002457
 Analytic 7.0991 1.671e-10 3 2301 0.0030852
 fin-diff-grads 5.217 1.1422e-15 1 1382 0.003775
 LSQ_NoJacob 94.708 3.7969e-25 1 1664 0.056916
 LSQ_Jacob 6.5225 3.0056e-25 1 1664 0.0039197

The timing results show the following:

• For this problem, the LBFGS Hessian approximation with gradients is the fastest by far.

5 Nonlinear algorithms and examples

5-132

• The next fastest solver runs are fmincon with a finite difference of gradients Hessian, trust-
region fminunc with analytic gradient and Hessian, and lsqnonlin with analytic Jacobian.

• The fminunc BFGS algorithm without gradient has similar speed to the lsqnonlin solver
without Jacobian. Note that lsqnonlin requires many fewer iterations than fminunc for this
problem, but each iteration takes much longer.

• Derivatives make a large difference in speed for all solvers.

Helper Functions

The following code creates the hfminunc0obj helper function.

function [f,G,H] = hfminunc0obj(x)
% Rosenbrock function in N dimensions
N = numel(x);
xx = x(1:N-1);
xx_plus = x(2:N);
f_vec = 100*(xx.^2 - xx_plus).^2 + (xx - 1).^2;
f = sum(f_vec);
if (nargout >= 2) % Gradient
 G = zeros(N,1);
 for k = 1:N
 if (k == 1)
 G(k) = 2*(x(k)-1) + 400*x(k)*(x(k)^2-x(k+1));
 elseif (k == N)
 G(k) = 200*x(k) - 200*x(k-1)^2;
 else
 G(k) = 202*x(k) - 200*x(k-1)^2 - 400*x(k)*(x(k+1) - x(k)^2) - 2;
 end
 end
 if nargout >= 3 % Hessian
 H = spalloc(N,N,3*N);
 for i = 2:(N-1)
 H(i,i) = 202 + 1200*x(i)^2 - 400*x(i+1);
 H(i,i-1) = -400*x(i-1);
 H(i,i+1) = -400*x(i);
 end
 H(1,1) = 2 + 1200*x(1)^2 - 400*x(2);
 H(1,2) = -400*x(1);
 H(N,N) = 200;
 H(N,N-1) = -400*x(N-1);
 end
end
end

The following code creates the hlsqnonlin0obj helper function.

function [f,G] = hlsqnonlin0obj(x)
% Rosenbrock function in N dimensions
N = numel(x);
xx = x(1:N-1);
xx_plus = x(2:N);
f_vec = [10*(xx.^2 - xx_plus), (xx - 1)];
f = reshape(f_vec',[],1); % Vector of length 2*(N-1)
% Jacobian
if (nargout >= 2)
 G = spalloc(2*(N-1),N,3*N); % Jacobian size 2*(N-1)-by-N with 3*N nonzeros
 for k = 1:(N-1)

 Solve Nonlinear Problem with Many Variables

5-133

 G(2*k-1,k) = 10*2*x(k);
 G(2*k-1,k+1) = -10;
 G(2*k,k) = 1;
 end
end
end

See Also
fminunc | fmincon

Related Examples
• “Minimization with Dense Structured Hessian, Linear Equalities” on page 5-99
• “Jacobian Multiply Function with Linear Least Squares” on page 11-31

5 Nonlinear algorithms and examples

5-134

Code Generation in fmincon Background
In this section...
“What Is Code Generation?” on page 5-135
“Code Generation Requirements” on page 5-135
“Generated Code Not Multithreaded” on page 5-136

What Is Code Generation?
Code generation is the conversion of MATLAB code to C code using MATLAB Coder™. Code
generation requires a MATLAB Coder license.

Typically, you use code generation to deploy code on hardware that is not running MATLAB. For
example, you can deploy code on a robot, using fmincon for optimizing movement or planning.

For an example, see “Generate Code for fmincon” on page 5-138. For code generation in other
optimization solvers, see “Generate Code for fsolve” on page 12-38, “Generate Code for quadprog”
on page 10-62, or “Generate Code for lsqcurvefit or lsqnonlin” on page 11-105.

Code Generation Requirements
• fmincon supports code generation using either the codegen function or the MATLAB Coder app.

You must have a MATLAB Coder license to generate code.
• The target hardware must support standard double-precision floating-point computations. You

cannot generate code for single-precision or fixed-point computations.
• Code generation targets do not use the same math kernel libraries as MATLAB solvers. Therefore,

code generation solutions can vary from solver solutions, especially for poorly conditioned
problems.

• All code for generation must be MATLAB code. In particular, you cannot use a custom black-box
function as an objective function for fmincon. You can use coder.ceval to evaluate a custom
function coded in C or C++. However, the custom function must be called in a MATLAB function.

• fmincon does not support the problem argument for code generation.

[x,fval] = fmincon(problem) % Not supported

• You must specify the objective function and any nonlinear constraint function by using function
handles, not strings or character names.

x = fmincon(@fun,x0,A,b,Aeq,beq,lb,ub,@nonlcon) % Supported
% Not supported: fmincon('fun',...) or fmincon("fun",...)

• All fmincon input matrices such as A, Aeq, lb, and ub must be full, not sparse. You can convert
sparse matrices to full by using the full function.

• The lb and ub arguments must have the same number of entries as the x0 argument or must be
empty [].

• For advanced code optimization involving embedded processors, you also need an Embedded
Coder® license.

• You must include options for fmincon and specify them using optimoptions. The options must
include the Algorithm option, set to 'sqp' or 'sqp-legacy'.

 Code Generation in fmincon Background

5-135

options = optimoptions('fmincon','Algorithm','sqp');
[x,fval,exitflag] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options);

• Code generation supports these options:

• Algorithm — Must be 'sqp' or 'sqp-legacy'
• ConstraintTolerance
• FiniteDifferenceStepSize
• FiniteDifferenceType
• MaxFunctionEvaluations
• MaxIterations
• ObjectiveLimit
• OptimalityTolerance
• ScaleProblem
• SpecifyConstraintGradient
• SpecifyObjectiveGradient
• StepTolerance
• TypicalX

• Generated code has limited error checking for options. The recommended way to update an option
is to use optimoptions, not dot notation.

opts = optimoptions('fmincon','Algorithm','sqp');
opts = optimoptions(opts,'MaxIterations',1e4); % Recommended
opts.MaxIterations = 1e4; % Not recommended

• Do not load options from a file. Doing so can cause code generation to fail. Instead, create options
in your code.

• Usually, if you specify an option that is not supported, the option is silently ignored during code
generation. However, if you specify a plot function or output function by using dot notation, code
generation can issue an error. For reliability, specify only supported options.

• Because output functions and plot functions are not supported, fmincon does not return the exit
flag –1.

• Code generated from fmincon does not contain the bestfeasible field in a returned output
structure.

Generated Code Not Multithreaded
By default, generated code for use outside the MATLAB environment uses linear algebra libraries that
are not multithreaded. Therefore, this code can run significantly slower than code in the MATLAB
environment.

If your target hardware has multiple cores, you can achieve better performance by using custom
multithreaded LAPACK and BLAS libraries. To incorporate these libraries in your generated code, see
“Speed Up Linear Algebra in Generated Standalone Code by Using LAPACK Calls” (MATLAB Coder).

See Also
fmincon | codegen | optimoptions

5 Nonlinear algorithms and examples

5-136

More About
• “Code Generation for Optimization Basics” on page 5-138
• “Static Memory Allocation for fmincon Code Generation” on page 5-142
• “Optimization Code Generation for Real-Time Applications” on page 5-144

 Code Generation in fmincon Background

5-137

Code Generation for Optimization Basics

Generate Code for fmincon
This example shows how to generate code for the fmincon optimization solver. Code generation
requires a MATLAB Coder license. For details of code generation requirements, see “Code Generation
in fmincon Background” on page 5-135.

The example uses the following simple objective function. To use this objective function in your own
testing, copy the code to a file named rosenbrockwithgrad.m. Save the file on your MATLAB path.

function [f,g] = rosenbrockwithgrad(x)
% Calculate objective f
f = 100*(x(2) - x(1)^2)^2 + (1 - x(1))^2;

if nargout > 1 % gradient required
 g = [-400*(x(2) - x(1)^2)*x(1) - 2*(1 - x(1));
 200*(x(2) - x(1)^2)];
end

To generate code using the rosenbrockwithgrad objective function, create a file named
test_rosen.m containing this code:

function [x,fval] = test_rosen
opts = optimoptions('fmincon','Algorithm','sqp');
[x fval] = fmincon(@rosenbrockwithgrad,[-1,1],[],[],[],[],[-3,-3],[3,3],[],opts)

Generate code for the test_rosen file.

codegen -config:mex test_rosen

After some time, codegen creates a MEX file named test_rosen_mex.mexw64 (the file extension
will vary, depending on your system). You can run the resulting C code by entering test_rosen_mex.
The results are the following or similar:

x =

 1.0000 1.0000

fval =

 1.3346e-11

ans =

 1.0000 1.0000

Modify Example for Efficiency
Following some of the suggestions in “Optimization Code Generation for Real-Time Applications” on
page 5-144, set the configuration of the generated code to have fewer checks and to use static
memory allocation.

5 Nonlinear algorithms and examples

5-138

cfg = coder.config('mex');
cfg.IntegrityChecks = false;
cfg.SaturateOnIntegerOverflow = false;
cfg.DynamicMemoryAllocation = 'Off';

Tighten the bounds on the problem from [-3,3] to [-2,2]. Also, set a looser optimality tolerance
than the default 1e-6.

function [x,fval] = test_rosen2
opts = optimoptions('fmincon','Algorithm','sqp',...
 'OptimalityTolerance',1e-5);
[x fval eflag output] = fmincon(@rosenbrockwithgrad,[-1,1],[],[],[],[],...
 [-2,-2],[2,2],[],opts)

Generate code for the test_rosen2 file.

codegen -config cfg test_rosen2

Run the resulting code.

test_rosen2_mex

x =

 1.0000 1.0000

fval =

 2.0057e-11

eflag =

 2

output =

 struct with fields:

 iterations: 40
 funcCount: 155
 algorithm: 'sqp'
 constrviolation: 0
 stepsize: 5.9344e-08
 lssteplength: 1

ans =

 1.0000 1.0000

This solution is almost as good as the previous solution, with the fval output around 2e-11
compared to the previous 1e-11.

Try limiting the number of allowed iterations to half of those taken in the previous computation.

 Code Generation for Optimization Basics

5-139

function [x,fval] = test_rosen3
options = optimoptions('fmincon','Algorithm','sqp',...
 'MaxIterations',20);
[x fval eflag output] = fmincon(@rosenbrockwithgrad,[-1,1],[],[],[],[],...
 [-2,-2],[2,2],[],options)

Run test_rosen3 in MATLAB.

test_rosen3

x =

 0.2852 0.0716

fval =

 0.5204

eflag =

 0

output =

 struct with fields:

 iterations: 20
 funcCount: 91
 algorithm: 'sqp'
 message: '↵Solver stopped prematurely.↵↵fmincon stopped because it exceeded the iteration limit,↵options.MaxIterations = 2.000000e+01.↵↵'
 constrviolation: 0
 stepsize: 0.0225
 lssteplength: 1
 firstorderopt: 1.9504

ans =

 0.2852 0.0716

With this severe iteration limit, fmincon does not reach a good solution. The tradeoff between
accuracy and speed can be difficult to manage.

To save function evaluations and possibly increase accuracy, use the built-in derivatives of the
example by setting the SpecifyObjectiveGradient option to true.

function [x,fval] = test_rosen4
options = optimoptions('fmincon','Algorithm','sqp',...
 'SpecifyObjectiveGradient',true);
[x fval eflag output] = fmincon(@rosenbrockwithgrad,[-1,1],[],[],[],[],...
 [-2,-2],[2,2],[],options)

Generate code for test_rosen4 using the same configuration as in test_rosen2.

codegen -config cfg test_rosen4

5 Nonlinear algorithms and examples

5-140

Run the resulting code.

test_rosen4_mex

x =

 1.0000 1.0000

fval =

 3.3610e-20

eflag =

 2

output =

 struct with fields:

 iterations: 40
 funcCount: 113
 algorithm: 'sqp'
 constrviolation: 0
 stepsize: 9.6356e-08
 lssteplength: 1

ans =

 1.0000 1.0000

Compared to test_rosen2, the number of iterations is the same at 40, but the number of function
evaluations is lower at 113 instead of 155. The result has a better (lower) objective function value of
3e-20 compared to 2e-11.

See Also
fmincon | codegen | optimoptions

More About
• “Code Generation in fmincon Background” on page 5-135
• “Code Generation for quadprog Background” on page 10-60
• “Static Memory Allocation for fmincon Code Generation” on page 5-142
• “Optimization Code Generation for Real-Time Applications” on page 5-144

 Code Generation for Optimization Basics

5-141

Static Memory Allocation for fmincon Code Generation
This example shows how to use static memory allocation in code generation even when some matrix
sizes change during a computation.

The problem is a simple nonlinear minimization with both a nonlinear constraint function and linear
constraints. The sizes of the linear constraint matrices change at each iteration, which causes the
memory requirements to increase at each iteration. The example shows how to use the
coder.varsize command to set the appropriate variable sizes for static memory allocation.

The nlp_for_loop.m file contains the objective function, linear constraints, and nonlinear
constraint function. Copy the following code to create this file on your MATLAB path.

function nlp_for_loop
% Driver for an example fmincon use case. Adding constraints increases the
% minimum and uses more memory.

maxIneq = 4; % Number of linear inequality constraints
nVar = 5; % Number of problem variables x

A = zeros(0,nVar);
b = zeros(0,1);

% The next step is required for static memory support. Because you concatenate
% constraints in a "for" loop, you need to limit the dimensions of the
% constraint matrices.
%coder.varsize('var name', [maxRows, maxCols], [canRowsChange, canColsChange]);
coder.varsize('A',[maxIneq,nVar],[true,false]);
coder.varsize('b',[maxIneq,1],[true,false]);

Aeq = [1,0,0,0,1];
beq = 0;
lb = [];
ub = [];

% Initial point
x0 = [2;-3;0;0;-2];

options = optimoptions('fmincon','Algorithm','sqp','Display','none');
for idx = 1:maxIneq
 % Add a new linear inequality constraint at each iteration
 A = [A; circshift([1,1,0,0,0],idx-1)];
 b = [b; -1];

 [x,fval,exitflag] = fmincon(@rosenbrock_nd,x0,A,b,Aeq,beq,...
 lb,ub,@circleconstr,options);
 % Set initial point to found point
 x0 = x;
 % Print fval, ensuring that the datatypes are consistent with the
 % corresponding fprintf format specifiers
 fprintf('%i Inequality Constraints; fval: %f; Exitflag: %i \n',...
 int32(numel(b)),fval,int32(exitflag));
end

end

5 Nonlinear algorithms and examples

5-142

function fval = rosenbrock_nd(x)
fval = 100*sum((x(2:end)-x(1:end-1).^2).^2 + (1-x(1:end-1)).^2);
end

function [c,ceq] = circleconstr(x)

radius = 2;
ceq = [];
c = sum(x.^2) - radius^2;

end

To generate code from this file using static memory allocation, set the coder configuration as follows.

cfg = coder.config('mex');
cfg.DynamicMemoryAllocation = 'Off'; % No dynamic memory allocation
cfg.SaturateOnIntegerOverflow = false; % No MATLAB integer saturation checking
cfg.IntegrityChecks = false; % No checking for out-of-bounds access in arrays

Generate code for the nlp_for_loop.m file.

codegen -config cfg nlp_for_loop

Run the resulting MEX file.

nlp_for_loop_mex

1 Inequality Constraints; fval: 542.688894; Exitflag: 1
2 Inequality Constraints; fval: 793.225322; Exitflag: 1
3 Inequality Constraints; fval: 1072.945843; Exitflag: 1
4 Inequality Constraints; fval: 1400.000000; Exitflag: 1

The function value increases at each iteration because the problem has more constraints.

See Also

More About
• “Code Generation in fmincon Background” on page 5-135
• “Code Generation for Optimization Basics” on page 5-138
• “Optimization Code Generation for Real-Time Applications” on page 5-144

 Static Memory Allocation for fmincon Code Generation

5-143

Optimization Code Generation for Real-Time Applications

Time Limits on Generated Code
Embedded applications might have requirements that limit how long code can run before returning
an answer. Such requirements can be problematic, because solvers give no time guarantees for
optimization. This topic outlines techniques for estimating how long your embedded code will run
before returning a result, and describes changes you can make to your code to shorten the time
requirement.

For general advice on writing efficient code for code generation, see “MATLAB Code Design
Considerations for Code Generation” (MATLAB Coder).

Match the Target Environment
To estimate the execution time of generated code before code generation, set your MATLAB
environment to match the target environment as closely as possible.

• Check the clock speeds of your target hardware and your computer. Scale your benchmarking
results accordingly.

• Set maxNumCompThreads in MATLAB to 1, because the default LAPACK and BLAS libraries
generated by MATLAB Coder are single-threaded.

lastN = maxNumCompThreads(1);

After you finish benchmarking, reset the maxNumCompThreads value:

N = maxNumCompThreads(lastN);
% Alternatively,
% N = maxNumCompThreads('automatic');

Note If your target hardware has multiple cores and you use custom multithreaded LAPACK and
BLAS libraries, then set maxNumCompThreads to the number of threads on the target hardware.
See “Speed Up Linear Algebra in Generated Standalone Code by Using LAPACK Calls” (MATLAB
Coder).

• If you have an Embedded Coder license, see these topics for details on reliable ways to evaluate
the resulting performance of your embedded code: “Speed Up Linear Algebra in Code Generated
from a MATLAB Function Block” (Embedded Coder), “Speed Up Matrix Operations in Code
Generated from a MATLAB Function Block” (Embedded Coder), “Verification” (Embedded Coder),
and “Performance” (Embedded Coder).

Set Coder Configuration
To set the configuration for code generation, call coder.config.

cfg = coder.config('mex');

To save time in the generated code, turn off integrity checks and checks for integer saturation.
Solvers do not rely on these checks to function properly, assuming that the objective function and
nonlinear constraint function do not require them. For details, see “Control Run-Time Checks”
(MATLAB Coder).

5 Nonlinear algorithms and examples

5-144

cfg.IntegrityChecks = false;
cfg.SaturateOnIntegerOverflow = false;

Typically, generated code runs faster when using static memory allocation, although this allocation
can increase the amount of generated code. Also, some hardware does not support dynamic memory
allocation. To use static memory allocation, specify this setting.

cfg.DynamicMemoryAllocation = 'Off';

You can improve the performance of your code by selecting different types of BLAS, the underlying
linear algebra subprograms. To learn how to set the BLAS for your generated code, see “Speed Up
Matrix Operations in Generated Standalone Code by Using BLAS Calls” (MATLAB Coder). If you want
the embedded application to run in parallel, you must supply BLAS or LAPACK libraries that support
parallel computation on your system. Similarly, when you have parallel hardware, you can improve
the performance of your code by setting custom LAPACK calls. See “Speed Up Linear Algebra in
Generated Standalone Code by Using LAPACK Calls” (MATLAB Coder).

Benchmark the Solver
Run your MEX generated code in a loop of 1000 evaluations using a set of input parameters that is
typical of your application. Find both the total time and the maximum of the evaluation times. Try the
parameters that you think might cause the solver to take too long, and test them and other
parameters. If the MEX application returns satisfactory results in reasonable time frames, then you
can expect that the deployed application will do the same.

Set Initial Point
One of the most important factors affecting both runtime and solution quality is the initial point for
the optimization x0. When parameters change slowly between solver calls, the solution from the
previous call is typically a good starting point for the next call. See “Follow Equation Solution as a
Parameter Changes” on page 12-25, which also shows how a jump in the solution time can occur
because the solution switches “Basins of Attraction” on page 4-23.

If your optimization problem does not have parameters changing slowly, and includes only a few
control variables, then trying to estimate a response from previous solutions can be worthwhile.
Construct a model of the solution as a function of the parameters, either as a quadratic in the
parameters or as a low-dimensional interpolation, and use the predicted solution point as a starting
point for the solver.

Set Options Appropriately
You can sometimes speed a solution by adjusting parameters. If you set the MaxIterations option
to allow only a few iterations, then the solver stops quickly. For example, if the solver is fmincon,
enter this code.

opts = optimoptions('fmincon','Algorithm','sqp','MaxIterations',50);
[x,fval,exitflag] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)

However, the result can be far from an optimum. Ensure that an inaccurate result does not overly
affect your system. Set MaxIterations as large as possible while still meeting your time constraint.
You can estimate this value by measuring how long an iteration takes, or by measuring how long a
function evaluation takes, and then either setting the MaxFunctionEvaluations option or the

 Optimization Code Generation for Real-Time Applications

5-145

MaxIterations option. For an example, see “Code Generation for Optimization Basics” on page 5-
138.

For further suggestions on settings that can speed the solver, see “Solver Takes Too Long” on page 4-
9. Note that some suggestions in this topic do not apply because of limitations in code generation.
See “Code Generation in fmincon Background” on page 5-135 or “Code Generation for quadprog
Background” on page 10-60.

Global Minimum
You might want a global minimum, not just a local minimum, as a solution. Searching for a global
minimum can take a great deal of time, and is not guaranteed to work. For suggestions, see
“Searching for a Smaller Minimum” on page 4-22.

See Also
fmincon | codegen | optimoptions | quadprog

More About
• “Code Generation in fmincon Background” on page 5-135
• “Code Generation for quadprog Background” on page 10-60
• “Code Generation for Optimization Basics” on page 5-138
• “Generate Code for quadprog” on page 10-62
• “Static Memory Allocation for fmincon Code Generation” on page 5-142

5 Nonlinear algorithms and examples

5-146

One-Dimensional Semi-Infinite Constraints
Find values of x that minimize

f(x) = (x1 – 0.5)2 + (x2– 0.5)2 + (x3– 0.5)2

where

K1 x, w1 = sin w1x1 cos w1x2 − 1
1000 w1− 50 2− sin w1x3 − x3 ≤ 1,

K2 x, w2 = sin w2x2 cos w2x1 − 1
1000 w2− 50 2− sin w2x3 − x3 ≤ 1,

for all values of w1 and w2 over the ranges

1 ≤ w1 ≤ 100,
1 ≤ w2 ≤ 100.

Note that the semi-infinite constraints are one-dimensional, that is, vectors. Because the constraints
must be in the form Ki(x,wi) ≤ 0, you need to compute the constraints as

K1 x, w1 = sin w1x1 cos w1x2 − 1
1000 w1− 50 2− sin w1x3 − x3− 1 ≤ 0,

K2 x, w2 = sin w2x2 cos w2x1 − 1
1000 w2− 50 2− sin w2x3 − x3− 1 ≤ 0.

First, write a file that computes the objective function.

function f = myfun(x,s)
% Objective function
f = sum((x-0.5).^2);

Second, write a file mycon.m that computes the nonlinear equality and inequality constraints and the
semi-infinite constraints.

function [c,ceq,K1,K2,s] = mycon(X,s)
% Initial sampling interval
if isnan(s(1,1)),
 s = [0.2 0; 0.2 0];
end
% Sample set
w1 = 1:s(1,1):100;
w2 = 1:s(2,1):100;

% Semi-infinite constraints
K1 = sin(w1*X(1)).*cos(w1*X(2)) - 1/1000*(w1-50).^2 -...
 sin(w1*X(3))-X(3)-1;
K2 = sin(w2*X(2)).*cos(w2*X(1)) - 1/1000*(w2-50).^2 -...
 sin(w2*X(3))-X(3)-1;

% No finite nonlinear constraints
c = []; ceq=[];

% Plot a graph of semi-infinite constraints
plot(w1,K1,'-',w2,K2,':')

 One-Dimensional Semi-Infinite Constraints

5-147

title('Semi-infinite constraints')
drawnow

Then, invoke an optimization routine.

x0 = [0.5; 0.2; 0.3]; % Starting guess
[x,fval] = fseminf(@myfun,x0,2,@mycon);

After eight iterations, the solution is

x

x =
 0.6675
 0.3012
 0.4022

The function value and the maximum values of the semi-infinite constraints at the solution x are

fval

fval =
 0.0771

[c,ceq,K1,K2] = mycon(x,NaN); % Initial sampling interval
max(K1)

ans =
 -0.0077

max(K2)

ans =
 -0.0812

A plot of the semi-infinite constraints is produced.

5 Nonlinear algorithms and examples

5-148

This plot shows how peaks in both constraints are on the constraint boundary.

The plot command inside mycon.m slows down the computation. Remove this line to improve the
speed.

See Also
fseminf

Related Examples
• “Two-Dimensional Semi-Infinite Constraint” on page 5-150
• “Analyzing the Effect of Uncertainty Using Semi-Infinite Programming” on page 5-153

 One-Dimensional Semi-Infinite Constraints

5-149

Two-Dimensional Semi-Infinite Constraint
Find values of x that minimize

f(x) = (x1 – 0.2)2 + (x2– 0.2)2 + (x3– 0.2)2,

where

K1 x, w = sin w1x1 cos w2x2 − 1
1000 w1− 50 2− sin w1x3 − x3 + ...

 sin w2x2 cos w1x1 − 1
1000 w2− 50 2− sin w2x3 − x3 ≤ 1.5,

for all values of w1 and w2 over the ranges

1 ≤ w1 ≤ 100,
1 ≤ w2 ≤ 100,

starting at the point x = [0.25,0.25,0.25].

Note that the semi-infinite constraint is two-dimensional, that is, a matrix.

First, write a file that computes the objective function.

function f = myfun(x,s)
% Objective function
f = sum((x-0.2).^2);

Second, write a file for the constraints, called mycon.m. Include code to draw the surface plot of the
semi-infinite constraint each time mycon is called. This enables you to see how the constraint
changes as X is being minimized.

function [c,ceq,K1,s] = mycon(X,s)
% Initial sampling interval
if isnan(s(1,1)),
 s = [2 2];
end

% Sampling set
w1x = 1:s(1,1):100;
w1y = 1:s(1,2):100;
[wx,wy] = meshgrid(w1x,w1y);

% Semi-infinite constraint
K1 = sin(wx*X(1)).*cos(wx*X(2))-1/1000*(wx-50).^2 -...
 sin(wx*X(3))-X(3)+sin(wy*X(2)).*cos(wx*X(1))-...
 1/1000*(wy-50).^2-sin(wy*X(3))-X(3)-1.5;

% No finite nonlinear constraints
c = []; ceq=[];

% Mesh plot
m = surf(wx,wy,K1,'edgecolor','none','facecolor','interp');
camlight headlight
title('Semi-infinite constraint')
drawnow

5 Nonlinear algorithms and examples

5-150

Next, invoke an optimization routine.

x0 = [0.25, 0.25, 0.25]; % Starting guess
[x,fval] = fseminf(@myfun,x0,1,@mycon)

After nine iterations, the solution is

x

x =
 0.2523 0.1715 0.1938

and the function value at the solution is

fval

fval =
 0.0036

The goal was to minimize the objective f(x) such that the semi-infinite constraint satisfied
K1(x,w) ≤ 1.5. Evaluating mycon at the solution x and looking at the maximum element of the matrix
K1 shows the constraint is easily satisfied.

[c,ceq,K1] = mycon(x,[0.5,0.5]); % Sampling interval 0.5
max(max(K1))

ans =
 -0.0370

This call to mycon produces the following surf plot, which shows the semi-infinite constraint at x.

 Two-Dimensional Semi-Infinite Constraint

5-151

See Also
fseminf

Related Examples
• “One-Dimensional Semi-Infinite Constraints” on page 5-147
• “Analyzing the Effect of Uncertainty Using Semi-Infinite Programming” on page 5-153

5 Nonlinear algorithms and examples

5-152

Analyzing the Effect of Uncertainty Using Semi-Infinite
Programming

This example shows how to use semi-infinite programming to investigate the effect of uncertainty in
the model parameters of an optimization problem. We will formulate and solve an optimization
problem using the function fseminf, a semi-infinite programming solver in Optimization Toolbox™.

The problem illustrated in this example involves the control of air pollution. Specifically, a set of
chimney stacks are to be built in a given geographic area. As the height of each chimney stack
increases, the ground level concentration of pollutants from the stack decreases. However, the
construction cost of each chimney stack increases with height. We will solve a problem to minimize
the cumulative height of the chimney stacks, hence construction cost, subject to ground level
pollution concentration not exceeding a legislated limit. This problem is outlined in the following
reference:

Air pollution control with semi-infinite programming, A.I.F. Vaz and E.C. Ferreira, XXVIII Congreso
Nacional de Estadistica e Investigacion Operativa, October 2004

In this example we will first solve the problem published in the above article as the Minimal Stack
Height problem. The models in this problem are dependent on several parameters, two of which are
wind speed and direction. All model parameters are assumed to be known exactly in the first solution
of the problem.

We then extend the original problem by allowing the wind speed and direction parameters to vary
within given ranges. This will allow us to analyze the effects of uncertainty in these parameters on
the optimal solution to this problem.

Minimal Stack Height Problem

Consider a 20km-by-20km region, R, in which ten chimney stacks are to be placed. These chimney
stacks release several pollutants into the atmosphere, one of which is sulfur dioxide. The x, y
locations of the stacks are fixed, but the height of the stacks can vary.

Constructors of the stacks would like to minimize the total height of the stacks, thus minimizing
construction costs. However, this is balanced by the conflicting requirement that the concentration of
sulfur dioxide at any point on the ground in the region R must not exceed the legislated maximum.

First, let's plot the chimney stacks at their initial height. Note that we have zoomed in on a 4km-
by-4km subregion of R which contains the chimney stacks.

h0 = [210;210;180;180;150;150;120;120;90;90];
plotChimneyStacks(h0, 'Chimney Stack Initial Height');

 Analyzing the Effect of Uncertainty Using Semi-Infinite Programming

5-153

There are two environment related parameters in this problem, the wind speed and direction. Later
in this example we will allow these parameters to vary, but for the first problem we will set these
parameters to typical values.

% Wind direction in radians
theta0 = 3.996;
% Wind speed in m/s
U0 = 5.64;

Now let's plot the ground level concentration of sulfur dioxide (SO2) over the entire region R
(remember that the plot of chimney stacks was over a smaller region). The SO2 concentration has
been calculated with the chimney stacks set to their initial heights.

We can see that the concentration of SO2 varies over the region of interest. There are two features of
the Sulfur Dioxide graph of note:

• SO2 concentration rises in the top left hand corner of the (x,y) plane
• SO2 concentration is approximately zero throughout most of the region

In very simple terms, the first feature is due to the prevailing wind, which is blowing SO2 toward the
top left hand corner of the (x,y) plane in this example. The second factor is due to SO2 being
transported to the ground via diffusion. This is a slower process compared to the prevailing wind and
thus SO2 only reaches ground level in the top left hand corner of the region of interest.

For a more detailed discussion of atmospheric dispersion from chimney stacks, consult the reference
cited in the introduction.

5 Nonlinear algorithms and examples

5-154

The pink plane indicates a SO2 concentration of 0 . 000125gm−3. This is the legislated maximum for
which the Sulfur Dioxide concentration must not exceed in the region R. It can be clearly seen from
the graph that the SO2 concentration exceeds the maximum for the initial chimney stack height.

Examine the MATLAB file concSulfurDioxide to see how the sulfur dioxide concentration is
calculated.

plotSulfurDioxide(h0, theta0, U0, ...
 'Sulfur Dioxide Concentration at Initial Stack Height');

How fseminf Works

Before we solve the minimal stack height problem, we will outline how fseminf solves a semi-infinite
problem. A general semi-infinite programming problem can be stated as:

minf (x)

such that

Ax < = b (Linear inequality constraints)

Aeq * x = beq (Linear equality constraints)

c(x) < = 0 (Nonlinear Inequality Constraints)

ceq(x) = 0 (Nonlinear Equality Constraints)

 Analyzing the Effect of Uncertainty Using Semi-Infinite Programming

5-155

l < = x < = u (Bounds)

and

K j(x, w) < = 0, where w ∈ I j for j = 1, . . . , ninf (Nonlinear semi-infinite constraints)

This algorithm allows you to specify constraints for a nonlinear optimization problem that must be
satisfied over intervals of an auxiliary variable, w. Note that for fseminf, this variable is restricted to
be either 1 or 2 dimensional for each semi-infinite constraint.

The function fseminf solves the general semi-infinite problem by starting from an initial value, x0,
and using an iterative procedure to obtain an optimum solution, xopt.

The key component of the algorithm is the handling of the "semi-infinite" constraints, K j. At xopt it is
required that the K j must be feasible at every value of w in the interval I j. This constraint can be
simplified by considering all the local maxima of K j with respect to w in the interval I j. The original
constraint is equivalent to requiring that the value of K j at each of the above local maxima is feasible.

fseminf calculates an approximation to all the local maximum values of each semi-infinite
constraint, K j. To do this, fseminf first calculates each semi-infinite constraint over a mesh of w
values. A simple differencing scheme is then used to calculate all the local maximum values of K j
from the evaluated semi-infinite constraint.

As we will see later, you create this mesh in your constraint function. The spacing you should use for
each w coordinate of the mesh is supplied to your constraint function by fseminf.

At each iteration of the algorithm, the following steps are performed:

1 Evaluate K j over a mesh of w-values using the current mesh spacing for each w-coordinate.
2 Calculate an approximation to all the local maximum values of K j using the evaluation of K j from

step 1.
3 Replace each K j in the general semi-infinite problem with the set of local maximum values found

in steps 1-2. The problem now has a finite number of nonlinear constraints. fseminf uses the
SQP algorithm used by fmincon to take one iteration step of the modified problem.

4 Check if any of the SQP algorithm's stopping criteria are met at the new point x. If any criteria
are met the algorithm terminates; if not, fseminf continues to step 5. For example, if the first
order optimality value for the problem defined in step 3 is less than the specified tolerance then
fseminf will terminate.

5 Update the mesh spacing used in the evaluation of the semi-infinite constraints in step 1.

Writing the Nonlinear Constraint Function

Before we can call fseminf to solve the problem, we need to write a function to evaluate the
nonlinear constraints in this problem. The constraint to be implemented is that the ground level
Sulfur Dioxide concentration must not exceed 0 . 000125gm−3 at every point in region R.

This is a semi-infinite constraint, and the implementation of the constraint function is explained in
this section. For the minimal stack height problem we have implemented the constraint in the
MATLAB file airPollutionCon.

type airPollutionCon.m

5 Nonlinear algorithms and examples

5-156

function [c, ceq, K, s] = airPollutionCon(h, s, theta, U)
%AIRPOLLUTIONCON Constraint function for air pollution demo
%
% [C, CEQ, K, S] = AIRPOLLUTIONCON(H, S, THETA, U) calculates the
% constraints for the air pollution Optimization Toolbox (TM) demo. This
% function first creates a grid of (X, Y) points using the supplied grid
% spacing, S. The following constraint is then calculated over each point
% of the grid:
%
% Sulfur Dioxide concentration at the specified wind direction, THETA and
% wind speed U <= 1.25e-4 g/m^3
%
% See also AIRPOLLUTION

% Copyright 2008 The MathWorks, Inc.

% Initial sampling interval
if nargin < 2 || isnan(s(1,1))
 s = [1000 4000];
end

% Define the grid that the "infinite" constraints will be evaluated over
w1x = -20000:s(1,1):20000;
w1y = -20000:s(1,2):20000;
[t1,t2] = meshgrid(w1x,w1y);

% Maximum allowed sulphur dioxide
maxsul = 1.25e-4;

% Calculate the constraint over the grid
K = concSulfurDioxide(t1, t2, h, theta, U) - maxsul;

% Rescale constraint to make it 0(1)
K = 1e4*K;

% No finite constraints
c = [];
ceq = [];

This function illustrates the general structure of a constraint function for a semi-infinite programming
problem. In particular, a constraint function for fseminf can be broken up into three parts:

1. Define the initial mesh size for the constraint evaluation

Recall that fseminf evaluates the "semi-infinite" constraints over a mesh as part of the overall
calculation of these constraints. When your constraint function is called by fseminf, the mesh
spacing you should use is supplied to your function. Fseminf will initially call your constraint
function with the mesh spacing, s, set to NaN. This allows you to initialize the mesh size for the
constraint evaluation. Here, we have one "infinite" constraint in two "infinite" variables. This means
we need to initialize the mesh size to a 1-by-2 matrix, in this case, s = [1000 4000].

2. Define the mesh that will be used for the constraint evaluation

A mesh that will be used for the constraint evaluation needs to be created. The three lines of code
following the comment "Define the grid that the "infinite" constraints will be evaluated over" in
airPollutionCon can be modified for most 2-d semi-infinite programming problems.

3. Calculate the constraints over the mesh

 Analyzing the Effect of Uncertainty Using Semi-Infinite Programming

5-157

Once the mesh has been defined, the constraints can be calculated over it. These constraints are then
returned to fseminf from the above constraint function.

Note that in this problem, we have also rescaled the constraints so that they vary on a scale which is
closer to that of the objective function. This helps fseminf to avoid scaling issues associated with
objectives and constraints which vary on disparate scales.

Solve the Optimization Problem

We can now call fseminf to solve the problem. The chimney stacks must all be at least 10m tall and
we use the initial stack height specified earlier. Note that the third input argument to fseminf below
(1) indicates that there is only one semi-infinite constraint.

lb = 10*ones(size(h0));
[hsopt, sumh, exitflag] = fseminf(@(h)sum(h), h0, 1, ...
 @(h,s) airPollutionCon(h,s,theta0,U0), [], [], [], [], lb);

Local minimum possible. Constraints satisfied.

fseminf stopped because the predicted change in the objective function
is less than the value of the function tolerance and constraints
are satisfied to within the value of the constraint tolerance.

fprintf('\nMinimum computed cumulative height of chimney stacks : %7.2f m\n', sumh);

Minimum computed cumulative height of chimney stacks : 3667.19 m

The minimum cumulative height computed by fseminf is considerably higher than the initial total
height of the chimney stacks. We will see how the minimum cumulative height changes when
parameter uncertainty is added to the problem later in the example. For now, let's plot the chimney
stacks at their optimal height.

Examine the MATLAB file plotChimneyStacks to see how the plot was generated.

plotChimneyStacks(hsopt, 'Chimney Stack Optimal Height');

5 Nonlinear algorithms and examples

5-158

Check the Optimization Results

Recall that fseminf determines that the semi-infinite constraint is satisfied everywhere by ensuring
that discretized maxima of the constraint are below the specified bound. We can verify that the semi-
infinite constraint is satisfied everywhere by plotting the ground level sulfur dioxide concentration for
the optimal stack height.

Note that the sulfur dioxide concentration takes its maximum possible value in the upper left corner
of the (x, y) plane, i.e. at x = -20000m, y = 20000m. This point is marked by the blue dot in the figure
below and verified by calculating the sulfur dioxide concentration at this point.

Examine the MATLAB file plotSulfurDioxide to see how the plots was generated.

titleStr = 'Optimal Sulfur Dioxide Concentration and its maximum (blue)';
xMaxSD = [-20000 20000];
plotSulfurDioxide(hsopt, theta0, U0, titleStr, xMaxSD);

 Analyzing the Effect of Uncertainty Using Semi-Infinite Programming

5-159

SO2Max = concSulfurDioxide(-20000, 20000, hsopt, theta0, U0);
fprintf('Sulfur Dioxide Concentration at x = -20000m, y = 20000m : %e g/m^3\n', SO2Max);

Sulfur Dioxide Concentration at x = -20000m, y = 20000m : 1.250000e-04 g/m^3

Considering Uncertainty in the Environmental Factors

The sulfur dioxide concentration depends on several environmental factors which were held at fixed
values in the above problem. Two of the environmental factors are wind speed and wind direction.
See the reference cited in the introduction for a more detailed discussion of all the problem
parameters.

We can investigate the change in behavior for the system with respect to the wind speed and
direction. In this section of the example, we want to make sure that the sulfur dioxide limits are
satisfied even if the wind direction changes from 3.82 rad to 4.18 rad and mean wind speed varies
between 5 and 6.2 m/s.

We need to implement a semi-infinite constraint to ensure that the sulfur dioxide concentration does
not exceed the limit in region R. This constraint is required to be feasible for all pairs of wind speed
and direction.

Such a constraint will have four "infinite" variables (wind speed and direction and the x-y coordinates
of the ground). However, any semi-infinite constraint supplied to fseminf can have no more than two
"infinite" variables.

To implement this constraint in a suitable form for fseminf, we recall the SO2 concentration at the
optimum stack height in the previous problem. In particular, the SO2 concentration takes its

5 Nonlinear algorithms and examples

5-160

maximum possible value at x = -20000m, y = 20000m. To reduce the number of "infinite" variables,
we will assume that the SO2 concentration will also take its maximum value at this point when
uncertainty is present. We then require that SO2 concentration at this point is below 0 . 000125gm−3

for all pairs of wind speed and direction.

This means that the "infinite" variables for this problem are wind speed and direction. To see how this
constraint has been implemented, inspect the MATLAB file uncertainAirPollutionCon.

type uncertainAirPollutionCon.m

function [c, ceq, K, s] = uncertainAirPollutionCon(h, s)
%UNCERTAINAIRPOLLUTIONCON Constraint function for air pollution demo
%
% [C, CEQ, K, S] = UNCERTAINAIRPOLLUTIONCON(H, S) calculates the
% constraints for the fseminf Optimization Toolbox (TM) demo. This
% function first creates a grid of wind speed/direction points using the
% supplied grid spacing, S. The following constraint is then calculated
% over each point of the grid:
%
% Sulfur Dioxide concentration at x = -20000m, y = 20000m <= 1.25e-4
% g/m^3
%
% See also AIRPOLLUTIONCON, AIRPOLLUTION

% Copyright 2008 The MathWorks, Inc.

% Maximum allowed sulphur dioxide
maxsul = 1.25e-4;

% Initial sampling interval
if nargin < 2 || isnan(s(1,1))
 s = [0.02 0.04];
end

% Define the grid that the "infinite" constraints will be evaluated over
w1x = 3.82:s(1,1):4.18; % Wind direction
w1y = 5.0:s(1,2):6.2; % Wind speed
[t1,t2] = meshgrid(w1x,w1y);

% We assume the maximum SO2 concentration is at [x, y] = [-20000, 20000]
% for all wind speed/direction pairs. We evaluate the SO2 constraint over
% the [theta, U] grid at this point.
K = concSulfurDioxide(-20000, 20000, h, t1, t2) - maxsul;

% Rescale constraint to make it 0(1)
K = 1e4*K;

% No finite constraints
c = [];
ceq = [];

This constraint function can be divided into same three sections as before:

1. Define the initial mesh size for the constraint evaluation

The code following the comment "Initial sampling interval" initializes the mesh size.

2. Define the mesh that will be used for the constraint evaluation

 Analyzing the Effect of Uncertainty Using Semi-Infinite Programming

5-161

The next section of code creates a mesh (now in wind speed and direction) using a similar
construction to that used in the initial problem.

3. Calculate the constraints over the mesh

The remainder of the code calculates the SO2 concentration at each point of the wind speed/direction
mesh. These constraints are then returned to fseminf from the above constraint function.

We can now call fseminf to solve the stack height problem considering uncertainty in the
environmental factors.

[hsopt2, sumh2, exitflag2] = fseminf(@(h)sum(h), h0, 1, ...
 @uncertainAirPollutionCon, [], [], [], [], lb);

Local minimum possible. Constraints satisfied.

fseminf stopped because the predicted change in the objective function
is less than the value of the function tolerance and constraints
are satisfied to within the value of the constraint tolerance.

fprintf('\nMinimal computed cumulative height of chimney stacks with uncertainty: %7.2f m\n', sumh2);

Minimal computed cumulative height of chimney stacks with uncertainty: 3811.54 m

We can now look at the difference between the minimum computed cumulative stack height for the
problem with and without parameter uncertainty. You should be able to see that the minimum
cumulative height increases when uncertainty is added to the problem. This expected increase in
height allows the SO2 concentration to remain below the legislated maximum for all wind speed/
direction pairs in the specified range.

We can check that the sulfur dioxide concentration does not exceed the limit over the region of
interest via inspection of a sulfur dioxide plot. For a given (x, y) point, we plot the maximum SO2
concentration for the wind speed and direction in the stated ranges. Note that we have zoomed in on
the upper left corner of the X-Y plane.

titleStr = 'Optimal Sulfur Dioxide Concentration under Uncertainty';
thetaRange = 3.82:0.02:4.18;
URange = 5:0.2:6.2;
XRange = [-20000,-15000];
YRange = [15000,20000];
plotSulfurDioxideUncertain(hsopt2, thetaRange, URange, XRange, YRange, titleStr);

5 Nonlinear algorithms and examples

5-162

We finally plot the chimney stacks at their optimal height when there is uncertainty in the problem
definition.

plotChimneyStacks(hsopt2, 'Chimney Stack Optimal Height under Uncertainty');

 Analyzing the Effect of Uncertainty Using Semi-Infinite Programming

5-163

There are many options available for the semi-infinite programming algorithm, fseminf. Consult the
Optimization Toolbox™ User's Guide for details, in the Using Optimization Toolbox Solvers chapter,
under Constrained Nonlinear Optimization: fseminf Problem Formulation and Algorithm.

See Also

More About
• “One-Dimensional Semi-Infinite Constraints” on page 5-147
• “Two-Dimensional Semi-Infinite Constraint” on page 5-150

5 Nonlinear algorithms and examples

5-164

Nonlinear Problem-Based

• “Rational Objective Function, Problem-Based” on page 6-2
• “Solve Constrained Nonlinear Optimization, Problem-Based” on page 6-4
• “Convert Nonlinear Function to Optimization Expression” on page 6-8
• “Constrained Electrostatic Nonlinear Optimization, Problem-Based” on page 6-14
• “Problem-Based Nonlinear Minimization with Linear Constraints” on page 6-19
• “Effect of Automatic Differentiation in Problem-Based Optimization” on page 6-23
• “Supply Derivatives in Problem-Based Workflow” on page 6-26
• “Obtain Generated Function Details” on page 6-34
• “Output Function for Problem-Based Optimization” on page 6-37
• “Obtain Solution Using Feasibility Mode” on page 6-42
• “Integer Constraints in Nonlinear Problem-Based Optimization” on page 6-46
• “Solve Nonlinear Feasibility Problem, Problem-Based” on page 6-47
• “Feasibility Using Problem-Based Optimize Live Editor Task” on page 6-51

6

Rational Objective Function, Problem-Based
The problem-based approach to optimization involves creating optimization variables and expressing
the objective and constraints in terms of those variables.

A rational function is a quotient of polynomials. When the objective function is a rational function of
optimization variables or other supported function, you can create the objective function expression
directly from the variables. In contrast, when your objective function is not a supported function, you
must create a MATLAB® function that represents the objective and then convert the function to an
expression by using fcn2optimexpr. See “Supported Operations for Optimization Variables and
Expressions” on page 9-43 and “Convert Nonlinear Function to Optimization Expression” on page 6-
8.

For example, write the objective function

f = (x− y)2

4 + (x + y)4
x + y2

1 + y2

in terms of two optimization variables x and y.

x = optimvar('x');
y = optimvar('y');
f = (x-y)^2/(4+(x+y)^4)*(x+y^2)/(1+y^2);

To find the minimum of this objective function, create an optimization problem with f as the
objective, set an initial point, and call solve.

prob = optimproblem('Objective',f);
x0.x = -1;
x0.y = 1;
[sol,fval,exitflag,output] = solve(prob,x0)

Solving problem using fminunc.

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

sol = struct with fields:
 x: -2.1423
 y: 0.7937

fval = -1.0945

exitflag =
 OptimalSolution

output = struct with fields:
 iterations: 9
 funcCount: 10
 stepsize: 1.7073e-06
 lssteplength: 1
 firstorderopt: 1.4999e-07
 algorithm: 'quasi-newton'

6 Nonlinear Problem-Based

6-2

 message: 'Local minimum found....'
 objectivederivative: "reverse-AD"
 solver: 'fminunc'

The exit flag shows that the reported solution is a local minimum. The output structure shows that
the solver took just 30 function evaluations to reach the minimum.

See Also
fcn2optimexpr

More About
• “Problem-Based Optimization Workflow” on page 9-2
• “Problem-Based Optimization Setup”

 Rational Objective Function, Problem-Based

6-3

Solve Constrained Nonlinear Optimization, Problem-Based
This example shows how to find the minimum of a nonlinear objective function with a nonlinear
constraint by using the problem-based approach. For a video showing the solution to a similar
problem, see Problem-Based Nonlinear Programming.

To find the minimum value of a nonlinear objective function using the problem-based approach, first
write the objective function as a file or anonymous function. The objective function for this example is

f (x, y) = ex 4x2 + 2y2 + 4xy + 2y − 1 .

type objfunx

function f = objfunx(x,y)
f = exp(x).*(4*x.^2 + 2*y.^2 + 4*x.*y + 2*y - 1);
end

Create the optimization problem variables x and y.

x = optimvar('x');
y = optimvar('y');

Create the objective function as an expression in the optimization variables.

obj = objfunx(x,y);

Create an optimization problem with obj as the objective function.

prob = optimproblem('Objective',obj);

Create a nonlinear constraint that the solution lies in a tilted ellipse, specified as

xy
2 + (x + 2)2 + (y − 2)2

2 ≤ 2 .

Create the constraint as an inequality expression in the optimization variables.

TiltEllipse = x.*y/2 + (x+2).^2 + (y-2).^2/2 <= 2;

Include the constraint in the problem.

prob.Constraints.constr = TiltEllipse;

Create a structure representing the initial point as x = –3, y = 3.

x0.x = -3;
x0.y = 3;

Review the problem.

show(prob)

 OptimizationProblem :

 Solve for:
 x, y

6 Nonlinear Problem-Based

6-4

https://www.mathworks.com/videos/mathematical-modeling-with-optimization-part-4-problem-based-nonlinear-programming-1545429248850.html

 minimize :
 (exp(x) .* (((((4 .* x.^2) + (2 .* y.^2)) + ((4 .* x) .* y))
 + (2 .* y)) - 1))

 subject to constr:
 ((((x .* y) ./ 2) + (x + 2).^2) + ((y - 2).^2 ./ 2)) <= 2

Solve the problem.

[sol,fval] = solve(prob,x0)

Solving problem using fmincon.

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

sol = struct with fields:
 x: -5.2813
 y: 4.6815

fval = 0.3299

Try a different start point.

x0.x = -1;
x0.y = 1;
[sol2,fval2] = solve(prob,x0)

Solving problem using fmincon.

Feasible point with lower objective function value found.

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

sol2 = struct with fields:
 x: -0.8210
 y: 0.6696

fval2 = 0.7626

Plot the ellipse, the objective function contours, and the two solutions.

f = @objfunx;
g = @(x,y) x.*y/2+(x+2).^2+(y-2).^2/2-2;
rnge = [-5.5 -0.25 -0.25 7];
fimplicit(g,'k-')
axis(rnge);

 Solve Constrained Nonlinear Optimization, Problem-Based

6-5

hold on
fcontour(f,rnge,'LevelList',logspace(-1,1))
plot(sol.x,sol.y,'ro','LineWidth',2)
plot(sol2.x,sol2.y,'ko','LineWidth',2)
legend('Constraint','f Contours','Global Solution','Local Solution','Location','northeast');
hold off

The solutions are on the nonlinear constraint boundary. The contour plot shows that these are the
only local minima. The plot also shows that there is a stationary point near [–2,3/2], and local maxima
near [–2,0] and [–1,4].

Convert Objective Function Using fcn2optimexpr

For some objective functions or software versions, you must convert nonlinear functions to
optimization expressions by using fcn2optimexpr. See “Supported Operations for Optimization
Variables and Expressions” on page 9-43 and “Convert Nonlinear Function to Optimization
Expression” on page 6-8. Pass the x and y variables in the fcn2optimexpr call to indicate which
optimization variable corresponds to each objfunx input.

obj = fcn2optimexpr(@objfunx,x,y);

Create an optimization problem with obj as the objective function just as before.

prob = optimproblem('Objective',obj);

The remainder of the solution process is identical.

6 Nonlinear Problem-Based

6-6

Copyright 2018–2020 The MathWorks, Inc.

See Also
fcn2optimexpr

More About
• “Problem-Based Optimization Workflow” on page 9-2
• “Problem-Based Nonlinear Optimization”

 Solve Constrained Nonlinear Optimization, Problem-Based

6-7

Convert Nonlinear Function to Optimization Expression
This section shows how to choose whether to convert a nonlinear function to an optimization
expression or to create the expression out of supported operations on optimization variables. The
section also shows how to convert a function, if necessary, by using fcn2optimexpr.

Use Supported Operations When Possible

Generally, create your objective or nonlinear constraint functions by using supported operations on
optimization variables and expressions. Doing so has these advantages:

• solve includes gradients calculated by automatic differentiation. See “Effect of Automatic
Differentiation in Problem-Based Optimization” on page 6-23.

• solve has a wider choice of available solvers. When using fcn2optimexpr, solve generally
uses only fmincon or fminunc, except when the function is a sum of squares.

In general, supported operations include all elementary mathematical operations: addition,
subtraction, multiplication, division, powers, and elementary functions such as exponential and
trigonometric functions and their inverses. Nonsmooth operations such as max, abs, if, and case
are not supported. For the complete description, see “Supported Operations for Optimization
Variables and Expressions” on page 9-43.

For example, suppose that your objective function is

f (x, y, r) = 100 y − x2 2 + (r − x)2

where r is a parameter that you supply, and the problem is to minimize f over x and y . This objective
function is a sum of squares, and takes the minimal value of 0 at the point x = r, y = r2.

The objective function is a polynomial, so you can write it in terms of elementary operations on
optimization variables.

r = 2;
x = optimvar('x');
y = optimvar('y');
f = 100*(y - x^2)^2 + (r - x)^2;
prob = optimproblem("Objective",f);
x0.x = -1;
x0.y = 2;
[sol,fval] = solve(prob,x0)

Solving problem using lsqnonlin.

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

sol = struct with fields:
 x: 2.0000
 y: 4.0000

fval = 8.0661e-29

6 Nonlinear Problem-Based

6-8

To solve the same problem by converting the objective function using fcn2optimexpr (not
recommended), first write the objective as an anonymous function.

fun = @(x,y)100*(y - x^2)^2 + (r - x)^2;

Convert the anonymous function to an optimization expression with the Analysis name-value
argument set to "off".

prob.Objective = fcn2optimexpr(fun,x,y,Analysis="off");
[sol2,fval2] = solve(prob,x0)

Solving problem using fminunc.

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

sol2 = struct with fields:
 x: 2.0000
 y: 3.9998

fval2 = 1.7143e-09

Notice that solve uses fminunc this time instead of the more efficient lsqnonlin, and the reported
solution for y is slightly different than the correct value 4. Furthermore, the reported fval is about
1e-9 instead of 1e-20 (the true value is exactly 0). These slight inaccuracies are due to solve not
using the more efficient solver.

The remainder of this example shows how to convert a function to an optimization expression for use
in objective function or nonlinear constraint by using fcn2optimexpr.

Function File

To use a function file in the problem-based approach, you must convert the file to an expression using
fcn2optimexpr.

For example, the expfn3.m file contains the following code:

type expfn3.m

function [f,g,mineval] = expfn3(u,v)
mineval = min(eig(u));
f = v'*u*v;
f = -exp(-f);
t = u*v;
g = t'*t + sum(t) - 3;

This function is not entirely composed of supported operations because of min(eig(u)). Therefore,
to use expfn3(u,v) as an optimization expression, you must first convert it using fcn2optimexpr.

To use expfn3 as an optimization expression, first create optimization variables of the appropriate
sizes.

u = optimvar('u',3,3,'LowerBound',-1,'UpperBound',1); % 3-by-3 variable
v = optimvar('v',3,'LowerBound',-2,'UpperBound',2); % 3-by-1 variable

Convert the function file to an optimization expressions using fcn2optimexpr.

 Convert Nonlinear Function to Optimization Expression

6-9

[f,g,mineval] = fcn2optimexpr(@expfn3,u,v);

Because all returned expressions are scalar, you can save computing time by specifying the
expression sizes using the 'OutputSize' name-value argument. Also, because expfn3 computes all
of the outputs, you can save more computing time by using the ReuseEvaluation name-value
argument.

[f,g,mineval] = fcn2optimexpr(@expfn3,u,v,'OutputSize',[1,1],'ReuseEvaluation',true)

f =
 Nonlinear OptimizationExpression

 [argout,~,~] = expfn3(u, v)

g =
 Nonlinear OptimizationExpression

 [~,argout,~] = expfn3(u, v)

mineval =
 Nonlinear OptimizationExpression

 [~,~,argout] = expfn3(u, v)

Anonymous Function

To use a general nonlinear function handle in the problem-based approach, convert the handle to an
optimization expression using fcn2optimexpr. For example, write a function handle equivalent to
mineval and convert it.

fun = @(u)min(eig(u));
funexpr = fcn2optimexpr(fun,u,'OutputSize',[1,1])

funexpr =
 Nonlinear OptimizationExpression

 anonymousFunction2(u)

 where:

 anonymousFunction2 = @(u)min(eig(u));

Create Objective

To use the objective expression as an objective function, create an optimization problem.

prob = optimproblem;
prob.Objective = f;

Define Constraints

Define the constraint g <= 0 in the optimization problem.

prob.Constraints.nlcons1 = g <= 0;

6 Nonlinear Problem-Based

6-10

Also define the constraints that u is symmetric and that mineval ≥ − 1/2.

prob.Constraints.sym = u == u.';
prob.Constraints.mineval = mineval >= -1/2;

View the problem.

show(prob)

 OptimizationProblem :

 Solve for:
 u, v

 minimize :
 [argout,~,~] = expfn3(u, v)

 subject to nlcons1:
 arg_LHS <= 0

 where:

 [~,arg_LHS,~] = expfn3(u, v);

 subject to sym:
 u(2, 1) - u(1, 2) == 0
 u(3, 1) - u(1, 3) == 0
 -u(2, 1) + u(1, 2) == 0
 u(3, 2) - u(2, 3) == 0
 -u(3, 1) + u(1, 3) == 0
 -u(3, 2) + u(2, 3) == 0

 subject to mineval:
 arg_LHS >= (-0.5)

 where:

 [~,~,arg_LHS] = expfn3(u, v);

 variable bounds:
 -1 <= u(1, 1) <= 1
 -1 <= u(2, 1) <= 1
 -1 <= u(3, 1) <= 1
 -1 <= u(1, 2) <= 1
 -1 <= u(2, 2) <= 1
 -1 <= u(3, 2) <= 1
 -1 <= u(1, 3) <= 1
 -1 <= u(2, 3) <= 1
 -1 <= u(3, 3) <= 1

 -2 <= v(1) <= 2
 -2 <= v(2) <= 2
 -2 <= v(3) <= 2

Solve Problem

To solve the problem, call solve. Set an initial point x0.

 Convert Nonlinear Function to Optimization Expression

6-11

rng default % For reproducibility
x0.u = 0.25*randn(3);
x0.u = x0.u + x0.u.';
x0.v = 2*randn(3,1);
[sol,fval,exitflag,output] = solve(prob,x0)

Solving problem using fmincon.

Feasible point with lower objective function value found.

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

sol = struct with fields:
 u: [3x3 double]
 v: [3x1 double]

fval = -403.4288

exitflag =
 OptimalSolution

output = struct with fields:
 iterations: 74
 funcCount: 1092
 constrviolation: 3.8562e-12
 stepsize: 1.5306e-04
 algorithm: 'interior-point'
 firstorderopt: 0.0012
 cgiterations: 74
 message: 'Local minimum found that satisfies the constraints....'
 bestfeasible: [1x1 struct]
 objectivederivative: "finite-differences"
 constraintderivative: "finite-differences"
 solver: 'fmincon'

View the solution.

disp(sol.u)

 0.8868 0.6972 -0.6895
 0.6972 0.9535 0.7563
 -0.6895 0.7563 0.9458

disp(sol.v)

 2.0000
 -2.0000
 2.0000

The solution matrix u is symmetric. All values of v are at the bounds.

6 Nonlinear Problem-Based

6-12

Copyright 2018–2020 The MathWorks, Inc.

See Also
fcn2optimexpr | solve

More About
• “Problem-Based Optimization Workflow” on page 9-2
• “Problem-Based Workflow for Solving Equations” on page 9-4
• “Problem-Based Optimization Setup”

 Convert Nonlinear Function to Optimization Expression

6-13

Constrained Electrostatic Nonlinear Optimization, Problem-
Based

Consider the electrostatics problem of placing 20 electrons in a conducting body. The electrons will
arrange themselves in a way that minimizes their total potential energy, subject to the constraint of
lying inside the body. All the electrons are on the boundary of the body at a minimum. The electrons
are indistinguishable, so the problem has no unique minimum (permuting the electrons in one
solution gives another valid solution). This example was inspired by Dolan, Moré, and Munson [1].

The objective and nonlinear constraint functions for this example are all “Supported Operations for
Optimization Variables and Expressions” on page 9-43. Therefore, solve uses automatic
differentiation to calculate gradients. See “Automatic Differentiation in Optimization Toolbox” on page
9-41. Without automatic differentiation, this example stops early by reaching the
MaxFunctionEvaluations tolerance. For an equivalent solver-based example using Symbolic Math
Toolbox™, see “Calculate Gradients and Hessians Using Symbolic Math Toolbox” on page 5-103.

Problem Geometry

This example involves a conducting body defined by the following inequalities. For each electron with
coordinates (x, y, z),

z ≤ − |x | − | y|

x2 + y2 + (z + 1)2 ≤ 1 .

These constraints form a body that looks like a pyramid on a sphere. To view the body, enter the
following code.

[X,Y] = meshgrid(-1:.01:1);
Z1 = -abs(X) - abs(Y);
Z2 = -1 - sqrt(1 - X.^2 - Y.^2);
Z2 = real(Z2);
W1 = Z1; W2 = Z2;
W1(Z1 < Z2) = nan; % Only plot points where Z1 > Z2
W2(Z1 < Z2) = nan; % Only plot points where Z1 > Z2
hand = figure; % Handle to the figure, for later use
set(gcf,'Color','w') % White background
surf(X,Y,W1,'LineStyle','none');
hold on
surf(X,Y,W2,'LineStyle','none');
view(-44,18)

6 Nonlinear Problem-Based

6-14

A slight gap exists between the upper and lower surfaces of the figure. This gap is an artifact of the
general plotting routine used to create the figure. The routine erases any rectangular patch on one
surface that touches the other surface.

Define Problem Variables

The problem has twenty electrons. The constraints give bounds on each x and y value from –1 to 1,
and the z value from –2 to 0. Define the variables for the problem.

N = 20;
x = optimvar('x',N,'LowerBound',-1,'UpperBound',1);
y = optimvar('y',N,'LowerBound',-1,'UpperBound',1);
z = optimvar('z',N,'LowerBound',-2,'UpperBound',0);
elecprob = optimproblem;

Define Constraints

The problem has two types of constraints. The first, a spherical constraint, is a simple polynomial
inequality for each electron separately. Define this spherical constraint.

elecprob.Constraints.spherec = (x.^2 + y.^2 + (z+1).^2) <= 1;

The preceding constraint command creates a vector of ten constraints. View the constraint vector
using show.

show(elecprob.Constraints.spherec)

 Constrained Electrostatic Nonlinear Optimization, Problem-Based

6-15

 ((x.^2 + y.^2) + (z + 1).^2) <= arg_RHS

 where:

 arg2 = 1;
 arg1 = arg2(ones(1,20));
 arg_RHS = arg1(:);

The second type of constraint in the problem is linear. You can express the linear constraints in
different ways. For example, you can use the abs function to represent an absolute value constraint.
To express the constraints this way, write a MATLAB function and convert it to an expression using
fcn2optimexpr. See “Convert Nonlinear Function to Optimization Expression” on page 6-8. For a
preferable approach that uses only differentiable functions, write the absolute value constraint as
four linear inequalities. Each constraint command returns a vector of 20 constraints.

elecprob.Constraints.plane1 = z <= -x-y;
elecprob.Constraints.plane2 = z <= -x+y;
elecprob.Constraints.plane3 = z <= x-y;
elecprob.Constraints.plane4 = z <= x+y;

Define Objective Function

The objective function is the potential energy of the system, which is a sum over each electron pair of
the inverse of their distances:

energy = ∑
i < j

1
‖electron(i)− electron(j)‖ .

Define the objective function as an optimization expression. For good performance, write the
objective function in a vectorized fashion. See “Create Efficient Optimization Problems” on page 9-
28.

energy = optimexpr(1);
for ii = 1:(N-1)
 jj = (ii+1):N;
 tempe = (x(ii) - x(jj)).^2 + (y(ii) - y(jj)).^2 + (z(ii) - z(jj)).^2;
 energy = energy + sum(tempe.^(-1/2));
end
elecprob.Objective = energy;

Run Optimization

Start the optimization with the electrons distributed randomly on a sphere of radius 1/2 centered at
[0,0,–1].

rng default % For reproducibility
x0 = randn(N,3);
for ii=1:N
 x0(ii,:) = x0(ii,:)/norm(x0(ii,:))/2;
 x0(ii,3) = x0(ii,3) - 1;
end
init.x = x0(:,1);
init.y = x0(:,2);
init.z = x0(:,3);

Solve the problem by calling solve.

[sol,fval,exitflag,output] = solve(elecprob,init)

6 Nonlinear Problem-Based

6-16

Solving problem using fmincon.

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

sol = struct with fields:
 x: [20x1 double]
 y: [20x1 double]
 z: [20x1 double]

fval = 163.0099

exitflag =
 OptimalSolution

output = struct with fields:
 iterations: 94
 funcCount: 150
 constrviolation: 0
 stepsize: 2.8395e-05
 algorithm: 'interior-point'
 firstorderopt: 8.1308e-06
 cgiterations: 0
 message: 'Local minimum found that satisfies the constraints....'
 bestfeasible: [1x1 struct]
 objectivederivative: "reverse-AD"
 constraintderivative: "closed-form"
 solver: 'fmincon'

View Solution

Plot the solution as points on the conducting body.

figure(hand)
plot3(sol.x,sol.y,sol.z,'r.','MarkerSize',25)
hold off

 Constrained Electrostatic Nonlinear Optimization, Problem-Based

6-17

The electrons are distributed fairly evenly on the constraint boundary. Many electrons are on the
edges and the pyramid point.

Reference

[1] Dolan, Elizabeth D., Jorge J. Moré, and Todd S. Munson. “Benchmarking Optimization Software
with COPS 3.0.” Argonne National Laboratory Technical Report ANL/MCS-TM-273, February 2004.

See Also

More About
• “Problem-Based Optimization Workflow” on page 9-2
• “Calculate Gradients and Hessians Using Symbolic Math Toolbox” on page 5-103
• “Problem-Based Optimization Setup”

6 Nonlinear Problem-Based

6-18

Problem-Based Nonlinear Minimization with Linear Constraints
This example shows how to minimize a nonlinear function subject to linear equality constraints by
using the problem-based approach, where you formulate the constraints in terms of optimization
variables. This example also shows how to convert an objective function file to an optimization
expression by using fcn2optimexpr.

The example “Minimization with Linear Equality Constraints, Trust-Region Reflective Algorithm” on
page 5-96 uses a solver-based approach involving the gradient and Hessian. Solving the same
problem using the problem-based approach is straightforward, but takes more solution time because
the problem-based approach currently does not use gradient or Hessian information.

Create Problem and Objective

The problem is to minimize

f (x) = ∑
i = 1

n− 1
xi

2 xi + 1
2 + 1 + xi + 1

2 xi
2 + 1 ,

subject to a set of linear equality constraints Aeq*x = beq. Start by creating an optimization
problem and variables.

prob = optimproblem;
N = 1000;
x = optimvar('x',N);

The objective function is in the brownfgh.m file included in your Optimization Toolbox™ installation.
You must convert the function to an optimization expression using fcn2optimexpr because
optimization variables are excluded from appearing in an exponent. See “Supported Operations for
Optimization Variables and Expressions” on page 9-43 and “Convert Nonlinear Function to
Optimization Expression” on page 6-8.

prob.Objective = fcn2optimexpr(@brownfgh,x,'OutputSize',[1,1]);

Include Constraints

To obtain the Aeq and beq matrices in your workspace, execute this command.

load browneq

Include the linear constraints in the problem.

prob.Constraints = Aeq*x == beq;

Review and Solve Problem

Review the problem objective.

show(prob.Objective)

 brownfgh(x)

The problem has one hundred linear equality constraints, so the resulting constraint expression is too
lengthy to include in the example. To show the constraints, uncomment and run the following line.

% show(prob.Constraints)

 Problem-Based Nonlinear Minimization with Linear Constraints

6-19

Set an initial point as a structure with field x.

x0.x = -ones(N,1);
x0.x(2:2:N) = 1;

Solve the problem by calling solve.

[sol,fval,exitflag,output] = solve(prob,x0)

Solving problem using fmincon.

Solver stopped prematurely.

fmincon stopped because it exceeded the function evaluation limit,
options.MaxFunctionEvaluations = 3.000000e+03.

sol = struct with fields:
 x: [1000x1 double]

fval = 207.5463

exitflag =
 SolverLimitExceeded

output = struct with fields:
 iterations: 2
 funcCount: 3007
 constrviolation: 2.9399e-13
 stepsize: 1.9303
 algorithm: 'interior-point'
 firstorderopt: 2.6432
 cgiterations: 0
 message: 'Solver stopped prematurely....'
 bestfeasible: [1x1 struct]
 objectivederivative: "finite-differences"
 constraintderivative: "closed-form"
 solver: 'fmincon'

The solver stops prematurely because it exceeds the function evaluation limit. To continue the
optimization, restart the optimization from the final point, and allow for more function evaluations.

options = optimoptions(prob,'MaxFunctionEvaluations',1e5);
[sol,fval,exitflag,output] = solve(prob,sol,'Options',options)

Solving problem using fmincon.

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

sol = struct with fields:
 x: [1000x1 double]

fval = 205.9313

6 Nonlinear Problem-Based

6-20

exitflag =
 OptimalSolution

output = struct with fields:
 iterations: 35
 funcCount: 36071
 constrviolation: 1.0658e-14
 stepsize: 5.2082e-06
 algorithm: 'interior-point'
 firstorderopt: 5.0980e-06
 cgiterations: 0
 message: 'Local minimum found that satisfies the constraints....'
 bestfeasible: [1x1 struct]
 objectivederivative: "finite-differences"
 constraintderivative: "closed-form"
 solver: 'fmincon'

Compare with Solver-Based Solution

To solve the problem using the solver-based approach as shown in “Minimization with Linear Equality
Constraints, Trust-Region Reflective Algorithm” on page 5-96, convert the initial point to a vector.
Then set options to use the gradient and Hessian information provided in brownfgh.

xstart = x0.x;
fun = @brownfgh;
opts = optimoptions('fmincon','SpecifyObjectiveGradient',true,'HessianFcn','objective',...
 'Algorithm','trust-region-reflective');
[x,fval,exitflag,output] = ...
 fmincon(fun,xstart,[],[],Aeq,beq,[],[],[],opts);

Local minimum possible.

fmincon stopped because the final change in function value relative to
its initial value is less than the value of the function tolerance.

fprintf("Fval = %g\nNumber of iterations = %g\nNumber of function evals = %g.\n",...
 fval,output.iterations,output.funcCount)

Fval = 205.931
Number of iterations = 22
Number of function evals = 23.

The solver-based solution in “Minimization with Linear Equality Constraints, Trust-Region Reflective
Algorithm” on page 5-96 uses the gradients and Hessian provided in the objective function. By using
that derivative information, the solver fmincon converges to the solution in 22 iterations, using only
23 function evaluations. The solver-based solution has the same final objective function value as this
problem-based solution.

However, constructing the gradient and Hessian functions without using symbolic math is difficult
and prone to error. For an example showing how to use symbolic math to calculate derivatives, see
“Calculate Gradients and Hessians Using Symbolic Math Toolbox” on page 5-103.

See Also
fcn2optimexpr

 Problem-Based Nonlinear Minimization with Linear Constraints

6-21

More About
• “Problem-Based Optimization Workflow” on page 9-2
• “Minimization with Linear Equality Constraints, Trust-Region Reflective Algorithm” on page 5-

96
• “Problem-Based Optimization Setup”

6 Nonlinear Problem-Based

6-22

Effect of Automatic Differentiation in Problem-Based
Optimization

When using automatic differentiation, the problem-based solve function generally requires fewer
function evaluations and can operate more robustly.

By default, solve uses automatic differentiation to evaluate the gradients of objective and nonlinear
constraint functions, when applicable. Automatic differentiation applies to functions that are
expressed in terms of operations on optimization variables without using the fcn2optimexpr
function. See “Automatic Differentiation in Optimization Toolbox” on page 9-41 and “Convert
Nonlinear Function to Optimization Expression” on page 6-8.

Minimization Problem

Consider the problem of minimizing the following objective function:

fun1 = 100 x2− x1
2 2 + 1− x1

2

fun2 = exp −∑ xi− yi
2 exp −exp −y1 sech y2

objective = fun1− fun2 .

Create an optimization problem representing these variables and the objective function expression.

prob = optimproblem;
x = optimvar('x',2);
y = optimvar('y',2);
fun1 = 100*(x(2) - x(1)^2)^2 + (1 - x(1))^2;
fun2 = exp(-sum((x - y).^2))*exp(-exp(-y(1)))*sech(y(2));
prob.Objective = fun1 - fun2;

The minimization is subject to the nonlinear constraint x1
2 + x2

2 + y1
2 + y2

2 ≤ 4.

prob.Constraints.cons = sum(x.^2 + y.^2) <= 4;

Solve Problem and Examine Solution Process

Solve the problem starting from an initial point.

init.x = [-1;2];
init.y = [1;-1];
[xproblem,fvalproblem,exitflagproblem,outputproblem] = solve(prob,init);

Solving problem using fmincon.

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

disp(fvalproblem)

 -0.5500

disp(outputproblem.funcCount)

 Effect of Automatic Differentiation in Problem-Based Optimization

6-23

 77

disp(outputproblem.iterations)

 46

The output structure shows that solve calls fmincon, which requires 77 function evaluations and
46 iterations to solve the problem. The objective function value at the solution is fvalproblem =
-0.55.

Solve Problem Without Automatic Differentiation

To determine the efficiency gains from automatic differentiation, set solve name-value pair
arguments to use finite difference gradients instead.

[xfd,fvalfd,exitflagfd,outputfd] = solve(prob,init,...
 "ObjectiveDerivative",'finite-differences',"ConstraintDerivative",'finite-differences');

Solving problem using fmincon.

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

disp(fvalfd)

 -0.5500

disp(outputfd.funcCount)

 269

disp(outputfd.iterations)

 47

Using a finite difference gradient approximation causes solve to take 269 function evaluations
compared to 77. The number of iterations is nearly the same, as is the reported objective function
value at the solution. The final solution points are the same to display precision.

disp([xproblem.x,xproblem.y])

 0.8671 1.0433
 0.7505 0.5140

disp([xfd.x,xfd.y])

 0.8671 1.0433
 0.7505 0.5140

In summary, the main effect of automatic differentiation in optimization is to lower the number of
function evaluations.

See Also
solve

6 Nonlinear Problem-Based

6-24

More About
• “Problem-Based Optimization Workflow” on page 9-2
• “Supply Derivatives in Problem-Based Workflow” on page 6-26
• “Automatic Differentiation Background” on page 9-37
• “Supported Operations for Optimization Variables and Expressions” on page 9-43

 Effect of Automatic Differentiation in Problem-Based Optimization

6-25

Supply Derivatives in Problem-Based Workflow
In this section...
“Why Include Derivatives?” on page 6-26
“Automatic Differentiation Applied to Optimization” on page 6-26
“Create Optimization Problem” on page 6-26
“Convert Problem to Solver-Based Form” on page 6-27
“Calculate Derivatives and Keep Track of Variables” on page 6-27
“Edit the Objective and Constraint Files” on page 6-28
“Run Problem With and Without Gradients” on page 6-29
“Include Hessian” on page 6-31

Why Include Derivatives?
This example shows how to include derivative information in nonlinear problem-based optimization
when automatic derivatives do not apply, or when you want to include a Hessian, which is not
provided using automatic differentiation. Including gradients or a Hessian in an optimization can give
the following benefits:

• More robust results. Finite differencing steps sometimes reach points where the objective or a
nonlinear constraint function is undefined, not finite, or complex.

• Increased accuracy. Analytic gradients can be more accurate than finite difference estimates.
• Faster convergence. Including a Hessian can lead to faster convergence, meaning fewer

iterations.
• Improved performance. Analytic gradients can be faster to calculate than finite difference

estimates, especially for problems with a sparse structure. For complicated expressions, however,
analytic gradients can be slower to calculate.

Automatic Differentiation Applied to Optimization
Starting in R2020b, the solve function can use automatic differentiation for supported functions in
order to supply gradients to solvers. These automatic derivatives apply only to gradients (first
derivatives), not Hessians (second derivatives).

Automatic differentiation applies when you do not use fcn2optimexpr to create an objective or
constraint function. If you need to use fcn2optimexpr, this example shows how to include
derivative information.

The way to use derivatives in problem-based optimization without automatic differentiation is to
convert your problem using prob2struct, and then edit the resulting objective and constraint
functions. This example shows a hybrid approach where automatic differentiation supplies derivatives
for part of the objective function.

Create Optimization Problem
With control variables x and y, use the objective function

6 Nonlinear Problem-Based

6-26

fun1 = 100 y − x2 2 + 1− x 2

fun2 = besselj 1, x2 + y2

objective = fun1+ fun2.

Include the constraint that the sum of squares of x and y is no more than 4.

fun2 is not based on supported functions for optimization expressions; see “Supported Operations
for Optimization Variables and Expressions” on page 9-43. Therefore, to include fun2 in an
optimization problem, you must convert it to an optimization expression using fcn2optimexpr.

To use AD on the supported functions, set up the problem without the unsupported function fun2,
and include fun2 later.

prob = optimproblem;
x = optimvar('x');
y = optimvar('y');
fun1 = 100*(y - x^2)^2 + (1 - x)^2;
prob.Objective = fun1;
prob.Constraints.cons = x^2 + y^2 <= 4;

Convert Problem to Solver-Based Form
To include derivatives of fun2, first convert the problem without fun2 to a structure using
prob2struct.

problem = prob2struct(prob,...
 'ObjectiveFunctionName','generatedObjectiveBefore');

During the conversion, prob2struct creates function files that represent the objective and
nonlinear constraint functions. By default, these functions have the names
'generatedObjective.m' and 'generatedConstraints.m'. The objective function file without
fun2 is 'generatedObjectiveBefore.m'.

The generated objective and constraint functions include gradients.

Calculate Derivatives and Keep Track of Variables
Calculate the derivatives associated with fun2. If you have a Symbolic Math Toolbox license, you can
use the gradient or jacobian function to help compute the derivatives. See “Calculate Gradients
and Hessians Using Symbolic Math Toolbox” on page 5-103.

The solver-based approach has one control variable. Each optimization variable (x and y, in this
example) is a portion of the control variable. You can find the mapping between optimization
variables and the single control variable in the generated objective function file
'generatedObjectiveBefore.m'. The beginning of the file contains these lines of code or similar
lines.

%% Variable indices.
xidx = 1;
yidx = 2;

%% Map solver-based variables to problem-based.
x = inputVariables(xidx);
y = inputVariables(yidx);

 Supply Derivatives in Problem-Based Workflow

6-27

In this code, the control variable has the name inputVariables.

Alternatively, you can find the mapping by using varindex.

idx = varindex(prob);
disp(idx.x)

 1

disp(idx.y)

 2

The full objective function includes fun2:

fun2 = besselj(1,x^2 + y^2);

Using standard calculus, calculate gradfun2, the gradient of fun2.

gradfun2 =
2x besselj 0, x2 + y2 − besselj 1, x2 + y2 / x2 + y2

2y besselj 0, x2 + y2 − besselj 1, x2 + y2 / x2 + y2
.

Edit the Objective and Constraint Files
Edit 'generatedObjectiveBefore.m' to include fun2.

%% Compute objective function.
arg1 = (y - x.^2);
arg2 = 100;
arg3 = arg1.^2;
arg4 = (1 - x);
obj = ((arg2 .* arg3) + arg4.^2);

ssq = x^2 + y^2;
fun2 = besselj(1,ssq);
obj = obj + fun2;

Include the calculated gradients in the objective function file by editing
'generatedObjectiveBefore.m'. If you have a software version that does not perform the
gradient calculation, include all of these lines. If your software performs the gradient calculation,
include only the bold lines, which calculate the gradient of fun2.

%% Compute objective gradient.
if nargout > 1
 arg5 = 1;
 arg6 = zeros([2, 1]);
 arg6(xidx,:) = (-(arg5.*2.*(arg4(:)))) + ((-((arg5.*arg2(:)).*2.*(arg1(:)))).*2.*(x(:)));
 arg6(yidx,:) = ((arg5.*arg2(:)).*2.*(arg1(:)));
 grad = arg6(:);

 arg7 = besselj(0,ssq);
 arg8 = arg7 - fun2/ssq;
 gfun = [2*x*arg8;...
 2*y*arg8];

 grad = grad + gfun;
end

6 Nonlinear Problem-Based

6-28

Recall that the nonlinear constraint is x^2 + y^2 <= 4. The gradient of this constraint function is
2*[x;y]. If your software calculates the constraint gradient and includes it in the generated
constraint file, then you do not need to do anything more. If your software does not calculate the
constraint gradient, then include the gradient of the nonlinear constraint by editing
'generatedConstraints.m' to include these lines.

%% Insert gradient calculation here.
% If you include a gradient, notify the solver by setting the
% SpecifyConstraintGradient option to true.
if nargout > 2
 cineqGrad = 2*[x;y];
 ceqGrad = [];
end

Run Problem With and Without Gradients
Run the problem using both the solver-based and problem-based (no gradient) methods to see the
differences. To run the solver-based problem using derivative information, create appropriate options
in the problem structure.

options = optimoptions('fmincon','SpecifyObjectiveGradient',true,...
 'SpecifyConstraintGradient',true);
problem.options = options;

Nonlinear problems require a nonempty x0 field in the problem structure.

x0 = [1;1];
problem.x0 = x0;

Call fmincon on the problem structure.

[xsolver,fvalsolver,exitflagsolver,outputsolver] = fmincon(problem)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>

xsolver =

 1.2494
 1.5617

fvalsolver =

 -0.0038

exitflagsolver =

 1

 Supply Derivatives in Problem-Based Workflow

6-29

outputsolver =

 struct with fields:

 iterations: 15
 funcCount: 32
 constrviolation: 0
 stepsize: 1.5569e-06
 algorithm: 'interior-point'
 firstorderopt: 2.2058e-08
 cgiterations: 7
 message: '↵Local minimum found that satisfies the constraints.↵↵Optimization completed because the objective function is non-decreasing in ↵feasible directions, to within the value of the optimality tolerance,↵and constraints are satisfied to within the value of the constraint tolerance.↵↵<stopping criteria details>↵↵Optimization completed: The relative first-order optimality measure, 2.125635e-08,↵is less than options.OptimalityTolerance = 1.000000e-06, and the relative maximum constraint↵violation, 0.000000e+00, is less than options.ConstraintTolerance = 1.000000e-06.↵↵'
 bestfeasible: [1×1 struct]

Compare this solution with the one obtained from solve without derivative information.

init.x = x0(1);
init.y = x0(2);
f2 = @(x,y)besselj(1,x^2 + y^2);
fun2 = fcn2optimexpr(f2,x,y);
prob.Objective = prob.Objective + fun2;
[xproblem,fvalproblem,exitflagproblem,outputproblem] = solve(prob,init,...
 "ConstraintDerivative","finite-differences",...
 "ObjectiveDerivative","finite-differences")

Solving problem using fmincon.

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>

xproblem =

 struct with fields:

 x: 1.2494
 y: 1.5617

fvalproblem =

 -0.0038

exitflagproblem =

 OptimalSolution

outputproblem =

 struct with fields:

 iterations: 15

6 Nonlinear Problem-Based

6-30

 funcCount: 64
 constrviolation: 0
 stepsize: 1.5571e-06
 algorithm: 'interior-point'
 firstorderopt: 6.0139e-07
 cgiterations: 7
 message: '↵Local minimum found that satisfies the constraints.↵↵Optimization completed because the objective function is non-decreasing in ↵feasible directions, to within the value of the optimality tolerance,↵and constraints are satisfied to within the value of the constraint tolerance.↵↵<stopping criteria details>↵↵Optimization completed: The relative first-order optimality measure, 5.795368e-07,↵is less than options.OptimalityTolerance = 1.000000e-06, and the relative maximum constraint↵violation, 0.000000e+00, is less than options.ConstraintTolerance = 1.000000e-06.↵↵'
 bestfeasible: [1×1 struct]
 objectivederivative: "finite-differences"
 constraintderivative: "closed-form"
 solver: 'fmincon'

Both solutions report the same function value to display precision, and both require the same number
of iterations. However, the solution with gradients requires only 32 function evaluations, compared to
64 for the solution without gradients.

Include Hessian
To include a Hessian, you must use prob2struct, even if all your functions are supported for
optimization expressions. This example shows how to use a Hessian for the fmincon interior-
point algorithm. The fminunc trust-region algorithm and the fmincon trust-region-
reflective algorithm use a different syntax; see “Hessian for fminunc trust-region or fmincon trust-
region-reflective algorithms” on page 2-21.

As described in “Hessian for fmincon interior-point algorithm” on page 2-21, the Hessian is the
Hessian of the Lagrangian.

∇xx
2 L(x, λ) = ∇2 f (x) + ∑λg, i∇2gi(x) + ∑λh, i∇2hi(x) . (6-1)

Include this Hessian by creating a function file to compute the Hessian, and creating a HessianFcn
option for fmincon to use the Hessian. To create the Hessian in this case, create the second
derivatives of the objective and nonlinear constraints separately.

The second derivative matrix of the objective function for this example is somewhat complicated. Its
objective function listing hessianfun(x) was created by Symbolic Math Toolbox using the same
approach as described in “Calculate Gradients and Hessians Using Symbolic Math Toolbox” on page
5-103.

function hf = hessfun(in1)
%HESSFUN
% HF = HESSFUN(IN1)

% This function was generated by the Symbolic Math Toolbox version 8.6.
% 10-Aug-2020 10:50:44

x = in1(1,:);
y = in1(2,:);
t2 = x.^2;
t4 = y.^2;
t6 = x.*4.0e+2;
t3 = t2.^2;
t5 = t4.^2;
t7 = -t4;
t8 = -t6;
t9 = t2+t4;

 Supply Derivatives in Problem-Based Workflow

6-31

t10 = t2.*t4.*2.0;
t11 = besselj(0,t9);
t12 = besselj(1,t9);
t13 = t2+t7;
t14 = 1.0./t9;
t16 = t3+t5+t10-2.0;
t15 = t14.^2;
t17 = t11.*t14.*x.*y.*4.0;
t19 = t11.*t13.*t14.*2.0;
t18 = -t17;
t20 = t12.*t15.*t16.*x.*y.*4.0;
t21 = -t20;
t22 = t8+t18+t21;
hf = reshape([t2.*1.2e+3-t19-y.*4.0e+2-t12.*t15.*...
 (t2.*-3.0+t4+t2.*t5.*2.0+t3.*t4.*4.0+t2.^3.*2.0).*2.0+2.0,...
 t22,t22,...
 t19-t12.*t15.*(t2-t4.*3.0+t2.*t5.*4.0+...
 t3.*t4.*2.0+t4.^3.*2.0).*2.0+2.0e+2],[2,2]);

In contrast, the Hessian of the nonlinear inequality constraint is simple; it is twice the identity matrix.

hessianc = 2*eye(2);

Create the Hessian of the Lagrangian as a function handle.

H = @(x,lam)(hessianfun(x) + hessianc*lam.ineqnonlin);

Create options to use this Hessian.

problem.options.HessianFcn = H;

Solve the problem and display the number of iterations and number of function evaluations. The
solution is approximately the same as before.

[xhess,fvalhess,exitflaghess,outputhess] = fmincon(problem);
disp(outputhess.iterations)
disp(outputhess.funcCount)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

 8

 10

This time, fmincon takes only 8 iterations compared to 15, and only 10 function evaluations
compared to 32. In summary, providing an analytic Hessian calculation can improve the efficiency of
the solution process, but developing a function to calculate the Hessian can be difficult.

See Also
prob2struct | varindex | fcn2optimexpr

6 Nonlinear Problem-Based

6-32

More About
• “Effect of Automatic Differentiation in Problem-Based Optimization” on page 6-23
• “Including Gradients and Hessians” on page 2-19
• “Obtain Generated Function Details” on page 6-34

 Supply Derivatives in Problem-Based Workflow

6-33

Obtain Generated Function Details
This example shows how to find the values of extra parameters in functions generated by
prob2struct.

Create a nonlinear problem and convert the problem to a structure using prob2struct. Name the
generated objective function and nonlinear constraint function.

x = optimvar('x',2);
fun = 100*(x(2) - x(1)^2)^2 + (1 - x(1))^2;
prob = optimproblem('Objective',fun);
mycon = dot(x,x) <= 4;
prob.Constraints.mycon = mycon;
x0.x = [-1;1.5];
problem = prob2struct(prob,x0,'ObjectiveFunctionName','rosenbrock',...
 'ConstraintFunctionName','circle2');

Examine the first line of the generated constraint function circle2.

type circle2

function [cineq, ceq, cineqGrad, ceqGrad] = circle2(inputVariables, extraParams)
%circle2 Compute constraint values and gradients
%
% [CINEQ, CEQ] = circle2(INPUTVARIABLES, EXTRAPARAMS) computes the
% inequality constraint values CINEQ and the equality constraint values
% CEQ at the point INPUTVARIABLES, using the extra parameters in
% EXTRAPARAMS.
%
% [CINEQ, CEQ, CINEQGRAD, CEQGRAD] = circle2(INPUTVARIABLES,
% EXTRAPARAMS) additionally computes the inequality constraint gradient
% values CINEQGRAD and the equality constraint gradient values CEQGRAD
% at the current point.
%
% Auto-generated by prob2struct on 27-Feb-2022 00:10:22

%% Compute inequality constraints.
Hineq = extraParams{1};
fineq = extraParams{2};
rhsineq = extraParams{3};
Hineqmvec = Hineq*inputVariables(:);
cineq = 0.5*dot(inputVariables(:), Hineqmvec) + dot(fineq, inputVariables(:)) + rhsineq;

%% Compute equality constraints.
ceq = [];

if nargout > 2
 %% Compute constraint gradients.
 % To call the gradient code, notify the solver by setting the
 % SpecifyConstraintGradient option to true.
 cineqGrad = Hineqmvec + fineq;
 ceqGrad = [];
end

The circle2 function has a second input named extraParams. To find the values of this input, use
the functions function on the function handle stored in problem.nonlcon.

6 Nonlinear Problem-Based

6-34

F = functions(problem.nonlcon)

F = struct with fields:
 function: '@(x)fun(x,extraParams)'
 type: 'anonymous'
 file: 'B:\matlab\toolbox\optim\problemdef\+optim\+internal\+problemdef\+compile\snapExtraParams.p'
 workspace: {[1x1 struct]}
 within_file_path: ''

To access the extra parameters, view the workspace field of F.

ws = F.workspace

ws = 1x1 cell array
 {1x1 struct}

Continue to extract the information at deeper levels until you see all the extra parameters.

ws1 = ws{1}

ws1 = struct with fields:
 fun: @circle2
 extraParams: {[2x2 double] [2x1 double] [-4]}

ep = ws1.extraParams

ep=1×3 cell array
 {2x2 double} {2x1 double} {[-4]}

ep{1}

ans =
 (1,1) 2
 (2,2) 2

ep{2}

ans =
 All zero sparse: 2x1

ep{3}

ans = -4

Now you can read the circle2 file listing and understand what all of the variables mean.

Hineq = 2*speye(2);
fineq = sparse([0;0]);
rhsineq = -4;

See Also
prob2struct

 Obtain Generated Function Details

6-35

More About
• “Problem-Based Optimization Workflow” on page 9-2
• “Problem-Based Workflow for Solving Equations” on page 9-4

6 Nonlinear Problem-Based

6-36

Output Function for Problem-Based Optimization
This example shows how to use an output function to plot and store the history of the iterations for a
nonlinear problem. This history includes the evaluated points, the search directions that the solver
uses to generate points, and the objective function values at the evaluated points.

For the solver-based approach to this example, see “Output Functions for Optimization Toolbox” on
page 3-30.

Plot functions have the same syntax as output functions, so this example also applies to plot
functions.

For both the solver-based approach and the problem-based approach, write the output function
according to the solver-based approach. In the solver-based approach, you use a single vector
variable, usually denoted x, instead of a collection of optimization variables of various sizes. So to
write an output function for the problem-based approach, you must understand the correspondence
between your optimization variables and the single solver-based x. To map between optimization
variables and x, use varindex. In this example, to avoid confusion with an optimization variable
named x, use "in" as the vector variable name.

Problem Description

The problem is to minimize the following function of variables x and y:

f = exp(x) 4x2 + 2y2 + 4xy + 2y + 1 .

In addition, the problem has two nonlinear constraints:

x + y − xy ≥ 1 . 5
xy ≥ − 10 .

Problem-Based Setup

To set up the problem in the problem-based approach, define optimization variables and an
optimization problem object.

x = optimvar('x');
y = optimvar('y');
prob = optimproblem;

Define the objective function as an expression in the optimization variables.

f = exp(x)*(4*x^2 + 2*y^2 + 4*x*y + 2*y + 1);

Include the objective function in prob.

prob.Objective = f;

To include the nonlinear constraints, create optimization constraint expressions.

cons1 = x + y - x*y >= 1.5;
cons2 = x*y >= -10;
prob.Constraints.cons1 = cons1;
prob.Constraints.cons2 = cons2;

 Output Function for Problem-Based Optimization

6-37

Because this is a nonlinear problem, you must include an initial point structure x0. Use x0.x = –1
and x0.y = 1.

x0.x = -1;
x0.y = 1;

Output Function

The outfun output function records a history of the points generated by fmincon during its
iterations. The output function also plots the points and keeps a separate history of the search
directions for the sqp algorithm. The search direction is a vector from the previous point to the next
point that fmincon tries. During its final step, the output function saves the history in workspace
variables, and saves a history of the objective function values at each iterative step.

For the required syntax of optimization output functions, see “Output Function and Plot Function
Syntax” on page 14-28.

An output function takes a single vector variable as an input. But the current problem has two
variables. To find the mapping between the optimization variables and the input variable, use
varindex.

idx = varindex(prob);
idx.x

ans = 1

idx.y

ans = 2

The mapping shows that x is variable 1 and y is variable 2. So, if the input variable is named in, then
x = in(1) and y = in(2).

type outfun

function stop = outfun(in,optimValues,state,idx)
 persistent history searchdir fhistory
 stop = false;

 switch state
 case 'init'
 hold on
 history = [];
 fhistory = [];
 searchdir = [];
 case 'iter'
 % Concatenate current point and objective function
 % value with history. in must be a row vector.
 fhistory = [fhistory; optimValues.fval];
 history = [history; in(:)']; % Ensure in is a row vector
 % Concatenate current search direction with
 % searchdir.
 searchdir = [searchdir;...
 optimValues.searchdirection(:)'];
 plot(in(idx.x),in(idx.y),'o');
 % Label points with iteration number and add title.
 % Add .15 to idx.x to separate label from plotted 'o'
 text(in(idx.x)+.15,in(idx.y),...

6 Nonlinear Problem-Based

6-38

 num2str(optimValues.iteration));
 title('Sequence of Points Computed by fmincon');
 case 'done'
 hold off
 assignin('base','optimhistory',history);
 assignin('base','searchdirhistory',searchdir);
 assignin('base','functionhistory',fhistory);
 otherwise
 end
 end

Include the output function in the optimization by setting the OutputFcn option. Also, set the
Algorithm option to use the 'sqp' algorithm instead of the default 'interior-point' algorithm.
Pass idx to the output function as an extra parameter in the last input. See “Passing Extra
Parameters” on page 2-57.

outputfn = @(in,optimValues,state)outfun(in,optimValues,state,idx);
opts = optimoptions('fmincon','Algorithm','sqp','OutputFcn',outputfn);

Run Optimization Using Output Function

Run the optimization, including the output function, by using the 'Options' name-value pair
argument.

[sol,fval,eflag,output] = solve(prob,x0,'Options',opts)

Solving problem using fmincon.

 Output Function for Problem-Based Optimization

6-39

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

sol = struct with fields:
 x: -9.5474
 y: 1.0474

fval = 0.0236

eflag =
 OptimalSolution

output = struct with fields:
 iterations: 10
 funcCount: 22
 algorithm: 'sqp'
 message: 'Local minimum found that satisfies the constraints....'
 constrviolation: 0
 stepsize: 1.4785e-07
 lssteplength: 1
 firstorderopt: 7.1930e-10
 bestfeasible: [1x1 struct]
 objectivederivative: "reverse-AD"
 constraintderivative: "closed-form"
 solver: 'fmincon'

Examine the iteration history. Each row of the optimhistory matrix represents one point. The last
few points are very close, which explains why the plotted sequence shows overprinted numbers for
points 8, 9, and 10.

disp('Locations');disp(optimhistory)

Locations
 -1.0000 1.0000
 -1.3679 1.2500
 -1.6509 1.1813
 -3.5870 2.0537
 -4.4574 2.2895
 -5.8015 1.5531
 -7.6498 1.1225
 -8.5223 1.0572
 -9.5463 1.0464
 -9.5474 1.0474
 -9.5474 1.0474

Examine the searchdirhistory and functionhistory arrays.

disp('Search Directions');disp(searchdirhistory)

Search Directions
 0 0
 -0.3679 0.2500
 -0.2831 -0.0687

6 Nonlinear Problem-Based

6-40

 -1.9360 0.8725
 -0.8704 0.2358
 -1.3441 -0.7364
 -2.0877 -0.6493
 -0.8725 -0.0653
 -1.0241 -0.0108
 -0.0011 0.0010
 0.0000 -0.0000

disp('Function Values');disp(functionhistory)

Function Values
 1.8394
 1.8513
 1.7757
 0.9839
 0.6343
 0.3250
 0.0978
 0.0517
 0.0236
 0.0236
 0.0236

Unsupported Functions Require fcn2optimexpr

If your objective function or nonlinear constraint functions are not composed of elementary functions,
you must convert the functions to optimization expressions using fcn2optimexpr. See “Convert
Nonlinear Function to Optimization Expression” on page 6-8. For this example, you would enter the
following code:

fun = @(x,y)exp(x)*(4*x^2 + 2*y^2 + 4*x*y + 2*y + 1);
f = fcn2optimexpr(fun,x,y);

For the list of supported functions, see “Supported Operations for Optimization Variables and
Expressions” on page 9-43.

See Also
varindex

More About
• “Output Functions for Optimization Toolbox” on page 3-30
• “Problem-Based Optimization Workflow” on page 9-2
• “Problem-Based Optimization Setup”

 Output Function for Problem-Based Optimization

6-41

Obtain Solution Using Feasibility Mode
This example shows how to use the feasibility mode of the fmincon 'interior-point' algorithm
to obtain a feasible point. To take advantage of automatic differentiation, the example uses the
problem-based approach. The example is taken from Problem 9 of Moré [1] on page 6-0 .

Problem Setup

The problem has a 5-D optimization variable x along with five quadratic constraints. The first x
component has a lower bound of 0, and the remaining four components have upper bounds of 0.

x = optimvar("x",5,"LowerBound",[0;-Inf;-Inf;-Inf;-Inf],"UpperBound",[Inf;0;0;0;0]);

The problem, which comes from the aircraft industry, uses aeronautical terms for the components of
x and has specified values of some parameters.

elevator = 0.1; % If elevator were 0, then [0 0 0 0 0] would be a solution
aileron = 0.0;
rudderdf = 0.0;
rollrate = x(1);
pitchrat = x(2);
yawrate = x(3);
attckang = x(4);
sslipang = x(5);

Create an optimization problem and the constraints.

prob = optimproblem;
prob.Constraints.eq1 = (-3.933*rollrate + 0.107*pitchrat + ...
 0.126*yawrate - 9.99*sslipang - 45.83*aileron - 7.64*rudderdf - ...
 0.727*pitchrat*yawrate + 8.39*yawrate*attckang - ...
 684.4*attckang*sslipang + 63.5*pitchrat*attckang) == 0;
prob.Constraints.eq2 = (-0.987*pitchrat - 22.95*attckang - ...
 28.37*elevator + 0.949*rollrate*yawrate + 0.173*rollrate*sslipang) == 0;
prob.Constraints.eq3 = (0.002*rollrate - 0.235*yawrate + ...
 5.67*sslipang - 0.921*aileron - 6.51*rudderdf - ...
 0.716*rollrate*pitchrat - 1.578*rollrate*attckang + ...
 1.132*pitchrat*attckang) == 0;
prob.Constraints.eq4 = (pitchrat - attckang - ...
 1.168*elevator - rollrate*sslipang) == 0;
prob.Constraints.eq5 = (-yawrate - 0.196*sslipang - ...
 0.0071*aileron + rollrate*attckang) == 0;

This problem has no objective function, so do not specify prob.Objective.

Attempt Solution Without Feasibility Mode

Attempt to solve the problem using the default solver and parameters, starting from the point [0 0 0
0 0]'.

x0.x = zeros(5,1);
[sol,~,exitflag,output] = solve(prob,x0)

Solving problem using fmincon.

Solver stopped prematurely.

6 Nonlinear Problem-Based

6-42

fmincon stopped because it exceeded the iteration limit,
options.MaxIterations = 1.000000e+03.

sol = struct with fields:
 x: [5x1 double]

exitflag =
 SolverLimitExceeded

output = struct with fields:
 iterations: 1000
 funcCount: 1003
 constrviolation: 11.1712
 stepsize: 8.2265e-05
 algorithm: 'interior-point'
 firstorderopt: 0
 cgiterations: 0
 message: 'Solver stopped prematurely....'
 bestfeasible: []
 objectivederivative: "closed-form"
 constraintderivative: "closed-form"
 solver: 'fmincon'

The solver stops prematurely. Increase the iteration limit and function evaluation limit, and then try
again.

options = optimoptions("fmincon","MaxIterations",1e4,"MaxFunctionEvaluations",1e4);
[sol,~,exitflag,output] = solve(prob,x0,"Options",options)

Solving problem using fmincon.

Converged to an infeasible point.

fmincon stopped because the size of the current step is less than
the value of the step size tolerance but constraints are not
satisfied to within the value of the constraint tolerance.

Consider enabling the interior point method feasibility mode.

sol = struct with fields:
 x: [5x1 double]

exitflag =
 NoFeasiblePointFound

output = struct with fields:
 iterations: 4089
 funcCount: 4092
 constrviolation: 5.0899
 stepsize: 5.9783e-11
 algorithm: 'interior-point'
 firstorderopt: 0
 cgiterations: 0

 Obtain Solution Using Feasibility Mode

6-43

 message: 'Converged to an infeasible point....'
 bestfeasible: []
 objectivederivative: "closed-form"
 constraintderivative: "closed-form"
 solver: 'fmincon'

The solver converges to an infeasible point.

Solve Using Feasibility Mode

Try again to solve the problem, this time specifying the EnableFeasibilityMode and
SubproblemAlgorithm options. Generally, if you need to use feasibility mode, the best approach is
to set the SubproblemAlgorithm option to 'cg'.

options = optimoptions(options,"EnableFeasibilityMode",true,...
 "SubproblemAlgorithm","cg");
[sol,~,exitflag,output] = solve(prob,x0,"Options",options)

Solving problem using fmincon.

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

sol = struct with fields:
 x: [5x1 double]

exitflag =
 OptimalSolution

output = struct with fields:
 iterations: 138
 funcCount: 139
 constrviolation: 2.9070e-04
 stepsize: 0.0057
 algorithm: 'interior-point'
 firstorderopt: 0
 cgiterations: 0
 message: 'Local minimum found that satisfies the constraints....'
 bestfeasible: []
 objectivederivative: "closed-form"
 constraintderivative: "closed-form"
 solver: 'fmincon'

This time, the solver reports that it reaches a feasible solution. However, the constraint violation in
output.constrviolation is not very small. Tighten the constraint tolerance and solve again. To
speed the solution process, start from the returned feasible solution.

options.ConstraintTolerance = 1e-8;
[sol,~,exitflag,output] = solve(prob,sol,"Options",options)

Solving problem using fmincon.

6 Nonlinear Problem-Based

6-44

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

sol = struct with fields:
 x: [5x1 double]

exitflag =
 OptimalSolution

output = struct with fields:
 iterations: 2
 funcCount: 3
 constrviolation: 4.4409e-16
 stepsize: 1.7083e-08
 algorithm: 'interior-point'
 firstorderopt: 0
 cgiterations: 0
 message: 'Local minimum found that satisfies the constraints....'
 bestfeasible: [1x1 struct]
 objectivederivative: "closed-form"
 constraintderivative: "closed-form"
 solver: 'fmincon'

The constraint violation is now quite small. The solver takes only two iterations to reach this
improved solution.

References

[1] Moré, J. J. A collection of nonlinear model problems. Proceedings of the AMS-SIAM Summer
Seminar on the Computational Solution of Nonlinear Systems of Equations, Colorado, 1988. Argonne
National Laboratory MCS-P60-0289, 1989.

See Also
fmincon | solve

Related Examples
• “Problem-Based Nonlinear Optimization”
• “Solver-Based Nonlinear Optimization”

 Obtain Solution Using Feasibility Mode

6-45

Integer Constraints in Nonlinear Problem-Based Optimization
To solve a nonlinear optimization problem with integer constraints using the problem-based
approach, follow one of these processes:

• Use a Global Optimization Toolbox solver that handles integer constraints, ga or surrogateopt.
• Convert the problem to a structure using prob2struct, and then use an external solver.
• Sometimes, you can iteratively approximate a nonlinear integer problem using intlinprog. For

an example of this approach, see “Mixed-Integer Quadratic Programming Portfolio Optimization:
Problem-Based” on page 8-139.

The default solver for nonlinear problems with integer constraints is ga. You must have a Global
Optimization Toolbox license for the solve function to solve the problem using either ga or
surrogateopt.

When you use an external solver and call prob2struct, you might need to specify the Solver name-
value argument.

Note For a nonlinear problem with integer constraints, if you do not have a Global Optimization
Toolbox license, you must include the Solver argument.

Even if you have a Global Optimization Toolbox license, you still might need to specify the Solver
name-value argument. An external solver can expect the problem structure to be in a form that
corresponds to a particular solver. For example, for a problem with linear and integer constraints and
a quadratic objective function, an external solver might require the objective function to be expressed
as matrices H and f in the expression ½xTHx + fTx. To obtain these matrices, specify the 'quadprog'
solver by using the Solver name-value argument.

problem = prob2struct(prob,"Solver","quadprog");

If you do not specify the quadprog solver, the resulting problem structure can contain a function
handle for the objective function rather than matrices. In either case, the resulting problem structure
contains the integer variables in the intcon field.

Note For a nonlinear problem with integer constraints, when you specify a solver that does not
handle integer constraints, prob2struct issues a warning that the solver cannot solve the resulting
structure. If you then try to solve the problem by calling the solver on the problem structure, the
solver ignores the integer constraints. In this case, the solution is not the solution to the original
problem, but is instead the solution to the problem without integer constraints.

See Also
prob2struct | solve

6 Nonlinear Problem-Based

6-46

Solve Nonlinear Feasibility Problem, Problem-Based
This example shows how to find a point that satisfies all the constraints in a problem, with no
objective function to minimize.

Problem Definition

Suppose you have the following constraints:

(y + x2)2 + 0 . 1y2 ≤ 1
y ≤ exp(− x)− 3
y ≤ x− 4 .

Do any points (x, y) satisfy all of the constraints?

Problem-Based Solution

Create an optimization problem that has only constraints, no objective function.

x = optimvar('x');
y = optimvar('y');
prob = optimproblem;
cons1 = (y + x^2)^2 + 0.1*y^2 <= 1;
cons2 = y <= exp(-x) - 3;
cons3 = y <= x - 4;
prob.Constraints.cons1 = cons1;
prob.Constraints.cons2 = cons2;
prob.Constraints.cons3 = cons3;
show(prob)

 OptimizationProblem :

 Solve for:
 x, y

 minimize :

 subject to cons1:
 ((y + x.^2).^2 + (0.1 .* y.^2)) <= 1

 subject to cons2:
 y <= (exp((-x)) - 3)

 subject to cons3:
 y - x <= -4

Create a pseudorandom start point structure x0 with fields x and y for the optimization variables.

rng default
x0.x = randn;
x0.y = randn;

Solve the problem starting from x0.

[sol,~,exitflag,output] = solve(prob,x0)

 Solve Nonlinear Feasibility Problem, Problem-Based

6-47

Solving problem using fmincon.

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

sol = struct with fields:
 x: 1.7903
 y: -3.0102

exitflag =
 OptimalSolution

output = struct with fields:
 iterations: 6
 funcCount: 9
 constrviolation: 0
 stepsize: 0.2906
 algorithm: 'interior-point'
 firstorderopt: 0
 cgiterations: 0
 message: 'Local minimum found that satisfies the constraints....'
 bestfeasible: [1x1 struct]
 objectivederivative: "closed-form"
 constraintderivative: "forward-AD"
 solver: 'fmincon'

The solver finds a feasible point.

Importance of Initial Point

The solver can fail to find a solution when starting from some initial points. Set the initial point x0.x
= –1, x0.y = –4 and then solve the problem starting from x0.

x0.x = -1;
x0.y = -4;
[sol2,~,exitflag2,output2] = solve(prob,x0)

Solving problem using fmincon.

Converged to an infeasible point.

fmincon stopped because it is unable to find a point locally that satisfies
the constraints within the value of the constraint tolerance.

Consider enabling the interior point method feasibility mode.

sol2 = struct with fields:
 x: -2.1266
 y: -4.6657

6 Nonlinear Problem-Based

6-48

exitflag2 =
 NoFeasiblePointFound

output2 = struct with fields:
 iterations: 137
 funcCount: 316
 constrviolation: 1.4609
 stepsize: 2.5495e-10
 algorithm: 'interior-point'
 firstorderopt: 0
 cgiterations: 298
 message: 'Converged to an infeasible point....'
 bestfeasible: []
 objectivederivative: "closed-form"
 constraintderivative: "forward-AD"
 solver: 'fmincon'

Check the infeasibilities at the returned point.

inf1 = infeasibility(cons1,sol2)

inf1 = 1.1974

inf2 = infeasibility(cons2,sol2)

inf2 = 0

inf3 = infeasibility(cons3,sol2)

inf3 = 1.4609

Both cons1 and cons3 are infeasible at the solution sol2. The results highlight the importance of
using multiple start points to investigate and solve a feasibility problem.

Visualize Constraints

To visualize the constraints, plot the points where each constraint function is zero by using
fimplicit. The fimplicit function passes numeric values to its functions, whereas the evaluate
function requires a structure. To tie these functions together, use the evaluateExpr helper function,
which appears at the end of this example on page 6-0 . This function simply puts passed values into
a structure with the appropriate names.

Note: Make sure the code for the evaluateExpr helper function is included at the end of your script
or in a file on the path.

Avoid a warning that occurs because the evaluateExpr function does not work on vectorized inputs.

s = warning('off','MATLAB:fplot:NotVectorized');
cc1 = (y + x^2)^2 + 0.1*y^2 - 1;
fimplicit(@(a,b)evaluateExpr(cc1,a,b),[-2 2 -4 2],'r')
hold on
cc2 = y - exp(-x) + 3;
fimplicit(@(a,b)evaluateExpr(cc2,a,b),[-2 2 -4 2],'k')
cc3 = y - x + 4;
fimplicit(@(x,y)evaluateExpr(cc3,x,y),[-2 2 -4 2],'b')
hold off

 Solve Nonlinear Feasibility Problem, Problem-Based

6-49

warning(s);

The feasible region is inside the red outline and below the black and blue lines. The feasible region is
at the lower right of the red outline.

Helper Function

This code creates the evaluateExpr helper function.

function p = evaluateExpr(expr,x,y)
pt.x = x;
pt.y = y;
p = evaluate(expr,pt);
end

See Also
fmincon

More About
• “Feasibility Using Problem-Based Optimize Live Editor Task” on page 6-51
• “Investigate Linear Infeasibilities” on page 8-161
• “Solve Feasibility Problem” (Global Optimization Toolbox)
• “Problem-Based Optimization Workflow” on page 9-2

6 Nonlinear Problem-Based

6-50

Feasibility Using Problem-Based Optimize Live Editor Task
Problem Description

This example shows how to find a feasible point using the Optimize Live Editor task using a variety
of solvers. The problem is to find a point [x, y] satisfying these constraints:

(y + x2)2 + 0 . 1y2 ≤ 1

y ≤ exp(− x)− 3

y ≤ x− 4.

Graph the curves where the constraint functions are equal to zero. To see which part of the region is
feasible (negative constraint function value), plot the curves where the constraint functions equal –
1/2. Use the plotobjconstr function appearing at the end of this script on page 6-0 .

plotobjconstr

There appears to be a small feasible region near x = 1 . 75, y = − 3. Notice that there is no point
where all constraint values are below –1/2, so the feasible set is small.

Use Problem-Based Optimize Live Editor Task

To find a feasible point, launch the Optimize Live Editor task from a Live Script by choosing Task >
Optimize on the Code tab or Insert tab. Choose the problem-based task.

 Feasibility Using Problem-Based Optimize Live Editor Task

6-51

Set the problem variable x to have lower bound –5 and upper bound 5. Set the problem variable y to
have lower bound –10 and upper bound 10. Set the initial point for x to 2 and for y to –2.

Set the Goal to Feasibilty.

Create inequalities represending the three constraints. Your task should match this picture.

Switch the task mode to Solve problem. The task chooses the fmincon solver, and reaches the
following solution.

6 Nonlinear Problem-Based

6-52

Effect of Initial Point

Starting from a different initial point can cause fmincon to fail to find a solution. Set the initial point
for x to –2.

This time fmincon fails to find a feasible solution.

Try Different Solver

To attempt to find a solution, try a different solver. Set the solver to ga. To do so, specify the solver in
the Specify problem-dependent solver options expander. And to monitor the solver progress, set
the plot function to Max constraint violation.

 Feasibility Using Problem-Based Optimize Live Editor Task

6-53

ga finds a feasible point to within the constraint tolerance.

6 Nonlinear Problem-Based

6-54

ga finds a different solution than fmincon. The solution is slightly infeasible. To get a solution with
lower infeasibility, you can set the constraint tolerance option to a lower value than the default.
Alternatively, try a different solver.

Try surrogateopt

Try using the surrogateopt solver. Set the plot function as Max constraint violation; this setting
does not carry forward automatically from the ga solution.

 Feasibility Using Problem-Based Optimize Live Editor Task

6-55

surrogateopt reaches a feasible solution, but does not stop when it first reaches a solution.
Instead, surrogateopt continues to iterate until it reaches its function evaluation limit. To stop the
iterations earlier, specify an output function that halts the solver as soon as the maximum constraint
violation reaches 1e-6 or less. Doing so causes the solver to stop much earlier. Use the surrout
helper function, which appears at the end of this script on page 6-0 . To specify this function, create
a function handle to the function.

outfun = @surrout;

6 Nonlinear Problem-Based

6-56

Specify this function handle in the Specify problem-dependent solver options > Options >
Diagnostics > Output function drop-down menu.

 Feasibility Using Problem-Based Optimize Live Editor Task

6-57

This time the solver stops after about 30 function evaluations instead of 200. The solution is slightly
different than the previous one, but both are feasible solutions.

Conclusions

The problem-based Optimize Live Editor task helps you try using different solvers on a problem,
even solvers that have different syntaxes such as fmincon and surrogateopt. The task also helps
you set plot functions, and set other options.

The task appears here in its final state. Feel free to experiment using different solvers and options.

Helper Functions

This code creates the plotobjconstr helper function.

function plotobjconstr
[XX,YY] = meshgrid(-2:0.1:2,-4:0.1:2);
ZZ = objconstr([XX(:),YY(:)]).Ineq;
ZZ = reshape(ZZ,[size(XX),3]);
h = figure;
ax = gca;
contour(ax,XX,YY,ZZ(:,:,1),[-1/2 0],'r','ShowText','on');
hold on
contour(ax,XX,YY,ZZ(:,:,2),[-1/2 0],'k','ShowText','on');
contour(ax,XX,YY,ZZ(:,:,3),[-1/2 0],'b','ShowText','on');
hold off
end

This code creates the objconstr helper function.

function f = objconstr(x)
c(:,1) = (x(:,2) + x(:,1).^2).^2 + 0.1*x(:,2).^2 - 1;
c(:,2) = x(:,2) - exp(-x(:,1)) + 3;
c(:,3) = x(:,2) - x(:,1) + 4;

6 Nonlinear Problem-Based

6-58

f.Ineq = c;
end

This code creates the surrout helper function

function stop = surrout(~,optimValues,~)
stop = false;
if optimValues.constrviolation <= 1e-6 % Tolerance for constraint
 stop = true;
end
end

See Also
Optimize | fmincon | ga | surrogateopt

Related Examples
• “Solve Nonlinear Feasibility Problem, Problem-Based” on page 6-47
• “Investigate Linear Infeasibilities” on page 8-161
• “Solve Feasibility Problem” (Global Optimization Toolbox)
• “Problem-Based Optimization Workflow” on page 9-2

 Feasibility Using Problem-Based Optimize Live Editor Task

6-59

Multiobjective Algorithms and Examples

• “Multiobjective Optimization Algorithms” on page 7-2
• “Compare fminimax and fminunc” on page 7-7
• “Using fminimax with a Simulink Model” on page 7-9
• “Signal Processing Using fgoalattain” on page 7-13
• “Generate and Plot Pareto Front” on page 7-16
• “Multi-Objective Goal Attainment Optimization” on page 7-19
• “Minimax Optimization” on page 7-25

7

Multiobjective Optimization Algorithms

In this section...
“Multiobjective Optimization Definition” on page 7-2
“Algorithms” on page 7-3

Multiobjective Optimization Definition
There are two Optimization Toolbox multiobjective solvers: fgoalattain and fminimax.

• fgoalattain addresses the problem of reducing a set of nonlinear functions Fi(x) below a set of
goals F*i. Since there are several functions Fi(x), it is not always clear what it means to solve this
problem, especially when you cannot achieve all the goals simultaneously. Therefore, the problem
is reformulated to one that is always well-defined.

The unscaled goal attainment problem is to minimize the maximum of Fi(x) – F*i.

There is a useful generalization of the unscaled problem. Given a set of positive weights wi, the
goal attainment problem tries to find x to minimize the maximum of

Fi(x)− Fi*
wi

. (7-1)

This minimization is supposed to be accomplished while satisfying all types of constraints:
c(x) ≤ 0, ceq(x) = 0, A·x ≤ b, Aeq·x = beq, and l ≤ x ≤ u.

If you set all weights equal to 1 (or any other positive constant), the goal attainment problem is
the same as the unscaled goal attainment problem. If the F*i are positive, and you set all weights
as wi = F*i, the goal attainment problem becomes minimizing the relative difference between the
functions Fi(x) and the goals F*i.

In other words, the goal attainment problem is to minimize a slack variable γ, defined as the
maximum over i of the expressions in “Equation 7-1”. This implies the expression that is the
formal statement of the goal attainment problem:

min
x, γ

γ

such that F(x) – w·γ ≤ F*, c(x) ≤ 0, ceq(x) = 0, A·x ≤ b, Aeq·x = beq, and l ≤ x ≤ u.
• fminimax addresses the problem of minimizing the maximum of a set of nonlinear functions,

subject to all types of constraints:

min
x

max
i

Fi(x)

such that c(x) ≤ 0, ceq(x) = 0, A·x ≤ b, Aeq·x = beq, and l ≤ x ≤ u.

Clearly, this problem is a special case of the unscaled goal attainment problem, with F*i = 0 and
wi = 1.

7 Multiobjective Algorithms and Examples

7-2

Algorithms
Goal Attainment Method

This section describes the goal attainment method of Gembicki [3]. This method uses a set of design
goals, F* = F1*, F2*, ..., Fm* , associated with a set of objectives, F(x) = {F1(x),F2(x),...,Fm(x)}. The
problem formulation allows the objectives to be under- or overachieved, enabling the designer to be
relatively imprecise about the initial design goals. The relative degree of under- or overachievement
of the goals is controlled by a vector of weighting coefficients, w = {w1,w2,...,wm}, and is expressed as
a standard optimization problem using the formulation

minimize
γ ∈ ℜ, x ∈ Ω

γ (7-2)

such that Fi(x)−wiγ ≤ Fi*, i = 1, ..., m .

The term wiγ introduces an element of slackness into the problem, which otherwise imposes that the
goals be rigidly met. The weighting vector, w, enables the designer to express a measure of the
relative tradeoffs between the objectives. For instance, setting the weighting vector w equal to the
initial goals indicates that the same percentage under- or overachievement of the goals, F*, is
achieved. You can incorporate hard constraints into the design by setting a particular weighting
factor to zero (i.e., wi = 0). The goal attainment method provides a convenient intuitive interpretation
of the design problem, which is solvable using standard optimization procedures. Illustrative
examples of the use of the goal attainment method in control system design can be found in
Fleming ([10] and [11]).

The goal attainment method is represented geometrically in the figure below in two dimensions.

Figure 7-1, Geometrical Representation of the Goal Attainment Method

Specification of the goals, F1*, F2* , defines the goal point, P. The weighting vector defines the
direction of search from P to the feasible function space, Λ(γ). During the optimization γ is varied,
which changes the size of the feasible region. The constraint boundaries converge to the unique
solution point F1s, F2s.

Algorithm Improvements for the Goal Attainment Method

The goal attainment method has the advantage that it can be posed as a nonlinear programming
problem. Characteristics of the problem can also be exploited in a nonlinear programming algorithm.

 Multiobjective Optimization Algorithms

7-3

In sequential quadratic programming (SQP), the choice of merit function for the line search is not
easy because, in many cases, it is difficult to “define” the relative importance between improving the
objective function and reducing constraint violations. This has resulted in a number of different
schemes for constructing the merit function (see, for example, Schittkowski [36]). In goal attainment
programming there might be a more appropriate merit function, which you can achieve by posing
“Equation 7-2” as the minimax problem

minimize
x ∈ ℜn

 max
i

Λi , (7-3)

where

Λi =
Fi(x)− Fi*

wi
, i = 1, ..., m .

Following the argument of Brayton et al. [1] for minimax optimization using SQP, using the merit
function of “Equation 5-45” for the goal attainment problem of “Equation 7-3” gives

ψ(x, γ) = γ + ∑
i = 1

m
ri ⋅max 0, Fi(x)−wiγ− Fi* . (7-4)

When the merit function of “Equation 7-4” is used as the basis of a line search procedure, then,
although ψ(x,γ) might decrease for a step in a given search direction, the function max Λi might
paradoxically increase. This is accepting a degradation in the worst case objective. Since the worst
case objective is responsible for the value of the objective function γ, this is accepting a step that
ultimately increases the objective function to be minimized. Conversely, ψ(x,γ) might increase when
max Λi decreases, implying a rejection of a step that improves the worst case objective.

Following the lines of Brayton et al. [1], a solution is therefore to set ψ(x) equal to the worst case
objective, i.e.,

ψ(x) = max
i

Λi . (7-5)

A problem in the goal attainment method is that it is common to use a weighting coefficient equal to 0
to incorporate hard constraints. The merit function of “Equation 7-5” then becomes infinite for
arbitrary violations of the constraints.

To overcome this problem while still retaining the features of “Equation 7-5”, the merit function is
combined with that of “Equation 5-46”, giving the following:

ψ(x) = ∑
i = 1

m ri ⋅max 0, Fi(x)−wiγ− Fi* if wi = 0
max

i
Λi, i = 1, ..., m otherwise. (7-6)

Another feature that can be exploited in SQP is the objective function γ. From the KKT equations it
can be shown that the approximation to the Hessian of the Lagrangian, H, should have zeros in the
rows and columns associated with the variable γ. However, this property does not appear if H is
initialized as the identity matrix. H is therefore initialized and maintained to have zeros in the rows
and columns associated with γ.

These changes make the Hessian, H, indefinite. Therefore H is set to have zeros in the rows and
columns associated with γ, except for the diagonal element, which is set to a small positive number

7 Multiobjective Algorithms and Examples

7-4

(e.g., 1e-10). This allows use of the fast converging positive definite QP method described in
“Quadratic Programming Solution” on page 5-26.

The preceding modifications have been implemented in fgoalattain and have been found to make
the method more robust. However, because of the rapid convergence of the SQP method, the
requirement that the merit function strictly decrease sometimes requires more function evaluations
than an implementation of SQP using the merit function of “Equation 5-45”.

Minimizing the Maximum Objective

fminimax uses a goal attainment method. It takes goals of 0, and weights of 1. With this formulation,
the goal attainment problem becomes

min
i

max
x

f i(x)− goali
weighti

= min
i

max
x

f i(x),

which is the minimax problem.

Parenthetically, you might expect fminimax to turn the multiobjective function into a single
objective. The function

f(x) = max(F1(x),...Fj(x))

is a single objective function to minimize. However, it is not differentiable, and Optimization Toolbox
objectives are required to be smooth. Therefore the minimax problem is formulated as a smooth goal
attainment problem.

References
[1] Brayton, R. K., S. W. Director, G. D. Hachtel, and L. Vidigal, “A New Algorithm for Statistical

Circuit Design Based on Quasi-Newton Methods and Function Splitting,” IEEE Transactions
on Circuits and Systems, Vol. CAS-26, pp 784-794, Sept. 1979.

[2] Fleming, P.J. and A.P. Pashkevich, Computer Aided Control System Design Using a Multi-Objective
Optimisation Approach, Control 1985 Conference, Cambridge, UK, pp. 174-179.

[3] Gembicki, F.W., “Vector Optimization for Control with Performance and Parameter Sensitivity
Indices,” Ph.D. Dissertation, Case Western Reserve Univ., Cleveland, OH, 1974.

[4] Grace, A.C.W., “Computer-Aided Control System Design Using Optimization Techniques,” Ph.D.
Thesis, University of Wales, Bangor, Gwynedd, UK, 1989.

[5] Han, S.P., “A Globally Convergent Method For Nonlinear Programming,” Journal of Optimization
Theory and Applications, Vol. 22, p. 297, 1977.

[6] Madsen, K. and H. Schjaer-Jacobsen, “Algorithms for Worst Case Tolerance Optimization,” IEEE
Trans. of Circuits and Systems, Vol. CAS-26, Sept. 1979.

[7] Powell, M.J.D., “A Fast Algorithm for Nonlinear Constrained Optimization Calculations,” Numerical
Analysis, ed. G.A. Watson, Lecture Notes in Mathematics, Vol. 630, Springer Verlag, 1978.

See Also
fgoalattain | fminimax

 Multiobjective Optimization Algorithms

7-5

Related Examples
• “Smooth Formulations of Nonsmooth Functions” on page 5-39

7 Multiobjective Algorithms and Examples

7-6

Compare fminimax and fminunc
A minimax problem minimizes the maximum of a set of objective functions. Why not minimize this
maximum function, which is a scalar function? The answer is that the maximum is not smooth, and
Optimization Toolbox™ solvers such as fminunc require smoothness.

For example, define fun(x) as three linear objective functions in two variables, and fun2 as the
maximum of these three objectives.

a = [1;1];
b = [-1;1];
c = [0;-1];
a0 = 2;
b0 = -3;
c0 = 4;
fun = @(x)[x*a+a0,x*b+b0,x*c+c0];
fun2 = @(x)max(fun(x),[],2);

Plot the maximum of the three objectives.

[X,Y] = meshgrid(linspace(-5,5));
Z = fun2([X(:),Y(:)]);
Z = reshape(Z,size(X));
surf(X,Y,Z,'LineStyle','none')
view(-118,28)

fminimax finds the minimax point easily.

 Compare fminimax and fminunc

7-7

x0 = [0,0];
[xm,fvalm,maxfval] = fminimax(fun,x0)

Local minimum possible. Constraints satisfied.

fminimax stopped because the size of the current search direction is less than
twice the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

xm = 1×2

 -2.5000 2.2500

fvalm = 1×3

 1.7500 1.7500 1.7500

maxfval = 1.7500

However, fminunc stops at a point that is far from the minimax point.

[xu,fvalu] = fminunc(fun2,x0)

Local minimum possible.

fminunc stopped because it cannot decrease the objective function
along the current search direction.

xu = 1×2

 0 1.0000

fvalu = 3.0000

fminimax finds a better (smaller) solution.

fprintf("fminimax finds a point with objective %g,\nwhile fminunc finds a point with objective %g.",maxfval,fvalu)

fminimax finds a point with objective 1.75,
while fminunc finds a point with objective 3.

See Also
fminimax

More About
• “Multiobjective Optimization”
• “Smooth Formulations of Nonsmooth Functions” on page 5-39

7 Multiobjective Algorithms and Examples

7-8

Using fminimax with a Simulink Model
This example shows how to tune the parameters of a Simulink® model. The model, optsim, is
included in the optim/demos folder of your MATLAB® installation. The model includes a nonlinear
process plant modeled as a Simulink block diagram.

Plant with Actuator Saturation

The plant is an under-damped third-order model with actuator limits. The actuator limits are a
saturation limit and a slew rate limit. The actuator saturation limit cuts off input values greater than
2 units or less than –2 units. The slew rate limit of the actuator is 0.8 units/sec. The closed-loop
response of the system to a step input is shown in Closed-Loop Response on page 7-0 . You can see
this response by opening the model (type optsim at the command line or click the model name), and
selecting Run from the Simulation menu. The response plots to the scope.

Closed-Loop Response

The problem is to design a feedback control loop that tracks a unit step input to the system. The
closed-loop plant is entered in terms of the blocks where the plant and actuator are located in a
hierarchical Subsystem block. A Scope block displays output trajectories during the design process.

 Using fminimax with a Simulink Model

7-9

Closed-Loop Model

To optimize this system, minimize the maximum value of the output at any time t between 0 and 100.
(In contrast, in the example “lsqnonlin with a Simulink Model” on page 11-18, the solution involves
minimizing the error between the output and the input signal.)

The code for this example is contained in the helper function runtrackmm at the end of this example.
on page 7-0 The objective function is simply the output yout returned by the sim command. But
minimizing the maximum output at all time steps might force the output to be far below unity for
some time steps. To keep the output above 0.95 after the first 20 seconds, the constraint function
trackmmcon contains the constraint yout >= 0.95 from t = 20 to t = 100. Because constraints
must be in the form g ≤ 0, the constraint in the function is g = -yout(20:100) + 0.95.

Both trackmmobj and trackmmcon use the result yout from sim, calculated from the current PID
values. To avoid calling the simulation twice, runtrackmm has nested functions so that the value of
yout is shared between the objective and constraint functions. The simulation is called only when the
current point changes.

Call runtrackmm.

[Kp,Ki,Kd] = runtrackmm

 Objective Max Line search Directional
 Iter F-count value constraint steplength derivative Procedure
 0 5 0 1.11982
 1 11 1.184 0.07978 1 0.482
 2 17 1.012 0.04285 1 -0.236
 3 23 0.9995 0.007058 1 -0.0186 Hessian modified twice

 4 29 0.9997 9.705e-07 1 0.00716 Hessian modified

Local minimum possible. Constraints satisfied.

fminimax stopped because the size of the current search direction is less than
twice the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

Kp = 0.5910

Ki = 0.0606

Kd = 5.5383

The last value in the Objective value column of the output shows that the maximum value for all
the time steps is just under 1. The closed-loop response with this result is shown in the figure Closed-
Loop Response Using fminimax on page 7-0 .

7 Multiobjective Algorithms and Examples

7-10

This solution differs from the solution obtained in “lsqnonlin with a Simulink Model” on page 11-18
because you are solving different problem formulations.

Closed-Loop Response Using fminimax

Helper Function

The following code creates the runtrackmm helper function.

function [Kp, Ki, Kd] = runtrackmm

optsim % initialize Simulink(R)
pid0 = [0.63 0.0504 1.9688];
% a1, a2, yout are shared with TRACKMMOBJ and TRACKMMCON
a1 = 3; a2 = 43; % Initialize plant variables in model
yout = []; % Give yout an initial value
pold = []; % tracks last pid
opt = simset('solver','ode5','SrcWorkspace','Current');
options = optimset('Display','iter',...
 'TolX',0.001,'TolFun',0.001);
pid = fminimax(@trackmmobj,pid0,[],[],[],[],[],[],...
 @trackmmcon,options);
Kp = pid(1); Ki = pid(2); Kd = pid(3);

 function F = trackmmobj(pid)
 % Track the output of optsim to a signal of 1.
 % Variables a1 and a2 are shared with RUNTRACKMM.
 % Variable yout is shared with RUNTRACKMM and
 % RUNTRACKMMCON.

 Using fminimax with a Simulink Model

7-11

 updateIfNeeded(pid)

 F = yout;
 end

 function [c,ceq] = trackmmcon(pid)
 % Track the output of optsim to a signal of 1.
 % Variable yout is shared with RUNTRACKMM and
 % TRACKMMOBJ
 updateIfNeeded(pid)

 c = -yout(20:100)+.95;
 ceq=[];
 end

 function updateIfNeeded(pid)
 if ~isequal(pid,pold) % compute only if needed

 Kp = pid(1);
 Ki = pid(2);
 Kd = pid(3);

 [~,~,yout] = sim('optsim',[0 100],opt);

 pold = pid;
 end
 end

end

See Also
fminimax

More About
• “Multiobjective Optimization”

7 Multiobjective Algorithms and Examples

7-12

Signal Processing Using fgoalattain
Consider designing a linear-phase Finite Impulse Response (FIR) filter. The problem is to design a
lowpass filter with magnitude one at all frequencies between 0 and 0.1 Hz and magnitude zero
between 0.15 and 0.5 Hz.

The frequency response H(f) for such a filter is defined by

H(f) = ∑
n = 0

2M
h(n)e− j2πfn

= A(f)e− j2πf M,

A(f) = ∑
n = 0

M − 1
a(n)cos(2πfn),

 (7-7)

where A(f) is the magnitude of the frequency response. One solution is to apply a goal attainment
method to the magnitude of the frequency response. Given a function that computes the magnitude,
fgoalattain will attempt to vary the magnitude coefficients a(n) until the magnitude response
matches the desired response within some tolerance. The function that computes the magnitude
response is given in filtmin.m. This function uses a, the magnitude function coefficients, and w, the
discretization of the frequency domain of interest.

To set up a goal attainment problem, you must specify the goal and weights for the problem. For
frequencies between 0 and 0.1, the goal is one. For frequencies between 0.15 and 0.5, the goal is
zero. Frequencies between 0.1 and 0.15 are not specified, so no goals or weights are needed in this
range.

This information is stored in the variable goal passed to fgoalattain. The length of goal is the
same as the length returned by the function filtmin. So that the goals are equally satisfied, usually
weight would be set to abs(goal). However, since some of the goals are zero, the effect of using
weight=abs(goal) will force the objectives with weight 0 to be satisfied as hard constraints, and
the objectives with weight 1 possibly to be underattained (see “Goal Attainment Method” on page 7-
3). Because all the goals are close in magnitude, using a weight of unity for all goals will give them
equal priority. (Using abs(goal) for the weights is more important when the magnitude of goal
differs more significantly.) Also, setting

options = optimoptions('fgoalattain','EqualityGoalCount',length(goal));

specifies that each objective should be as near as possible to its goal value (neither greater nor less
than).

Step 1: Write a file filtmin.m
function y = filtmin(a,w)
n = length(a);
y = cos(w'*(0:n-1)*2*pi)*a ;

Step 2: Invoke optimization routine
% Plot with initial coefficients
a0 = ones(15,1);
incr = 50;

 Signal Processing Using fgoalattain

7-13

w = linspace(0,0.5,incr);

y0 = filtmin(a0,w);
clf, plot(w,y0,'-.b');
drawnow;

% Set up the goal attainment problem
w1 = linspace(0,0.1,incr) ;
w2 = linspace(0.15,0.5,incr);
w0 = [w1 w2];
goal = [1.0*ones(1,length(w1)) zeros(1,length(w2))];
weight = ones(size(goal));

% Call fgoalattain
options = optimoptions('fgoalattain','EqualityGoalCount',length(goal));
[a,fval,attainfactor,exitflag]=fgoalattain(@(x)filtmin(x,w0),...
 a0,goal,weight,[],[],[],[],[],[],[],options);

% Plot with the optimized (final) coefficients
y = filtmin(a,w);
hold on, plot(w,y,'r')
axis([0 0.5 -3 3])
xlabel('Frequency (Hz)')
ylabel('Magnitude Response (dB)')
legend('initial', 'final')
grid on

Compare the magnitude response computed with the initial coefficients and the final coefficients
(“Magnitude Response with Initial and Final Magnitude Coefficients” on page 7-15). Note that you
could use the firpm function in Signal Processing Toolbox™ software to design this filter.

7 Multiobjective Algorithms and Examples

7-14

Magnitude Response with Initial and Final Magnitude Coefficients

See Also
fgoalattain

More About
• “Multi-Objective Goal Attainment Optimization” on page 7-19
• “Minimax Optimization” on page 7-25

 Signal Processing Using fgoalattain

7-15

Generate and Plot Pareto Front
This example shows how to generate and plot a Pareto front for a 2-D multiobjective function using
fgoalattain.

The two objective functions in this example are shifted and scaled versions of the convex function
1 + x2. The code for the objective functions appears in the simple_mult helper function at the end

of this example on page 7-0 .

Both objective functions decrease in the region x ≤ 0 and increase in the region x ≥ 1. In between 0
and 1, f1(x) increases and f2(x) decreases, so a tradeoff region exists. Plot the two objective functions
for x ranging from −1/2 to 3/2.

t = linspace(-1/2,3/2);
F = simple_mult(t);
plot(t,F,'LineWidth',2)
hold on
plot([0,0],[0,8],'g--');
plot([1,1],[0,8],'g--');
plot([0,1],[1,6],'k.','MarkerSize',15);
text(-0.25,1.5,'Minimum(f_1(x))')
text(.75,5.5,'Minimum(f_2(x))')
hold off
legend('f_1(x)','f_2(x)')
xlabel({'x';'Tradeoff region between the green lines'})

7 Multiobjective Algorithms and Examples

7-16

To find the Pareto front, first find the unconstrained minima of the two objective functions. In this
case, you can see in the plot that the minimum of f1(x) is 1, and the minimum of f2(x) is 6, but in
general you might need to use an optimization routine to find the minima.

In general, write a function that returns a particular component of the multiobjective function. (The
pickindex helper function at the end of this example on page 7-0 returns the kth objective
function value.) Then find the minimum of each component using an optimization solver. You can use
fminbnd in this case, or fminunc for higher-dimensional problems.

k = 1;
[min1,minfn1] = fminbnd(@(x)pickindex(x,k),-1,2);
k = 2;
[min2,minfn2] = fminbnd(@(x)pickindex(x,k),-1,2);

Set goals that are the unconstrained optima for each objective function. You can simultaneously
achieve these goals only if the objective functions do not interfere with each other, meaning there is
no tradeoff.

goal = [minfn1,minfn2];

To calculate the Pareto front, take weight vectors [a, 1 – a] for a from 0 through 1. Solve the goal
attainment problem, setting the weights to the various values.

nf = 2; % Number of objective functions
N = 50; % Number of points for plotting
onen = 1/N;
x = zeros(N+1,1);
f = zeros(N+1,nf);
fun = @simple_mult;
x0 = 0.5;
options = optimoptions('fgoalattain','Display','off');
for r = 0:N
t = onen*r; % 0 through 1
weight = [t,1-t];
[x(r+1,:),f(r+1,:)] = fgoalattain(fun,x0,goal,weight,...
[],[],[],[],[],[],[],options);
end
figure
plot(f(:,1),f(:,2),'ko');
xlabel('f_1')
ylabel('f_2')

 Generate and Plot Pareto Front

7-17

You can see the tradeoff between the two objective functions.

Helper Functions

The following code creates the simple_multi function.

function f = simple_mult(x)
f(:,1) = sqrt(1+x.^2);
f(:,2) = 4 + 2*sqrt(1+(x-1).^2);
end

The following code creates the pickindex function.

function z = pickindex(x,k)
z = simple_mult(x); % evaluate both objectives
z = z(k); % return objective k
end

See Also
fgoalattain

More About
• “Multi-Objective Goal Attainment Optimization” on page 7-19

7 Multiobjective Algorithms and Examples

7-18

Multi-Objective Goal Attainment Optimization
This example shows how to solve a pole-placement problem using the multiobjective goal attainment
method. This algorithm is implemented in the function fgoalattain.

Equation that Describes Evolution of System

Consider a 2-input 2-output unstable plant. The equation describing the evolution of the system x(t) is

dx
dt = Ax(t) + Bu(t),

where u(t) is the input (control) signal. The output of the system is

y(t) = Cx(t) .

The matrices A, B, and C are

A = [-0.5 0 0; 0 -2 10; 0 1 -2];
B = [1 0; -2 2; 0 1];
C = [1 0 0; 0 0 1];

Optimization Objective

Suppose that the control signal u(t) is set as proportional to the output y(t):

u(t) = Ky(t)

for some matrix K.

This means that the evolution of the system x(t) is:

dx
dt = Ax(t) + BKCx(t) = (A + BKC)x(t) .

The object of the optimization is to design K to have the following two properties:

1. The real parts of the eigenvalues of (A + BKC) are smaller than [–5, –3, –1]. (This is called pole
placement in the control literature.)

2. abs(K) <= 4 (each element of K is between -4 and 4)

In order to solve the optimization, first set the multiobjective goals:

goal = [-5, -3, -1];

Set the weights equal to the goals to ensure same percentage under- or over-attainment in the goals.

weight = abs(goal);

Initialize the output feedback controller

K0 = [-1 -1; -1 -1];

Set upper and lower bounds on the controller

lb = repmat(-4,size(K0))

 Multi-Objective Goal Attainment Optimization

7-19

lb = 2×2

 -4 -4
 -4 -4

ub = repmat(4,size(K0))

ub = 2×2

 4 4
 4 4

Set optimization display parameter to give output at each iteration:

options = optimoptions('fgoalattain','Display','iter');

Create a vector-valued function eigfun that returns the eigenvalues of the closed loop system. This
function requires additional parameters (namely, the matrices A, B, and C); the most convenient way
to pass these is through an anonymous function:

eigfun = @(K) sort(eig(A+B*K*C));

Call Optimization Solver

To begin the optimization we call fgoalattain:

[K,~,attainfactor] = ...
 fgoalattain(eigfun,K0,goal,weight,[],[],[],[],lb,ub,[],options);

 Attainment Max Line search Directional
 Iter F-count factor constraint steplength derivative Procedure
 0 6 0 1.88521
 1 13 1.031 0.02998 1 0.745
 2 20 0.3525 0.06863 1 -0.613
 3 27 -0.1706 0.1071 1 -0.223 Hessian modified
 4 34 -0.2236 0.06654 1 -0.234 Hessian modified twice
 5 41 -0.3568 0.007894 1 -0.0812
 6 48 -0.3645 0.000145 1 -0.164 Hessian modified
 7 55 -0.3645 0 1 -0.00515 Hessian modified
 8 62 -0.3675 0.0001547 1 -0.00812 Hessian modified twice
 9 69 -0.3889 0.008328 1 -0.00751 Hessian modified
 10 76 -0.3862 0 1 0.00568
 11 83 -0.3863 3.372e-13 1 -0.998 Hessian modified twice

Local minimum possible. Constraints satisfied.

fgoalattain stopped because the size of the current search direction is less than
twice the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

The value of the control parameters at the solution is:

K

K = 2×2

 -4.0000 -0.2564

7 Multiobjective Algorithms and Examples

7-20

 -4.0000 -4.0000

The eigenvalues of the closed loop system are in eigfun(K) as follows: (they are also held in output
fval)

eigfun(K)

ans = 3×1

 -6.9313
 -4.1588
 -1.4099

The attainment factor indicates the level of goal achievement. A negative attainment factor indicates
over-achievement, positive indicates under-achievement. The value attainfactor we obtained in this
run indicates that the objectives have been over-achieved by almost 40 percent:

attainfactor

attainfactor = -0.3863

Evolution of System Via Solution to ODE

Here is how the system x(t) evolves from time 0 to time 4, using the calculated feedback matrix K,
starting from the point x(0) = [1;1;1].

First solve the differential equation:

[Times, xvals] = ode45(@(u,x)((A + B*K*C)*x),[0,4],[1;1;1]);

Then plot the result:

plot(Times,xvals)
legend('x_1(t)','x_2(t)','x_3(t)','Location','best')
xlabel('t');
ylabel('x(t)');

 Multi-Objective Goal Attainment Optimization

7-21

Set Goals To Be Achieved Exactly

Suppose we now require the eigenvalues to be as near as possible to the goal values, [–5, –3, –1]. Set
options.EqualityGoalCount to the number of objectives that should be as near as possible to the
goals (i.e., do not try to over-achieve):

All three objectives should be as near as possible to the goals.

options.EqualityGoalCount = 3;

Call Optimization Solver

We are ready to call the optimization solver:

[K,fval,attainfactor,exitflag,output,lambda] = ...
 fgoalattain(eigfun,K0,goal,weight,[],[],[],[],lb,ub,[],options);

 Attainment Max Line search Directional
 Iter F-count factor constraint steplength derivative Procedure
 0 6 0 1.88521
 1 13 1.031 0.02998 1 0.745
 2 20 0.3525 0.06863 1 -0.613
 3 27 0.1528 -0.009105 1 -0.22 Hessian modified
 4 34 0.02684 0.03722 1 -0.166 Hessian modified
 5 41 -3.469e-18 0.005702 1 -0.116 Hessian modified
 6 48 -1.735e-18 9.701e-06 1 1.5e-16 Hessian modified
 7 55 -5.813e-21 4.76e-11 1 9.06e-14 Hessian modified

7 Multiobjective Algorithms and Examples

7-22

Local minimum possible. Constraints satisfied.

fgoalattain stopped because the size of the current search direction is less than
twice the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

The value of the control parameters at this solution is:

K

K = 2×2

 -1.5954 1.2040
 -0.4201 -2.9046

This time the eigenvalues of the closed loop system, which are also held in output fval, are as follows:

eigfun(K)

ans = 3×1

 -5.0000
 -3.0000
 -1.0000

The attainment factor is the level of goal achievement. A negative attainment factor indicates over-
achievement, positive indicates under-achievement. The low attainfactor obtained indicates that the
eigenvalues have almost exactly met the goals:

attainfactor

attainfactor = -5.8129e-21

Evolution of New System Via Solution to ODE

Here is how the system x(t) evolves from time 0 to time 4, using the new calculated feedback matrix
K, starting from the point x(0) = [1;1;1].

First solve the differential equation:

[Times, xvals] = ode45(@(u,x)((A + B*K*C)*x),[0,4],[1;1;1]);

Then plot the result:

plot(Times,xvals)
legend('x_1(t)','x_2(t)','x_3(t)','Location','best')
xlabel('t');
ylabel('x(t)');

 Multi-Objective Goal Attainment Optimization

7-23

See Also
fgoalattain

More About
• “lsqnonlin with a Simulink Model” on page 11-18

7 Multiobjective Algorithms and Examples

7-24

Minimax Optimization
This example shows how to solve a nonlinear filter design problem using a minimax optimization
algorithm, fminimax, in Optimization Toolbox™. Note that to run this example you must have the
Signal Processing Toolbox™ installed.

Set Finite Precision Parameters

Consider an example for the design of finite precision filters. For this, you need to specify not only the
filter design parameters such as the cut-off frequency and number of coefficients, but also how many
bits are available since the design is in finite precision.

nbits = 8; % How many bits have we to realize filter
maxbin = 2^nbits-1; % Maximum number expressable in nbits bits
n = 4; % Number of coefficients (order of filter plus 1)
Wn = 0.2; % Cutoff frequency for filter
Rp = 1.5; % Decibels of ripple in the passband
w = 128; % Number of frequency points to take

Continuous Design First

This is a continuous filter design; we use cheby1, but we could also use ellip, yulewalk or remez
here:

[b1,a1] = cheby1(n-1,Rp,Wn);

[h,w] = freqz(b1,a1,w); % Frequency response
h = abs(h); % Magnitude response
plot(w, h)
title('Frequency response using non-integer variables')

 Minimax Optimization

7-25

x = [b1,a1]; % The design variables

Set Bounds for Filter Coefficients

We now set bounds on the maximum and minimum values:

if (any(x < 0))
% If there are negative coefficients - must save room to use a sign bit
% and therefore reduce maxbin
 maxbin = floor(maxbin/2);
 vlb = -maxbin * ones(1, 2*n)-1;
 vub = maxbin * ones(1, 2*n);
else
% otherwise, all positive
 vlb = zeros(1,2*n);
 vub = maxbin * ones(1, 2*n);
end

Scale Coefficients

Set the biggest value equal to maxbin and scale other filter coefficients appropriately.

[m, mix] = max(abs(x));
factor = maxbin/m;
x = factor * x; % Rescale other filter coefficients
xorig = x;

xmask = 1:2*n;

7 Multiobjective Algorithms and Examples

7-26

% Remove the biggest value and the element that controls D.C. Gain
% from the list of values that can be changed.
xmask(mix) = [];
nx = 2*n;

Set Optimization Criteria

Using optimoptions, adjust the termination criteria to reasonably high values to promote short
running times. Also turn on the display of results at each iteration:

options = optimoptions('fminimax', ...
 'StepTolerance', 0.1, ...
 'OptimalityTolerance', 1e-4,...
 'ConstraintTolerance', 1e-6, ...
 'Display', 'iter');

Minimize the Absolute Maximum Values

We need to minimize absolute maximum values, so we set options.MinAbsMax to the number of
frequency points:

if length(w) == 1
 options = optimoptions(options,'AbsoluteMaxObjectiveCount',w);
else
 options = optimoptions(options,'AbsoluteMaxObjectiveCount',length(w));
end

Eliminate First Value for Optimization

Discretize and eliminate first value and perform optimization by calling FMINIMAX:

[x, xmask] = elimone(x, xmask, h, w, n, maxbin)

x = 1×8

 0.5441 1.6323 1.6323 0.5441 57.1653 -127.0000 108.0000 -33.8267

xmask = 1×6

 1 2 3 4 5 8

niters = length(xmask);
disp(sprintf('Performing %g stages of optimization.\n\n', niters));

Performing 6 stages of optimization.

for m = 1:niters
 fun = @(xfree)filtobj(xfree,x,xmask,n,h,maxbin); % objective
 confun = @(xfree)filtcon(xfree,x,xmask,n,h,maxbin); % nonlinear constraint
 disp(sprintf('Stage: %g \n', m));
 x(xmask) = fminimax(fun,x(xmask),[],[],[],[],vlb(xmask),vub(xmask),...
 confun,options);
 [x, xmask] = elimone(x, xmask, h, w, n, maxbin);
end

Stage: 1

 Minimax Optimization

7-27

 Objective Max Line search Directional
 Iter F-count value constraint steplength derivative Procedure
 0 8 0 0.00329174
 1 17 0.0001845 3.34e-07 1 0.0143

Local minimum possible. Constraints satisfied.

fminimax stopped because the size of the current search direction is less than
twice the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

Stage: 2

 Objective Max Line search Directional
 Iter F-count value constraint steplength derivative Procedure
 0 7 0 0.0414182
 1 15 0.01649 0.0002558 1 0.261
 2 23 0.01544 6.126e-07 1 -0.0282 Hessian modified

Local minimum possible. Constraints satisfied.

fminimax stopped because the size of the current search direction is less than
twice the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

Stage: 3

 Objective Max Line search Directional
 Iter F-count value constraint steplength derivative Procedure
 0 6 0 0.0716961
 1 13 0.05943 -1.156e-11 1 0.776

Local minimum possible. Constraints satisfied.

fminimax stopped because the size of the current search direction is less than
twice the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

Stage: 4

 Objective Max Line search Directional
 Iter F-count value constraint steplength derivative Procedure
 0 5 0 0.129938
 1 11 0.04278 2.937e-10 1 0.183

Local minimum possible. Constraints satisfied.

fminimax stopped because the size of the current search direction is less than
twice the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

Stage: 5

 Objective Max Line search Directional
 Iter F-count value constraint steplength derivative Procedure
 0 4 0 0.0901749
 1 9 0.03867 -4.951e-11 1 0.256

Local minimum possible. Constraints satisfied.

7 Multiobjective Algorithms and Examples

7-28

fminimax stopped because the size of the current search direction is less than
twice the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

Stage: 6

 Objective Max Line search Directional
 Iter F-count value constraint steplength derivative Procedure
 0 3 0 0.11283
 1 7 0.05033 -1.249e-16 1 0.197

Local minimum possible. Constraints satisfied.

fminimax stopped because the size of the current search direction is less than
twice the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

Check Nearest Integer Values

See if nearby values produce a better filter.

xold = x;
xmask = 1:2*n;
xmask([n+1, mix]) = [];
x = x + 0.5;
for i = xmask
 [x, xmask] = elimone(x, xmask, h, w, n, maxbin);
end
xmask = 1:2*n;
xmask([n+1, mix]) = [];
x = x - 0.5;
for i = xmask
 [x, xmask] = elimone(x, xmask, h, w, n, maxbin);
end
if any(abs(x) > maxbin)
 x = xold;
end

Frequency Response Comparisons

We first plot the frequency response of the filter and we compare it to a filter where the coefficients
are just rounded up or down:

subplot(211)
bo = x(1:n);
ao = x(n+1:2*n);
h2 = abs(freqz(bo,ao,128));
plot(w,h,w,h2,'o')
title('Optimized filter versus original')

xround = round(xorig)

xround = 1×8

 1 2 2 1 57 -127 108 -34

b = xround(1:n);
a = xround(n+1:2*n);

 Minimax Optimization

7-29

h3 = abs(freqz(b,a,128));
subplot(212)
plot(w,h,w,h3,'+')
title('Rounded filter versus original')

fig = gcf;
fig.NextPlot = 'replace';

See Also
fminimax

More About
• “lsqnonlin with a Simulink Model” on page 11-18

7 Multiobjective Algorithms and Examples

7-30

Linear Programming and Mixed-Integer
Linear Programming

• “Linear Programming Algorithms” on page 8-2
• “Typical Linear Programming Problem” on page 8-13
• “Maximize Long-Term Investments Using Linear Programming: Solver-Based” on page 8-15
• “Maximize Long-Term Investments Using Linear Programming: Problem-Based” on page 8-26
• “Create Multiperiod Inventory Model in Problem-Based Framework” on page 8-36
• “Mixed-Integer Linear Programming Algorithms” on page 8-43
• “Tuning Integer Linear Programming” on page 8-52
• “Mixed-Integer Linear Programming Basics: Solver-Based” on page 8-54
• “Factory, Warehouse, Sales Allocation Model: Solver-Based” on page 8-57
• “Traveling Salesman Problem: Solver-Based” on page 8-66
• “Optimal Dispatch of Power Generators: Solver-Based” on page 8-72
• “Mixed-Integer Quadratic Programming Portfolio Optimization: Solver-Based” on page 8-82
• “Solve Sudoku Puzzles Via Integer Programming: Solver-Based” on page 8-89
• “Office Assignments by Binary Integer Programming: Solver-Based” on page 8-96
• “Cutting Stock Problem: Solver-Based” on page 8-103
• “Mixed-Integer Linear Programming Basics: Problem-Based” on page 8-108
• “Factory, Warehouse, Sales Allocation Model: Problem-Based” on page 8-111
• “Traveling Salesman Problem: Problem-Based” on page 8-119
• “Optimal Dispatch of Power Generators: Problem-Based” on page 8-125
• “Office Assignments by Binary Integer Programming: Problem-Based” on page 8-134
• “Mixed-Integer Quadratic Programming Portfolio Optimization: Problem-Based” on page 8-139
• “Cutting Stock Problem: Problem-Based” on page 8-146
• “Solve Sudoku Puzzles Via Integer Programming: Problem-Based” on page 8-151
• “Minimize Makespan in Parallel Processing” on page 8-157
• “Investigate Linear Infeasibilities” on page 8-161
• “Integer and Logical Modeling” on page 8-171

8

Linear Programming Algorithms
In this section...
“Linear Programming Definition” on page 8-2
“Interior-Point linprog Algorithm” on page 8-2
“Interior-Point-Legacy Linear Programming” on page 8-6
“Dual-Simplex Algorithm” on page 8-9

Linear Programming Definition
Linear programming is the problem of finding a vector x that minimizes a linear function fTx subject
to linear constraints:

min
x

f Tx

such that one or more of the following hold:

A·x ≤ b
Aeq·x = beq
l ≤ x ≤ u.

Interior-Point linprog Algorithm
The linprog 'interior-point' algorithm is very similar to the “interior-point-convex quadprog
Algorithm” on page 10-2. It also shares many features with the linprog 'interior-point-
legacy' algorithm. These algorithms have the same general outline:

1 Presolve, meaning simplification and conversion of the problem to a standard form.
2 Generate an initial point. The choice of an initial point is especially important for solving interior-

point algorithms efficiently, and this step can be time-consuming.
3 Predictor-corrector iterations to solve the KKT equations. This step is generally the most time-

consuming.

Presolve

The algorithm first tries to simplify the problem by removing redundancies and simplifying
constraints. The tasks performed during the presolve step can include the following:

• Check if any variables have equal upper and lower bounds. If so, check for feasibility, and then fix
and remove the variables.

• Check if any linear inequality constraint involves only one variable. If so, check for feasibility, and
then change the linear constraint to a bound.

• Check if any linear equality constraint involves only one variable. If so, check for feasibility, and
then fix and remove the variable.

• Check if any linear constraint matrix has zero rows. If so, check for feasibility, and then delete the
rows.

• Determine if the bounds and linear constraints are consistent.

8 Linear Programming and Mixed-Integer Linear Programming

8-2

• Check if any variables appear only as linear terms in the objective function and do not appear in
any linear constraint. If so, check for feasibility and boundedness, and then fix the variables at
their appropriate bounds.

• Change any linear inequality constraints to linear equality constraints by adding slack variables.

If the algorithm detects an infeasible or unbounded problem, it halts and issues an appropriate exit
message.

The algorithm might arrive at a single feasible point, which represents the solution.

If the algorithm does not detect an infeasible or unbounded problem in the presolve step, and if the
presolve has not produced the solution, the algorithm continues to its next steps. After reaching a
stopping criterion, the algorithm reconstructs the original problem, undoing any presolve
transformations. This final step is the postsolve step.

For simplicity, if the problem is not solved in the presolve step, the algorithm shifts all finite lower
bounds to zero.

Generate Initial Point

To set the initial point, x0, the algorithm does the following.

1 Initialize x0 to ones(n,1), where n is the number of elements of the objective function vector f.
2 Convert all bounded components to have a lower bound of 0. If component i has a finite upper

bound u(i), then x0(i) = u/2.
3 For components that have only one bound, modify the component if necessary to lie strictly

inside the bound.
4 To put x0 close to the central path, take one predictor-corrector step, and then modify the

resulting position and slack variables to lie well within any bounds. For details of the central
path, see Nocedal and Wright [7], page 397.

Predictor-Corrector

Similar to the fmincon interior-point algorithm on page 5-30, the interior-point algorithm tries
to find a point where the Karush-Kuhn-Tucker (KKT) on page 3-12 conditions hold. To describe these
equations for the linear programming problem, consider the standard form of the linear programming
problem after preprocessing:

min
x

f Tx subject to
Ax = b

x + t = u
x, t ≥ 0.

• Assume for now that all variables have at least one finite bound. By shifting and negating
components, if necessary, this assumption means that all x components have a lower bound of 0.

• A is the extended linear matrix that includes both linear inequalities and linear equalities. b is the
corresponding linear equality vector. A also includes terms for extending the vector x with slack
variables s that turn inequality constraints to equality constraints:

Ax =
Aeq 0
A I

x0
s

,

where x0 means the original x vector.

 Linear Programming Algorithms

8-3

• t is the vector of slacks that convert upper bounds to equalities.

The Lagrangian for this system involves the following vectors:

• y, Lagrange multipliers associated with the linear equalities
• v, Lagrange multipliers associated with the lower bound (positivity constraint)
• w, Lagrange multipliers associated with the upper bound

The Lagrangian is

L = f Tx− yT Ax− b − vTx−wT u− x− t .

Therefore, the KKT conditions for this system are

f − ATy − v + w = 0
Ax = b

x + t = u
vixi = 0
witi = 0

(x, v, w, t) ≥ 0.

The linprog algorithm uses a different sign convention for the returned Lagrange multipliers than
this discussion gives. This discussion uses the same sign as most literature. See lambda.

The algorithm first predicts a step from the Newton-Raphson formula, and then computes a corrector
step. The corrector attempts to reduce the residual in the nonlinear complementarity equations
sizi = 0. The Newton-Raphson step is

0 −AT 0 −I I
A 0 0 0 0
−I 0 −I 0 0
V 0 0 X 0
0 0 W 0 T

Δx
Δy
Δt
Δv
Δw

= −

f − ATy − v + w
Ax− b

u− x− t
VX
WT

= −

rd
rp
rub
rvx
rwt

, (8-1)

where X, V, W, and T are diagonal matrices corresponding to the vectors x, v, w, and t respectively.
The residual vectors on the far right side of the equation are:

• rd, the dual residual
• rp, the primal residual
• rub, the upper bound residual
• rvx, the lower bound complementarity residual
• rwt, the upper bound complementarity residual

The iterative display reports these quantities:

Primal infeasibility = rp 1 + rub 1

Dual infeasibility = rd ∞ .

8 Linear Programming and Mixed-Integer Linear Programming

8-4

To solve “Equation 8-1”, first convert it to the symmetric matrix form

−D AT

A 0

Δx
Δy

= −
R
rp

, (8-2)

where

D = X−1V + T−1W

R = − rd− X−1rvx + T−1rwt + T−1Wrub .

All the matrix inverses in the definitions of D and R are simple to compute because the matrices are
diagonal.

To derive “Equation 8-2” from “Equation 8-1”, notice that the second row of “Equation 8-2” is the
same as the second matrix row of “Equation 8-1”. The first row of “Equation 8-2” comes from solving
the last two rows of “Equation 8-1” for Δv and Δw, and then solving for Δt.

“Equation 8-2” is symmetric, but it is not positive definite because of the –D term. Therefore, you
cannot solve it using a Cholesky factorization. A few more steps lead to a different equation that is
positive definite, and hence can be solved efficiently by Cholesky factorization.

The second set of rows of “Equation 8-2” is

AΔx = − rp

and the first set of rows is

−DΔx + ATΔy = − R .

Substituting

Δx = D−1ATΔy + D−1R

gives

AD−1ATΔy = − AD−1R− rp . (8-3)

Usually, the most efficient way to find the Newton step is to solve “Equation 8-3” for Δy using
Cholesky factorization. Cholesky factorization is possible because the matrix multiplying Δy is
obviously symmetric and, in the absence of degeneracies, is positive definite. Afterward, to find the
Newton step, back substitute to find Δx, Δt, Δv, and Δw. However, when A has a dense column, it can
be more efficient to solve “Equation 8-2” instead. The linprog interior-point algorithm chooses the
solution algorithm based on the density of columns.

For more algorithm details, see Mehrotra [6].

After calculating the corrected Newton step, the algorithm performs more calculations to get both a
longer current step, and to prepare for better subsequent steps. These multiple correction
calculations can improve both performance and robustness. For details, see Gondzio [4].

The predictor-corrector algorithm is largely the same as the full quadprog 'interior-point-
convex' version, except for the quadratic terms. See “Full Predictor-Corrector” on page 10-5.

 Linear Programming Algorithms

8-5

Stopping Conditions

The predictor-corrector algorithm iterates until it reaches a point that is feasible (satisfies the
constraints to within tolerances) and where the relative step sizes are small. Specifically, define

ρ = max 1, A , f , b .

The algorithm stops when all of these conditions are satisfied:

rp 1 + rub 1 ≤ ρTolCon

rd ∞ ≤ ρTolFun

rc ≤ TolFun,

where

rc = max
i

min xivi , xi , vi , min tiwi , ti , wi .

rc essentially measures the size of the complementarity residuals xv and tw, which are each vectors of
zeros at a solution.

Interior-Point-Legacy Linear Programming
Introduction

The interior-point-legacy method is based on LIPSOL ([52]), which is a variant of Mehrotra's
predictor-corrector algorithm ([47]), a primal-dual interior-point method.

Main Algorithm

The algorithm begins by applying a series of preprocessing steps (see “Preprocessing” on page 8-
8). After preprocessing, the problem has the form

min
x

f Tx such that
A ⋅ x = b

0 ≤ x ≤ u .
 (8-4)

The upper bounds constraints are implicitly included in the constraint matrix A. With the addition of
primal slack variables s, “Equation 8-4” becomes

min
x

f Tx such that
A ⋅ x = b
x + s = u

x ≥ 0, s ≥ 0.
 (8-5)

which is referred to as the primal problem: x consists of the primal variables and s consists of the
primal slack variables. The dual problem is

maxbTy − uTw such that AT ⋅ y −w + z = f
z ≥ 0, w ≥ 0,

 (8-6)

where y and w consist of the dual variables and z consists of the dual slacks. The optimality
conditions for this linear program, i.e., the primal “Equation 8-5” and the dual “Equation 8-6”, are

8 Linear Programming and Mixed-Integer Linear Programming

8-6

F(x, y, z, s, w) =

A ⋅ x− b
x + s− u

AT ⋅ y −w + z − f
xizi
siwi

= 0,

 x ≥ 0, z ≥ 0, s ≥ 0, w ≥ 0,

 (8-7)

where xizi and siwi denote component-wise multiplication.

The linprog algorithm uses a different sign convention for the returned Lagrange multipliers than
this discussion gives. This discussion uses the same sign as most literature. See lambda.

The quadratic equations xizi = 0 and siwi = 0 are called the complementarity conditions for the linear
program; the other (linear) equations are called the feasibility conditions. The quantity

xTz + sTw

is the duality gap, which measures the residual of the complementarity portion of F when
(x,z,s,w) ≥ 0.

The algorithm is a primal-dual algorithm, meaning that both the primal and the dual programs are
solved simultaneously. It can be considered a Newton-like method, applied to the linear-quadratic
system F(x,y,z,s,w) = 0 in “Equation 8-7”, while at the same time keeping the iterates x, z, w, and s
positive, thus the name interior-point method. (The iterates are in the strictly interior region
represented by the inequality constraints in “Equation 8-5”.)

The algorithm is a variant of the predictor-corrector algorithm proposed by Mehrotra. Consider an
iterate v = [x;y;z;s;w], where [x;z;s;w] > 0 First compute the so-called prediction direction

Δvp = − FT(v) −1F(v),

which is the Newton direction; then the so-called corrector direction

Δvc = − FT(v) −1F v + Δvp − μe ,

where μ > 0 is called the centering parameter and must be chosen carefully. e is a zero-one vector
with the ones corresponding to the quadratic equations in F(v), i.e., the perturbations are only
applied to the complementarity conditions, which are all quadratic, but not to the feasibility
conditions, which are all linear. The two directions are combined with a step length parameter α > 0
and update v to obtain the new iterate v+:

v+ = v + α Δvp + Δvc ,

where the step length parameter α is chosen so that

v+ = [x+;y+;z+;s+;w+]

satisfies

[x+;z+;s+;w+] > 0.

 Linear Programming Algorithms

8-7

In solving for the preceding predictor/corrector directions, the algorithm computes a (sparse) direct
factorization on a modification of the Cholesky factors of A·AT. If A has dense columns, it instead uses
the Sherman-Morrison formula. If that solution is not adequate (the residual is too large), it performs
an LDL factorization of an augmented system form of the step equations to find a solution. (See
Example 4 — The Structure of D in the MATLAB ldl function reference page.)

The algorithm then loops until the iterates converge. The main stopping criteria is a standard one:

max
rb

max 1, b ,
rf

max 1, f ,
ru

max 1, u ,
f Tx− bTy + uTw

max 1, f Tx , bTy − uTw
≤ tol,

where

rb = Ax− b

rf = ATy −w + z − f
ru = x + s− u

are the primal residual, dual residual, and upper-bound feasibility respectively ({x} means those x
with finite upper bounds), and

f Tx− bTy + uTw

is the difference between the primal and dual objective values, and tol is some tolerance. The sum in
the stopping criteria measures the total relative errors in the optimality conditions in “Equation 8-7”.

The measure of primal infeasibility is ||rb||, and the measure of dual infeasibility is ||rf||, where the
norm is the Euclidean norm.

Preprocessing

The algorithm first tries to simplify the problem by removing redundancies and simplifying
constraints. The tasks performed during the presolve step can include the following:

• Check if any variables have equal upper and lower bounds. If so, check for feasibility, and then fix
and remove the variables.

• Check if any linear inequality constraint involves only one variable. If so, check for feasibility, and
then change the linear constraint to a bound.

• Check if any linear equality constraint involves only one variable. If so, check for feasibility, and
then fix and remove the variable.

• Check if any linear constraint matrix has zero rows. If so, check for feasibility, and then delete the
rows.

• Determine if the bounds and linear constraints are consistent.
• Check if any variables appear only as linear terms in the objective function and do not appear in

any linear constraint. If so, check for feasibility and boundedness, and then fix the variables at
their appropriate bounds.

• Change any linear inequality constraints to linear equality constraints by adding slack variables.

If the algorithm detects an infeasible or unbounded problem, it halts and issues an appropriate exit
message.

The algorithm might arrive at a single feasible point, which represents the solution.

8 Linear Programming and Mixed-Integer Linear Programming

8-8

If the algorithm does not detect an infeasible or unbounded problem in the presolve step, and if the
presolve has not produced the solution, the algorithm continues to its next steps. After reaching a
stopping criterion, the algorithm reconstructs the original problem, undoing any presolve
transformations. This final step is the postsolve step.

For simplicity, the algorithm shifts all lower bounds to zero.

While these preprocessing steps can do much to speed up the iterative part of the algorithm, if the
Lagrange multipliers are required, the preprocessing steps must be undone since the multipliers
calculated during the algorithm are for the transformed problem, and not the original. Thus, if the
multipliers are not requested, this transformation back is not computed, and might save some time
computationally.

Dual-Simplex Algorithm
At a high level, the linprog 'dual-simplex' algorithm essentially performs a simplex algorithm
on the dual problem.

The algorithm begins by preprocessing as described in “Preprocessing” on page 8-8. For details, see
Andersen and Andersen [1] and Nocedal and Wright [7], Chapter 13. This preprocessing reduces the
original linear programming problem to the form of “Equation 8-4”:

min
x

f Tx such that
A ⋅ x = b

0 ≤ x ≤ u .

A and b are transformed versions of the original constraint matrices. This is the primal problem.

Primal feasibility can be defined in terms of the + function

x+ =
x if x > 0
0 if x ≤ 0.

The measure of primal infeasibility is

Primal infeasibility = lb−x + 2 + x− ub + 2 + Ax− b + 2 + Aeqx− beq 2 .

As explained in “Equation 8-6”, the dual problem is to find vectors y and w, and a slack variable
vector z that solve

maxbTy − uTw such that AT ⋅ y −w + z = f
z ≥ 0, w ≥ 0.

The linprog algorithm uses a different sign convention for the returned Lagrange multipliers than
this discussion gives. This discussion uses the same sign as most literature. See lambda.

The measure of dual infeasibility is

Dual infeasibility = ATy + z −w− f 2 .

It is well known (for example, see [7]) that any finite solution of the dual problem gives a solution to
the primal problem, and any finite solution of the primal problem gives a solution of the dual problem.
Furthermore, if either the primal or dual problem is unbounded, then the other problem is infeasible.

 Linear Programming Algorithms

8-9

And if either the primal or dual problem is infeasible, then the other problem is either infeasible or
unbounded. Therefore, the two problems are equivalent in terms of obtaining a finite solution, if one
exists. Because the primal and dual problems are mathematically equivalent, but the computational
steps differ, it can be better to solve the primal problem by solving the dual problem.

To help alleviate degeneracy (see Nocedal and Wright [7], page 366), the dual simplex algorithm
begins by perturbing the objective function.

Phase 1 of the dual simplex algorithm is to find a dual feasible point. The algorithm does this by
solving an auxiliary linear programming problem.

Phase 1 Outline

In phase 1, the algorithm finds an initial basic feasible solution (see “Basic and Nonbasic Variables”
on page 8-11 for a definition) by solving an auxiliary piecewise linear programming problem. The
objective function of the auxiliary problem is the linear penalty function P = ∑

j
P j x j ,

where Pj(xj) is defined by

P j x j =
x j− u j if x j > u j
0 if l j ≤ x j ≤ u j
l j− x j if l j > x j .

P(x) measures how much a point x violates the lower and upper bound conditions. The auxiliary
problem is

min
x
∑
j

P j subject to
A ⋅ x ≤ b

Aeq ⋅ x = beq .

The original problem has a feasible basis point if and only if the auxiliary problem has minimum value
0.

The algorithm finds an initial point for the auxiliary problem by a heuristic method that adds slack
and artificial variables as necessary. The algorithm then uses this initial point together with the
simplex algorithm to solve the auxiliary problem. The solution is the initial point for phase 2 of the
main algorithm.

During Phase 2, the solver repeatedly chooses an entering variable and a leaving variable. The
algorithm chooses a leaving variable according to a technique suggested by Forrest and Goldfarb [3]
called dual steepest-edge pricing. The algorithm chooses an entering variable using the variation of
Harris’ ratio test suggested by Koberstein [5]. To help alleviate degeneracy, the algorithm can
introduce additional perturbations during Phase 2.

Phase 2 Outline

In phase 2, the algorithm applies the simplex algorithm, starting at the initial point from phase 1, to
solve the original problem. At each iteration, the algorithm tests the optimality condition and stops if
the current solution is optimal. If the current solution is not optimal, the algorithm

1 Chooses one variable, called the entering variable, from the nonbasic variables and adds the
corresponding column of the nonbasis to the basis (see “Basic and Nonbasic Variables” on page
8-11 for definitions).

8 Linear Programming and Mixed-Integer Linear Programming

8-10

2 Chooses a variable, called the leaving variable, from the basic variables and removes the
corresponding column from the basis.

3 Updates the current solution and the current objective value.

The algorithm chooses the entering and the leaving variables by solving two linear systems while
maintaining the feasibility of the solution.

The algorithm detects when there is no progress in the Phase 2 solution process. It attempts to
continue by performing bound perturbation. For an explanation of this part of the algorithm, see
Applegate, Bixby, Chvatal, and Cook [2].

The solver iterates, attempting to maintain dual feasibility while reducing primal infeasibility, until
the solution to the reduced, perturbed problem is both primal feasible and dual feasible. The
algorithm unwinds the perturbations that it introduced. If the solution (to the perturbed problem) is
dual infeasible for the unperturbed (original) problem, then the solver restores dual feasibility using
primal simplex or Phase 1 algorithms. Finally, the solver unwinds the preprocessing steps to return
the solution to the original problem.

Basic and Nonbasic Variables

This section defines the terms basis, nonbasis, and basic feasible solutions for a linear programming
problem. The definition assumes that the problem is given in the following standard form:

min
x

f Tx such that
A ⋅ x = b,

lb ≤ x ≤ ub .

(Note that A and b are not the matrix and vector defining the inequalities in the original problem.)
Assume that A is an m-by-n matrix, of rank m < n, whose columns are {a1, a2, ..., an}. Suppose that

ai1, ai2, ..., aim is a basis for the column space of A, with index set B = {i1, i2, ..., im}, and that N =
{1, 2, ..., n}\B is the complement of B. The submatrix AB is called a basis and the complementary
submatrix AN is called a nonbasis. The vector of basic variables is xB and the vector of nonbasic
variables is xN. At each iteration in phase 2, the algorithm replaces one column of the current basis
with a column of the nonbasis and updates the variables xB and xN accordingly.

If x is a solution to A·x = b and all the nonbasic variables in xN are equal to either their lower or
upper bounds, x is called a basic solution. If, in addition, the basic variables in xB satisfy their lower
and upper bounds, so that x is a feasible point, x is called a basic feasible solution.

References
[1] Andersen, E. D., and K. D. Andersen. Presolving in linear programming. Math. Programming 71,

1995, pp. 221–245.

[2] Applegate, D. L., R. E. Bixby, V. Chvátal and W. J. Cook, The Traveling Salesman Problem: A
Computational Study, Princeton University Press, 2007.

[3] Forrest, J. J., and D. Goldfarb. Steepest-edge simplex algorithms for linear programming. Math.
Programming 57, 1992, pp. 341–374.

[4] Gondzio, J. “Multiple centrality corrections in a primal dual method for linear programming.”
Computational Optimization and Applications, Volume 6, Number 2, 1996, pp. 137–156.
Available at https://www.maths.ed.ac.uk/~gondzio/software/correctors.ps.

 Linear Programming Algorithms

8-11

https://www.maths.ed.ac.uk/~gondzio/software/correctors.ps

[5] Koberstein, A. Progress in the dual simplex algorithm for solving large scale LP problems:
techniques for a fast and stable implementation. Computational Optim. and Application 41,
2008, pp. 185–204.

[6] Mehrotra, S. “On the Implementation of a Primal-Dual Interior Point Method.” SIAM Journal on
Optimization, Vol. 2, 1992, pp 575–601.

[7] Nocedal, J., and S. J. Wright. Numerical Optimization, Second Edition. Springer Series in
Operations Research, Springer-Verlag, 2006.

8 Linear Programming and Mixed-Integer Linear Programming

8-12

Typical Linear Programming Problem
This example solves the typical linear programming problem

min
x

f Tx such that
A ⋅ x ≤ b,

Aeq ⋅ x = beq,
x ≥ 0 .

Load the sc50b.mat file, which contains the matrices and vectors A, Aeq, b, beq, f, and the lower
bounds lb.

load sc50b

The problem has 48 variables, 30 inequalities, and 20 equalities.

disp(size(A))

 30 48

disp(size(Aeq))

 20 48

Set options to use the dual-simplex algorithm and the iterative display.

options = optimoptions(@linprog,'Algorithm','dual-simplex','Display','iter');

The problem has no upper bound, so set ub to [].

ub = [];

Solve the problem by calling linprog.

[x,fval,exitflag,output] = ...
 linprog(f,A,b,Aeq,beq,lb,ub,options);

LP preprocessing removed 2 inequalities, 16 equalities,
16 variables, and 26 non-zero elements.

 Iter Time Fval Primal Infeas Dual Infeas
 0 0.017 0.000000e+00 0.000000e+00 1.305013e+00
 8 0.041 -1.587073e+02 3.760622e+02 0.000000e+00
 33 0.052 -7.000000e+01 0.000000e+00 0.000000e+00

Optimal solution found.

Examine the exit flag, objective function value at the solution, and number of iterations used by
linprog to solve the problem.

exitflag,fval,output.iterations

exitflag = 1

fval = -70

ans = 33

You can also find the objective function value and number of iterations in the iterative display.

 Typical Linear Programming Problem

8-13

8 Linear Programming and Mixed-Integer Linear Programming

8-14

Maximize Long-Term Investments Using Linear Programming:
Solver-Based

This example shows how to use the linprog solver in Optimization Toolbox® to solve an investment
problem with deterministic returns over a fixed number of years T. The problem is to allocate your
money over available investments to maximize your final wealth. This example uses the solver-based
approach.

Problem Formulation

Suppose that you have an initial amount of money Capital_0 to invest over a time period of T years
in N zero-coupon bonds. Each bond pays an interest rate that compounds each year, and pays the
principal plus compounded interest at the end of a maturity period. The objective is to maximize the
total amount of money after T years.

You can include a constraint that no single investment is more than a certain fraction of your total
capital.

This example shows the problem setup on a small case first, and then formulates the general case.

You can model this as a linear programming problem. Therefore, to optimize your wealth, formulate
the problem for solution by the linprog solver.

Introductory Example

Start with a small example:

• The starting amount to invest Capital_0 is $1000.
• The time period T is 5 years.
• The number of bonds N is 4.
• To model uninvested money, have one option B0 available every year that has a maturity period of

1 year and a interest rate of 0%.
• Bond 1, denoted by B1, can be purchased in year 1, has a maturity period of 4 years, and interest

rate of 2%.
• Bond 2, denoted by B2, can be purchased in year 5, has a maturity period of 1 year, and interest

rate of 4%.
• Bond 3, denoted by B3, can be purchased in year 2, has a maturity period of 4 years, and interest

rate of 6%.
• Bond 4, denoted by B4, can be purchased in year 2, has a maturity period of 3 years, and interest

rate of 6%.

By splitting up the first option B0 into 5 bonds with maturity period of 1 year and interest rate of 0%,
this problem can be equivalently modeled as having a total of 9 available bonds, such that for k=1..9

• Entry k of vector PurchaseYears represents the year that bond k is available for purchase.
• Entry k of vector Maturity represents the maturity period mk of bond k.
• Entry k of vector InterestRates represents the interest rate ρk of bond k.

Visualize this problem by horizontal bars that represent the available purchase times and durations
for each bond.

 Maximize Long-Term Investments Using Linear Programming: Solver-Based

8-15

% Time period in years
T = 5;
% Number of bonds
N = 4;
% Initial amount of money
Capital_0 = 1000;
% Total number of buying oportunities
nPtotal = N+T;
% Purchase times
PurchaseYears = [1;2;3;4;5;1;5;2;2];
% Bond durations
Maturity = [1;1;1;1;1;4;1;4;3];
% Interest rates
InterestRates = [0;0;0;0;0;2;4;6;6];

plotInvestments(N,PurchaseYears,Maturity,InterestRates)

Decision Variables

Represent your decision variables by a vector x, where x(k) is the dollar amount of investment in
bond k, for k=1..9. Upon maturity, the payout for investment x(k) is

x(k)(1 + ρk/100)mk .

Define rk as the total return of bond k:

rk = (1 + ρk/100)mk .

% Total returns
finalReturns = (1+InterestRates/100).^Maturity;

Objective Function

The goal is to choose investments to maximize the amount of money collected at the end of year T.
From the plot, you see that investments are collected at various intermediate years and reinvested. At
the end of year T, the money returned from investments 5, 7, and 8 can be collected and represents
your final wealth:

8 Linear Programming and Mixed-Integer Linear Programming

8-16

max
x

x5r5 + x7r7 + x8r8

To place this problem into the form linprog solves, turn this maximization problem into a
minimization problem using the negative of the coefficients of x(j):

min
x

f Tx

with

f = [0; 0; 0; 0; − r5; 0; − r7; − r8; 0]

f = zeros(nPtotal,1);
f([5,7,8]) = [-finalReturns(5),-finalReturns(7),-finalReturns(8)];

Linear Constraints: Invest No More Than You Have

Every year, you have a certain amount of money available to purchase bonds. Starting with year 1,
you can invest the initial capital in the purchase options x1 and x6, so:

x1 + x6 = Capital0

Then for the following years, you collect the returns from maturing bonds, and reinvest them in new
available bonds to obtain the system of equations:

x2 + x8 + x9 = r1x1
x3 = r2x2
x4 = r3x3
x5 + x7 = r4x4 + r6x6 + r9x9

Write these equations in the form Aeqx = beq, where each row of the Aeq matrix corresponds to the
equality that needs to be satisfied that year:

Aeq =

1 0 0 0 0 1 0 0 0
−r1 1 0 0 0 0 0 1 1
0 −r2 1 0 0 0 0 0 0
0 0 −r3 1 0 0 0 0 0
0 0 0 −r4 1 −r6 1 0 −r9

beq =

Capital0
0
0
0

Aeq = spalloc(N+1,nPtotal,15);
Aeq(1,[1,6]) = 1;
Aeq(2,[1,2,8,9]) = [-1,1,1,1];
Aeq(3,[2,3]) = [-1,1];
Aeq(4,[3,4]) = [-1,1];
Aeq(5,[4:7,9]) = [-finalReturns(4),1,-finalReturns(6),1,-finalReturns(9)];

 Maximize Long-Term Investments Using Linear Programming: Solver-Based

8-17

beq = zeros(T,1);
beq(1) = Capital_0;

Bound Constraints: No Borrowing

Because each amount invested must be positive, each entry in the solution vector x must be positive.
Include this constraint by setting a lower bound lb on the solution vector x. There is no explicit upper
bound on the solution vector. Thus, set the upper bound ub to empty.

lb = zeros(size(f));
ub = [];

Solve the Problem

Solve this problem with no constraints on the amount you can invest in a bond. The interior-point
algorithm can be used to solve this type of linear programming problem.

options = optimoptions('linprog','Algorithm','interior-point');
[xsol,fval,exitflag] = linprog(f,[],[],Aeq,beq,lb,ub,options);

Solution found during presolve.

Visualize the Solution

The exit flag is 1, indicating that the solver found a solution. The value -fval, returned as the second
linprog output argument, corresponds to the final wealth. Plot your investments over time.

fprintf('After %d years, the return for the initial $%g is $%g \n',...
 T,Capital_0,-fval);

After 5 years, the return for the initial $1000 is $1262.48

plotInvestments(N,PurchaseYears,Maturity,InterestRates,xsol)

Optimal Investment with Limited Holdings

To diversify your investments, you can choose to limit the amount invested in any one bond to a
certain percentage Pmax of the total capital that year (including the returns for bonds that are
currently in their maturity period). You obtain the following system of inequalities:

8 Linear Programming and Mixed-Integer Linear Programming

8-18

x1 ≤ Pmax × Capital0
x2 ≤ Pmax × (ρ1x1 + ρ6x6)

x3 ≤ Pmax × (ρ2x2 + ρ6
2x6 + ρ8x8 + ρ9x9)

x4 ≤ Pmax × (ρ3x3 + ρ6
3x6 + ρ8

2x8 + ρ9
2x9)

x5 ≤ Pmax × (ρ4x4 + ρ6
4x4 + ρ8

3x8 + ρ9
3x9)

x6 ≤ Pmax × Capital0
x7 ≤ Pmax × (ρ4x4 + ρ6

4x4 + ρ8
3x8 + ρ9

3x9)
x8 ≤ Pmax × (ρ1x1 + ρ6x6)
x9 ≤ Pmax × (ρ1x1 + ρ6x6)

Place these inequalities in the matrix form Ax <= b.

To set up the system of inequalities, first generate a matrix yearlyReturns that contains the return
for the bond indexed by i at year j in row i and column j. Represent this system as a sparse matrix.

% Maximum percentage to invest in any bond
Pmax = 0.6;

% Build the return for each bond over the maturity period as a sparse
% matrix
cumMaturity = [0;cumsum(Maturity)];
xr = zeros(cumMaturity(end-1),1);
yr = zeros(cumMaturity(end-1),1);
cr = zeros(cumMaturity(end-1),1);
for i = 1:nPtotal
 mi = Maturity(i); % maturity of bond i
 pi = PurchaseYears(i); % purchase year of bond i
 idx = cumMaturity(i)+1:cumMaturity(i+1); % index into xr, yr and cr
 xr(idx) = i; % bond index
 yr(idx) = pi+1:pi+mi; % maturing years
 cr(idx) = (1+InterestRates(i)/100).^(1:mi); % returns over the maturity period
end
yearlyReturns = sparse(xr,yr,cr,nPtotal,T+1);

% Build the system of inequality constraints
A = -Pmax*yearlyReturns(:,PurchaseYears)'+ speye(nPtotal);

% Left-hand side
b = zeros(nPtotal,1);
b(PurchaseYears == 1) = Pmax*Capital_0;

Solve the problem by investing no more than 60% in any one asset. Plot the resulting purchases.
Notice that your final wealth is less than the investment without this constraint.

[xsol,fval,exitflag] = linprog(f,A,b,Aeq,beq,lb,ub,options);

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the selected value of the function tolerance,
and constraints are satisfied to within the selected value of the constraint
tolerance.

 Maximize Long-Term Investments Using Linear Programming: Solver-Based

8-19

fprintf('After %d years, the return for the initial $%g is $%g \n',...
 T,Capital_0,-fval);

After 5 years, the return for the initial $1000 is $1207.78

plotInvestments(N,PurchaseYears,Maturity,InterestRates,xsol)

Model of Arbitrary Size

Create a model for a general version of the problem. Illustrate it using T = 30 years and 400
randomly generated bonds with interest rates from 1 to 6%. This setup results in a linear
programming problem with 430 decision variables. The system of equality constraints is represented
by a sparse matrix Aeq of dimension 30-by-430 and the system of inequalities is represented by a
sparse matrix A of dimension 430-by-430.

% for reproducibility
rng default
% Initial amount of money
Capital_0 = 1000;
% Time period in years
T = 30;
% Number of bonds
N = 400;
% Total number of buying oportunities
nPtotal = N+T;
% Generate random maturity durations
Maturity = randi([1 T-1],nPtotal,1);
% Bond 1 has a maturity period of 1 year
Maturity(1:T) = 1;
% Generate random yearly interest rate for each bond
InterestRates = randi(6,nPtotal,1);
% Bond 1 has an interest rate of 0 (not invested)
InterestRates(1:T) = 0;
% Compute the return at the end of the maturity period for each bond:
finalReturns = (1+InterestRates/100).^Maturity;

% Generate random purchase years for each option
PurchaseYears = zeros(nPtotal,1);

8 Linear Programming and Mixed-Integer Linear Programming

8-20

% Bond 1 is available for purchase every year
PurchaseYears(1:T)=1:T;
for i=1:N
 % Generate a random year for the bond to mature before the end of
 % the T year period
 PurchaseYears(i+T) = randi([1 T-Maturity(i+T)+1]);
end

% Compute the years where each bond reaches maturity
SaleYears = PurchaseYears + Maturity;

% Initialize f to 0
f = zeros(nPtotal,1);
% Indices of the sale oportunities at the end of year T
SalesTidx = SaleYears==T+1;
% Expected return for the sale oportunities at the end of year T
ReturnsT = finalReturns(SalesTidx);
% Objective function
f(SalesTidx) = -ReturnsT;

% Generate the system of equality constraints.
% For each purchase option, put a coefficient of 1 in the row corresponding
% to the year for the purchase option and the column corresponding to the
% index of the purchase oportunity
xeq1 = PurchaseYears;
yeq1 = (1:nPtotal)';
ceq1 = ones(nPtotal,1);

% For each sale option, put -\rho_k, where \rho_k is the interest rate for the
% associated bond that is being sold, in the row corresponding to the
% year for the sale option and the column corresponding to the purchase
% oportunity
xeq2 = SaleYears(~SalesTidx);
yeq2 = find(~SalesTidx);
ceq2 = -finalReturns(~SalesTidx);

% Generate the sparse equality matrix
Aeq = sparse([xeq1; xeq2], [yeq1; yeq2], [ceq1; ceq2], T, nPtotal);

% Generate the right-hand side
beq = zeros(T,1);
beq(1) = Capital_0;

% Build the system of inequality constraints
% Maximum percentage to invest in any bond
Pmax = 0.4;

% Build the returns for each bond over the maturity period
cumMaturity = [0;cumsum(Maturity)];
xr = zeros(cumMaturity(end-1),1);
yr = zeros(cumMaturity(end-1),1);
cr = zeros(cumMaturity(end-1),1);
for i = 1:nPtotal
 mi = Maturity(i); % maturity of bond i
 pi = PurchaseYears(i); % purchase year of bond i
 idx = cumMaturity(i)+1:cumMaturity(i+1); % index into xr, yr and cr
 xr(idx) = i; % bond index

 Maximize Long-Term Investments Using Linear Programming: Solver-Based

8-21

 yr(idx) = pi+1:pi+mi; % maturing years
 cr(idx) = (1+InterestRates(i)/100).^(1:mi); % returns over the maturity period
end
yearlyReturns = sparse(xr,yr,cr,nPtotal,T+1);

% Build the system of inequality constraints
A = -Pmax*yearlyReturns(:,PurchaseYears)'+ speye(nPtotal);

% Left-hand side
b = zeros(nPtotal,1);
b(PurchaseYears==1) = Pmax*Capital_0;

% Add the lower-bound constraints to the problem.
lb = zeros(nPtotal,1);

Solution with No Holding Limit

First, solve the linear programming problem without inequality constraints using the interior-point
algorithm.

% Solve the problem without inequality constraints
options = optimoptions('linprog','Algorithm','interior-point');
tic
[xsol,fval,exitflag] = linprog(f,[],[],Aeq,beq,lb,[],options);

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the selected value of the function tolerance,
and constraints are satisfied to within the selected value of the constraint
tolerance.

toc

Elapsed time is 0.014367 seconds.

fprintf('\nAfter %d years, the return for the initial $%g is $%g \n',...
 T,Capital_0,-fval);

After 30 years, the return for the initial $1000 is $5167.58

Solution with Limited Holdings

Now, solve the problem with the inequality constraints.

% Solve the problem with inequality constraints
options = optimoptions('linprog','Algorithm','interior-point');
tic
[xsol,fval,exitflag] = linprog(f,A,b,Aeq,beq,lb,[],options);

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the selected value of the function tolerance,
and constraints are satisfied to within the selected value of the constraint
tolerance.

toc

8 Linear Programming and Mixed-Integer Linear Programming

8-22

Elapsed time is 0.981224 seconds.

fprintf('\nAfter %d years, the return for the initial $%g is $%g \n',...
 T,Capital_0,-fval);

After 30 years, the return for the initial $1000 is $5095.26

Even though the number of constraints increased by an order of 10, the time for the solver to find a
solution increased by an order of 100. This performance discrepancy is partially caused by dense
columns in the inequality system shown in matrix A. These columns correspond to bonds with a long
maturity period, as shown in the following graph.

% Number of nonzero elements per column
nnzCol = sum(spones(A));

% Plot the maturity length vs. the number of nonzero elements for each bond
figure;
plot(Maturity,nnzCol,'o');
xlabel('Maturity period of bond k')
ylabel('Number of nonzero in column k of A')

Dense columns in the constraints lead to dense blocks in the solver's internal matrices, yielding a loss
of efficiency of its sparse methods. To speed up the solver, try the dual-simplex algorithm, which is
less sensitive to column density.

% Solve the problem with inequality constraints using dual simplex
options = optimoptions('linprog','Algorithm','dual-simplex');

 Maximize Long-Term Investments Using Linear Programming: Solver-Based

8-23

tic
[xsol,fval,exitflag] = linprog(f,A,b,Aeq,beq,lb,[],options);

Optimal solution found.

toc

Elapsed time is 0.170767 seconds.

fprintf('\nAfter %d years, the return for the initial $%g is $%g \n',...
 T,Capital_0,-fval);

After 30 years, the return for the initial $1000 is $5095.26

In this case, the dual-simplex algorithm took much less time to obtain the same solution.

Qualitative Result Analysis

To get a feel for the solution found by linprog, compare it to the amount fmax that you would get if
you could invest all of your starting money in one bond with a 6% interest rate (the maximum interest
rate) over the full 30 year period. You can also compute the equivalent interest rate corresponding to
your final wealth.

% Maximum amount
fmax = Capital_0*(1+6/100)^T;
% Ratio (in percent)
rat = -fval/fmax*100;
% Equivalent interest rate (in percent)
rsol = ((-fval/Capital_0)^(1/T)-1)*100;

fprintf(['The amount collected is %g%% of the maximum amount $%g '...
 'that you would obtain from investing in one bond.\n'...
 'Your final wealth corresponds to a %g%% interest rate over the %d year '...
 'period.\n'], rat, fmax, rsol, T)

The amount collected is 88.7137% of the maximum amount $5743.49 that you would obtain from investing in one bond.
Your final wealth corresponds to a 5.57771% interest rate over the 30 year period.

plotInvestments(N,PurchaseYears,Maturity,InterestRates,xsol,false)

8 Linear Programming and Mixed-Integer Linear Programming

8-24

See Also

More About
• “Maximize Long-Term Investments Using Linear Programming: Problem-Based” on page 8-26

 Maximize Long-Term Investments Using Linear Programming: Solver-Based

8-25

Maximize Long-Term Investments Using Linear Programming:
Problem-Based

This example shows how to use the problem-based approach to solve an investment problem with
deterministic returns over a fixed number of years T. The problem is to allocate your money over
available investments to maximize your final wealth. For the solver-based approach, see “Maximize
Long-Term Investments Using Linear Programming: Solver-Based” on page 8-15.

Problem Formulation

Suppose that you have an initial amount of money Capital_0 to invest over a time period of T years
in N zero-coupon bonds. Each bond pays a fixed interest rate, compounds the investment each year,
and pays the principal plus compounded interest at the end of a maturity period. The objective is to
maximize the total amount of money after T years.

You can include a constraint that no single investment is more than a certain fraction of your total
capital at the time of the investment.

This example shows the problem setup on a small case first, and then formulates the general case.

You can model this as a linear programming problem. Therefore, to optimize your wealth, formulate
the problem using the optimization problem approach.

Introductory Example

Start with a small example:

• The starting amount to invest Capital_0 is $1000.
• The time period T is 5 years.
• The number of bonds N is 4.
• To model uninvested money, have one option B0 available every year that has a maturity period of

1 year and a interest rate of 0%.
• Bond 1, denoted by B1, can be purchased in year 1, has a maturity period of 4 years, and interest

rate of 2%.
• Bond 2, denoted by B2, can be purchased in year 5, has a maturity period of 1 year, and interest

rate of 4%.
• Bond 3, denoted by B3, can be purchased in year 2, has a maturity period of 4 years, and interest

rate of 6%.
• Bond 4, denoted by B4, can be purchased in year 2, has a maturity period of 3 years, and interest

rate of 6%.

By splitting up the first option B0 into 5 bonds with maturity period of 1 year and interest rate of 0%,
this problem can be equivalently modeled as having a total of 9 available bonds, such that for k=1..9

• Entry k of vector PurchaseYears represents the beginning of the year that bond k is available
for purchase.

• Entry k of vector Maturity represents the maturity period mk of bond k.
• Entry k of vector MaturityYears represents the end of the year that bond k is available for sale.
• Entry k of vector InterestRates represents the percentage interest rate ρk of bond k.

8 Linear Programming and Mixed-Integer Linear Programming

8-26

Visualize this problem by horizontal bars that represent the available purchase times and durations
for each bond.

% Time period in years
T = 5;
% Number of bonds
N = 4;
% Initial amount of money
Capital_0 = 1000;
% Total number of buying oportunities
nPtotal = N+T;
% Purchase times
PurchaseYears = [1;2;3;4;5;1;5;2;2];
% Bond durations
Maturity = [1;1;1;1;1;4;1;4;3];
% Bond sale times
MaturityYears = PurchaseYears + Maturity - 1;
% Interest rates in percent
InterestRates = [0;0;0;0;0;2;4;6;6];
% Return after one year of interest
rt = 1 + InterestRates/100;

plotInvestments(N,PurchaseYears,Maturity,InterestRates)

Decision Variables

Represent your decision variables by a vector x, where x(k) is the dollar amount of investment in
bond k, for k = 1,...,9. Upon maturity, the payout for investment x(k) is

x(k)(1 + ρk/100)mk .

Define βk = 1 + ρk/100 and define rk as the total return of bond k:

rk = (1 + ρk/100)mk = βk
mk .

x = optimvar('x',nPtotal,'LowerBound',0);
% Total returns
r = rt.^Maturity;

 Maximize Long-Term Investments Using Linear Programming: Problem-Based

8-27

Objective Function

The goal is to choose investments to maximize the amount of money collected at the end of year T.
From the plot, you see that investments are collected at various intermediate years and reinvested. At
the end of year T, the money returned from investments 5, 7, and 8 can be collected and represents
your final wealth:

max
x

x5r5 + x7r7 + x8r8

Create an optimization problem for maximization, and include the objective function.

interestprob = optimproblem('ObjectiveSense','maximize');
interestprob.Objective = x(5)*r(5) + x(7)*r(7) + x(8)*r(8);

Linear Constraints: Invest No More Than You Have

Every year, you have a certain amount of money available to purchase bonds. Starting with year 1,
you can invest the initial capital in the purchase options x1 and x6, so:

x1 + x6 = Capital0

Then for the following years, you collect the returns from maturing bonds, and reinvest them in new
available bonds to obtain the system of equations:

x2 + x8 + x9 = r1x1
x3 = r2x2
x4 = r3x3
x5 + x7 = r4x4 + r6x6 + r9x9

investconstr = optimconstr(T,1);
investconstr(1) = x(1) + x(6) == Capital_0;
investconstr(2) = x(2) + x(8) + x(9) == r(1)*x(1);
investconstr(3) = x(3) == r(2)*x(2);
investconstr(4) = x(4) == r(3)*x(3);
investconstr(5) = x(5) + x(7) == r(4)*x(4) + r(6)*x(6) + r(9)*x(9);
interestprob.Constraints.investconstr = investconstr;

Bound Constraints: No Borrowing

Because each amount invested must be positive, each entry in the solution vector x must be positive.
Include this constraint by setting a lower bound on the solution vector x. There is no explicit upper
bound on the solution vector.

x.LowerBound = 0;

Solve the Problem

Solve this problem with no constraints on the amount you can invest in a bond. The interior-point
algorithm can be used to solve this type of linear programming problem.

options = optimoptions('linprog','Algorithm','interior-point');
[sol,fval,exitflag] = solve(interestprob,'options',options)

8 Linear Programming and Mixed-Integer Linear Programming

8-28

Solving problem using linprog.

Solution found during presolve.

sol = struct with fields:
 x: [9x1 double]

fval = 1.2625e+03

exitflag =
 OptimalSolution

Visualize the Solution

The exit flag indicates that the solver found an optimal solution. The value fval, returned as the
second output argument, corresponds to the final wealth. Look at the final sum of investments, and
the investment allocation over time.

fprintf('After %d years, the return for the initial $%g is $%g \n',...
 T,Capital_0,fval);

After 5 years, the return for the initial $1000 is $1262.48

plotInvestments(N,PurchaseYears,Maturity,InterestRates,sol.x)

Optimal Investment with Limited Holdings

To diversify your investments, you can choose to limit the amount invested in any one bond to a
certain percentage Pmax of the total capital that year (including the returns for bonds that are
currently in their maturity period). You obtain the following system of inequalities:

 Maximize Long-Term Investments Using Linear Programming: Problem-Based

8-29

x1 ≤ Pmax × Capital0
x2 ≤ Pmax × (β1x1 + β6x6)

x3 ≤ Pmax × (β2x2 + β6
2x6 + β8x8 + β9x9)

x4 ≤ Pmax × (β3x3 + β6
3x6 + β8

2x8 + β9
2x9)

x5 ≤ Pmax × (β4x4 + β6
4x4 + β8

3x8 + β9
3x9)

x6 ≤ Pmax × Capital0
x7 ≤ Pmax × (β4x4 + β6

4x4 + β8
3x8 + β9

3x9)
x8 ≤ Pmax × (β1x1 + β6x6)
x9 ≤ Pmax × (β1x1 + β6x6)

% Maximum percentage to invest in any bond
Pmax = 0.6;

constrlimit = optimconstr(nPtotal,1);
constrlimit(1) = x(1) <= Pmax*Capital_0;
constrlimit(2) = x(2) <= Pmax*(rt(1)*x(1) + rt(6)*x(6));
constrlimit(3) = x(3) <= Pmax*(rt(2)*x(2) + rt(6)^2*x(6) + rt(8)*x(8) + rt(9)*x(9));
constrlimit(4) = x(4) <= Pmax*(rt(3)*x(3) + rt(6)^3*x(6) + rt(8)^2*x(8) + rt(9)^2*x(9));
constrlimit(5) = x(5) <= Pmax*(rt(4)*x(4) + rt(6)^4*x(6) + rt(8)^3*x(8) + rt(9)^3*x(9));
constrlimit(6) = x(6) <= Pmax*Capital_0;
constrlimit(7) = x(7) <= Pmax*(rt(4)*x(4) + rt(6)^4*x(6) + rt(8)^3*x(8) + rt(9)^3*x(9));
constrlimit(8) = x(8) <= Pmax*(rt(1)*x(1) + rt(6)*x(6));
constrlimit(9) = x(9) <= Pmax*(rt(1)*x(1) + rt(6)*x(6));

interestprob.Constraints.constrlimit = constrlimit;

Solve the problem by investing no more than 60% in any one asset. Plot the resulting purchases.
Notice that your final wealth is less than the investment without this constraint.

[sol,fval] = solve(interestprob,'options',options);

Solving problem using linprog.

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the selected value of the function tolerance,
and constraints are satisfied to within the selected value of the constraint
tolerance.

fprintf('After %d years, the return for the initial $%g is $%g \n',...
 T,Capital_0,fval);

After 5 years, the return for the initial $1000 is $1207.78

plotInvestments(N,PurchaseYears,Maturity,InterestRates,sol.x)

8 Linear Programming and Mixed-Integer Linear Programming

8-30

Model of Arbitrary Size

Create a model for a general version of the problem. Illustrate it using T = 30 years and 400
randomly generated bonds with interest rates from 1 to 6%. This setup results in a linear
programming problem with 430 decision variables.

% For reproducibility
rng default
% Initial amount of money
Capital_0 = 1000;
% Time period in years
T = 30;
% Number of bonds
N = 400;
% Total number of buying oportunities
nPtotal = N + T;
% Generate random maturity durations
Maturity = randi([1 T-1],nPtotal,1);
% Bond 1 has a maturity period of 1 year
Maturity(1:T) = 1;
% Generate random yearly interest rate for each bond
InterestRates = randi(6,nPtotal,1);
% Bond 1 has an interest rate of 0 (not invested)
InterestRates(1:T) = 0;
% Return after one year of interest
rt = 1 + InterestRates/100;
% Compute the return at the end of the maturity period for each bond:
r = rt.^Maturity;

% Generate random purchase years for each option
PurchaseYears = zeros(nPtotal,1);
% Bond 1 is available for purchase every year
PurchaseYears(1:T)=1:T;
for i=1:N
 % Generate a random year for the bond to mature before the end of
 % the T year period
 PurchaseYears(i+T) = randi([1 T-Maturity(i+T)+1]);
end

 Maximize Long-Term Investments Using Linear Programming: Problem-Based

8-31

% Compute the years where each bond reaches maturity at the end of the year
MaturityYears = PurchaseYears + Maturity - 1;

Compute the times when bonds can be bought or sold. The buyindex matrix holds the potential
purchase times, and the sellindex matrix holds the potential sales times for each bond.

buyindex = false(nPtotal,T); % allocate nPtotal-by-T matrix
for ii = 1:T
 buyindex(:,ii) = PurchaseYears == ii;
end
sellindex = false(nPtotal,T);
for ii = 1:T
 sellindex(:,ii) = MaturityYears == ii;
end

Set up the optimization variables corresponding to the bonds.

x = optimvar('x',nPtotal,1,'LowerBound',0);

Create the optimization problem and objective function.

interestprob = optimproblem('ObjectiveSense','maximize');
interestprob.Objective = sum(x(sellindex(:,T)).*r(sellindex(:,T)));

For convenience, create a temporary array xBuy, whose columns represent the bonds we can buy at
each time period.

xBuy = repmat(x,1,T).*double(buyindex);

Similarly, create a temporary array xSell, whose columns represent the bonds we can sell at each
time period.

xSell = repmat(x,1,T).*double(sellindex);

The return generated for selling these bounds is

xReturnFromSell = xSell.*repmat(r,1,T);

Create the constraint that the amount you invest in each time period is the amount that you sold in
the previous time period.

interestprob.Constraints.InitialInvest = sum(xBuy(:,1)) == Capital_0;
interestprob.Constraints.InvestConstraint = sum(xBuy(:,2:T),1) == sum(xReturnFromSell(:,1:T-1),1);

Solution with No Holding Limit

Solve the problem.

tic
[sol,fval,exitflag] = solve(interestprob,'options',options);

Solving problem using linprog.

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the selected value of the function tolerance,
and constraints are satisfied to within the selected value of the constraint
tolerance.

8 Linear Programming and Mixed-Integer Linear Programming

8-32

toc

Elapsed time is 0.429325 seconds.

How well did the investments do?

fprintf('After %d years, the return for the initial $%g is $%g \n',...
 T,Capital_0,fval);

After 30 years, the return for the initial $1000 is $5167.58

Solution with Limited Holdings

To create constraints that limit the fraction of investments in each asset, set up a matrix that keeps
track of the active bonds at each time. To express the constraint that each investment must be less
than Pmax times the total value, set up a matrix that keeps track of the value of each investment at
each time. For this larger problem, set the maximum fraction that can be held to 0.4.

Pmax = 0.4;

Create an active matrix corresponding to times when a bond can be held, and a cactive matrix
that holds the cumulative duration of each active bond. So the value of bond j at time t is
x(j)*(rt^cactive).

active = double(buyindex | sellindex);
for ii = 1:T
 active(:,ii) = double((ii >= PurchaseYears) & (ii <= MaturityYears));
end
cactive = cumsum(active,2);
cactive = cactive.*active;

Create the matrix whose entry (j,p) represents the value of bond j at time period p:

bondValue = repmat(x, 1, T).*active.*(rt.^(cactive));

Determine the total value of the investments at each time interval so you can impose the constraint
on limited holdings. mvalue is the money invested in all the bonds at the end of each time period, an
nPtotal-by-T matrix.moneyavailable is the sum over the bonds of the money invested at the
beginning of the time period, meaning the value of the portfolio at each time.

constrlimit = optimconstr(nPtotal,T);
constrlimit(:,1) = xBuy(:,1) <= Pmax*Capital_0;
constrlimit(:,2:T) = xBuy(:,2:T) <= repmat(Pmax*sum(bondValue(:,1:T-1),1), nPtotal, 1).*double(buyindex(:,2:T));
interestprob.Constraints.constrlimit = constrlimit;

Solve the problem with limited holdings.

tic
[sol,fval,exitflag] = solve(interestprob,'options',options);

Solving problem using linprog.

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the selected value of the function tolerance,
and constraints are satisfied to within the selected value of the constraint
tolerance.

 Maximize Long-Term Investments Using Linear Programming: Problem-Based

8-33

toc

Elapsed time is 1.227254 seconds.

fprintf('After %d years, the return for the initial $%g is $%g \n',...
 T,Capital_0,fval);

After 30 years, the return for the initial $1000 is $5095.26

To speed up the solver, try the dual-simplex algorithm.

options = optimoptions('linprog','Algorithm','dual-simplex');
tic
[sol,fval,exitflag] = solve(interestprob,'options',options);

Solving problem using linprog.

Optimal solution found.

toc

Elapsed time is 0.507354 seconds.

fprintf('After %d years, the return for the initial $%g is $%g \n',...
 T,Capital_0,fval);

After 30 years, the return for the initial $1000 is $5095.26

In this case, the dual-simplex algorithm took less time to obtain the same solution.

Qualitative Result Analysis

To get a feel for the solution, compare it to the amount fmax that you would get if you could invest all
of your starting money in one bond with a 6% interest rate (the maximum interest rate) over the full
30 year period. You can also compute the equivalent interest rate corresponding to your final wealth.

% Maximum amount
fmax = Capital_0*(1+6/100)^T;
% Ratio (in percent)
rat = fval/fmax*100;
% Equivalent interest rate (in percent)
rsol = ((fval/Capital_0)^(1/T)-1)*100;

fprintf(['The amount collected is %g%% of the maximum amount $%g '...
 'that you would obtain from investing in one bond.\n'...
 'Your final wealth corresponds to a %g%% interest rate over the %d year '...
 'period.\n'], rat, fmax, rsol, T)

The amount collected is 88.7137% of the maximum amount $5743.49 that you would obtain from investing in one bond.
Your final wealth corresponds to a 5.57771% interest rate over the 30 year period.

plotInvestments(N,PurchaseYears,Maturity,InterestRates,sol.x,false)

8 Linear Programming and Mixed-Integer Linear Programming

8-34

See Also

More About
• “Maximize Long-Term Investments Using Linear Programming: Solver-Based” on page 8-15
• “Problem-Based Optimization Workflow” on page 9-2

 Maximize Long-Term Investments Using Linear Programming: Problem-Based

8-35

Create Multiperiod Inventory Model in Problem-Based
Framework

This example shows how to create a multiperiod inventory model in the problem-based framework.
The problem is to schedule production of fertilizer blends over a period of time using a variety of
ingredients whose costs depend on time in a predictable way. Assume that you know in advance the
demand for the fertilizers. The objective is to maximize profits while meeting demand, where the
costs are for purchasing raw ingredients and for storing fertilizer over time. You can determine costs
in advance by using futures or other contracts.

Fertilizers and Ingredients

Granular fertilizers have nutrients nitrogen (N), phosphorous (P), and potassium (K). You can blend
the following raw materials to obtain fertilizer blends with the requisite nutrients.

load fertilizer
blends = blendDemand.Properties.VariableNames % Fertilizers to produce

blends = 1x2 cell
 {'Balanced'} {'HighN'}

nutrients = rawNutrients.Properties.RowNames

nutrients = 3x1 cell
 {'N'}
 {'P'}
 {'K'}

raws = rawNutrients.Properties.VariableNames % Raw materials

raws = 1x6 cell
 {'MAP'} {'Potash'} {'AN'} {'AS'} {'TSP'} {'Sand'}

The two fertilizer blends have the same nutrient requirements (10% N, 10% P, and 10% K by weight),
except the "HighN" blend has an additional 10% N for a total of 20% N.

disp(blendNutrients) % Table is in percentage

 Balanced HighN
 ________ _____

 N 10 20
 P 10 10
 K 10 10

The raw materials have the following names and nutrient percentages by weight.

disp(rawNutrients) % Table is in percentage

 MAP Potash AN AS TSP Sand
 ___ ______ __ __ ___ ____

 N 11 0 35 21 0 0
 P 48 0 0 0 46 0
 K 0 60 0 0 0 0

8 Linear Programming and Mixed-Integer Linear Programming

8-36

The raw material Sand has no nutrient content. Sand dilutes other ingredients, if necessary, to obtain
the requisite percentages of nutrients by weight.

Store the numbers of each of these quantities in variables.

nBlends = length(blends);
nRaws = length(raws);
nNutrients = length(nutrients);

Forecast Demand and Revenue

Assume that you know in advance the demand in weight (tons) for the two fertilizer blends for the
time periods in the problem.

disp(blendDemand)

 Balanced HighN
 ________ _____

 January 750 300
 February 800 310
 March 900 600
 April 850 400
 May 700 350
 June 700 300
 July 700 200
 August 600 200
 September 600 200
 October 550 200
 November 550 200
 December 550 200

You know the prices per ton at which you sell the fertilizer blends. These prices per ton do not
depend on time.

disp(blendPrice)

 Balanced HighN
 ________ _____

 400 550

Prices of Raw Materials

Assume that you know in advance the prices in tons for the raw materials. These prices per ton
depend on time according to the following table.

disp(rawCost)

 MAP Potash AN AS TSP Sand
 ___ ______ ___ ___ ___ ____

 January 350 610 300 135 250 80
 February 360 630 300 140 275 80
 March 350 630 300 135 275 80
 April 350 610 300 125 250 80
 May 320 600 300 125 250 80
 June 320 600 300 125 250 80
 July 320 600 300 125 250 80

 Create Multiperiod Inventory Model in Problem-Based Framework

8-37

 August 320 600 300 125 240 80
 September 320 600 300 125 240 80
 October 310 600 300 125 240 80
 November 310 600 300 125 240 80
 December 340 600 300 125 240 80

Storage Cost

The cost for storing blended fertilizer applies per ton and per time period.

disp(inventoryCost)

 10

Capacity Constraints

You can store no more than inventoryCapacity tons of total fertilizer blends at any time period.

disp(inventoryCapacity)

 1000

You can produce a total of no more than productionCapacity tons in any time period.

disp(productionCapacity)

 1200

Connection Among Production, Sales, and Inventory

You start the schedule with a certain amount, or inventory, of fertilizer blends available. You have a
certain target for this inventory at the final period. At each time period, the amount of fertilizer blend
is the amount at the end of the previous time period, plus the amount produced, minus the amount
sold. In other words, for times greater than 1:

inventory(time,product) = inventory(time-1,product) +
production(time,product) - sales(time,product)

This equation implies that the inventory is counted at the end of the time period. The time periods in
the problem are as follows.

months = blendDemand.Properties.RowNames;
nMonths = length(months);

The initial inventory affects the inventory at time 1 as follows.

inventory(1,product) = initialInventory(product) + production(1,product) -
sales(1,product)

The initial inventory is in the data blendInventory{'Initial',:}. The final inventory is in the
data blendInventory{'Final',:}.

Assume that unmet demand is lost. In other words, if you cannot fill all the orders in a time period,
the excess orders do not carry over into the next time period.

Optimization Problem Formulation

The objective function for this problem is profit, which you want to maximize. Therefore, create a
maximization problem in the problem-based framework.

8 Linear Programming and Mixed-Integer Linear Programming

8-38

inventoryProblem = optimproblem('ObjectiveSense','maximize');

The variables for the problem are the quantities of fertilizer blends that you make and sell each
month, and the raw ingredients that you use to make those blends. The upper bound on sell is the
demand, blendDemand, for each time period and each fertilizer blend.

make = optimvar('make',months,blends,'LowerBound',0);
sell = optimvar('sell',months,blends,'LowerBound',0,'UpperBound',blendDemand{months,blends});
use = optimvar('use',months,raws,blends,'LowerBound',0);

Additionally, create a variable that represents the inventory at each time.

inventory = optimvar('inventory',months,blends,'LowerBound',0,'UpperBound',inventoryCapacity);

To calculate the objective function in terms of the problem variables, calculate the revenue and costs.
The revenue is the amount you sell of each fertilizer blend times the price, added over all time
periods and blends.

revenue = sum(blendPrice{1,:}.*sum(sell(months,blends),1));

The cost of ingredients is the cost for each ingredient used at each time, added over all time periods.
Because the amount used at each time is separated into the amount used for each blend, also add
over the blends.

blendsUsed = sum(use(months,raws,blends),3);
ingredientCost = sum(sum(rawCost{months,raws}.*blendsUsed));

The storage cost is the cost for storing the inventory over each time period, added over time and
blends.

storageCost = inventoryCost*sum(inventory(:));

Now place the objective function into the Objective property of the problem by using dot notation.

inventoryProblem.Objective = revenue - ingredientCost - storageCost;

Problem Constraints

The problem has several constraints. First, express the inventory equation as a set of constraints on
the problem variables.

materialBalance = optimconstr(months,blends);
timeAbove1 = months(2:end);
previousTime = months(1:end-1);
materialBalance(timeAbove1,:) = inventory(timeAbove1,:) == inventory(previousTime,:) +...
 make(timeAbove1,:) - sell(timeAbove1,:);
materialBalance(1,:) = inventory(1,:) == blendInventory{'Initial',:} +...
 make(1,:) - sell(1,:);

Express the constraint that the final inventory is fixed as well.

finalC = inventory(end,:) == blendInventory{'Final',:};

The total inventory at each time is bounded.

boundedInv = sum(inventory,2) <= inventoryCapacity;

You can produce a limited amount in each time period.

 Create Multiperiod Inventory Model in Problem-Based Framework

8-39

processLimit = sum(make,2) <= productionCapacity;

The amount that you produce each month of each blend is the amount of raw materials that you use.
The squeeze function converts the sum from a nmonths-by-1-by- nblends array to a nmonths-by-
nblends array.

rawMaterialUse = squeeze(sum(use(months,raws,blends),2)) == make(months,blends);

The nutrients in each blend must have the requisite values. In the following inner statement, the
multiplication rawNutrients{n,raws}*use(m,raws,b)' adds the nutrient values at each time
over the raw materials used.

blendNutrientsQuality = optimconstr(months,nutrients,blends);
for m = 1:nMonths
 for b = 1:nBlends
 for n = 1:nNutrients
 blendNutrientsQuality(m,n,b) = rawNutrients{n,raws}*use(m,raws,b)' == blendNutrients{n,b}*make(m,b);
 end
 end
end

Place the constraints into the problem.

inventoryProblem.Constraints.materialBalance = materialBalance;
inventoryProblem.Constraints.finalC = finalC;
inventoryProblem.Constraints.boundedInv = boundedInv;
inventoryProblem.Constraints.processLimit = processLimit;
inventoryProblem.Constraints.rawMaterialUse = rawMaterialUse;
inventoryProblem.Constraints.blendNutrientsQuality = blendNutrientsQuality;

Solve Problem

The problem formulation is complete. Solve the problem.

[sol,fval,exitflag,output] = solve(inventoryProblem)

Solving problem using linprog.

Optimal solution found.

sol = struct with fields:
 inventory: [12x2 double]
 make: [12x2 double]
 sell: [12x2 double]
 use: [12x6x2 double]

fval = 2.2474e+06

exitflag =
 OptimalSolution

output = struct with fields:
 iterations: 154
 constrviolation: 5.4570e-12
 message: 'Optimal solution found.'
 algorithm: 'dual-simplex'
 firstorderopt: 6.5235e-12

8 Linear Programming and Mixed-Integer Linear Programming

8-40

 solver: 'linprog'

Display the results in tabular and graphical form.

if exitflag > 0
 fprintf('Profit: %g\n',fval);
 makeT = array2table(sol.make,'RowNames',months,'VariableNames',strcat('make',blends));
 sellT = array2table(sol.sell,'RowNames',months,'VariableNames',strcat('sell',blends));
 storeT = array2table(sol.inventory,'RowNames',months,'VariableNames',strcat('store',blends));
 productionPlanT = [makeT sellT storeT]
 figure
 subplot(3,1,1)
 bar(sol.make)
 legend('Balanced','HighN','Location','eastoutside')
 title('Amount Made')
 subplot(3,1,2)
 bar(sol.sell)
 legend('Balanced','HighN','Location','eastoutside')
 title('Amount Sold')
 subplot(3,1,3)
 bar(sol.inventory)
 legend('Balanced','HighN','Location','eastoutside')
 title('Amount Stored')
 xlabel('Time')
end

Profit: 2.24739e+06

productionPlanT=12×6 table
 makeBalanced makeHighN sellBalanced sellHighN storeBalanced storeHighN
 ____________ _________ ____________ _________ _____________ __________

 January 1100 100 750 300 550 0
 February 600 310 800 310 350 0
 March 550 650 900 600 0 50
 April 850 350 850 400 0 0
 May 700 350 700 350 0 0
 June 700 300 700 300 0 0
 July 700 200 700 200 0 0
 August 600 200 600 200 0 0
 September 600 200 600 200 0 0
 October 550 200 550 200 0 0
 November 550 200 550 200 0 0
 December 750 400 550 200 200 200

 Create Multiperiod Inventory Model in Problem-Based Framework

8-41

See Also

More About
• “Problem-Based Optimization Workflow” on page 9-2

8 Linear Programming and Mixed-Integer Linear Programming

8-42

Mixed-Integer Linear Programming Algorithms
In this section...
“Mixed-Integer Linear Programming Definition” on page 8-43
“intlinprog Algorithm” on page 8-43

Mixed-Integer Linear Programming Definition
A mixed-integer linear program (MILP) is a problem with

• Linear objective function, fTx, where f is a column vector of constants, and x is the column vector
of unknowns

• Bounds and linear constraints, but no nonlinear constraints (for definitions, see “Write
Constraints”)

• Restrictions on some components of x to have integer values

In mathematical terms, given vectors f, lb, and ub, matrices A and Aeq, corresponding vectors b and
beq, and a set of indices intcon, find a vector x to solve

min
x

f Tx subject to

x(intcon) are integers
A ⋅ x ≤ b
Aeq ⋅ x = beq
lb ≤ x ≤ ub .

intlinprog Algorithm
• “Algorithm Overview” on page 8-43
• “Linear Program Preprocessing” on page 8-44
• “Linear Programming” on page 8-44
• “Mixed-Integer Program Preprocessing” on page 8-44
• “Cut Generation” on page 8-45
• “Heuristics for Finding Feasible Solutions” on page 8-46
• “Branch and Bound” on page 8-48

Algorithm Overview

intlinprog uses this basic strategy to solve mixed-integer linear programs. intlinprog can solve
the problem in any of the stages. If it solves the problem in a stage, intlinprog does not execute
the later stages.

1 Reduce the problem size using “Linear Program Preprocessing” on page 8-44.
2 Solve an initial relaxed (noninteger) problem using “Linear Programming” on page 8-44.
3 Perform “Mixed-Integer Program Preprocessing” on page 8-44 to tighten the LP relaxation of

the mixed-integer problem.
4 Try “Cut Generation” on page 8-45 to further tighten the LP relaxation of the mixed-integer

problem.

 Mixed-Integer Linear Programming Algorithms

8-43

5 Try to find integer-feasible solutions using heuristics on page 8-46.
6 Use a “Branch and Bound” on page 8-48 algorithm to search systematically for the optimal

solution. This algorithm solves LP relaxations with restricted ranges of possible values of the
integer variables. It attempts to generate a sequence of updated bounds on the optimal objective
function value.

Linear Program Preprocessing

According to the “Mixed-Integer Linear Programming Definition” on page 8-43, there are matrices A
and Aeq and corresponding vectors b and beq that encode a set of linear inequalities and linear
equalities

A · x ≤ b
Aeq · x = beq .

These linear constraints restrict the solution x.

Usually, it is possible to reduce the number of variables in the problem (the number of components of
x), and reduce the number of linear constraints. While performing these reductions can take time for
the solver, they usually lower the overall time to solution, and can make larger problems solvable. The
algorithms can make solution more numerically stable. Furthermore, these algorithms can sometimes
detect an infeasible problem.

Preprocessing steps aim to eliminate redundant variables and constraints, improve the scaling of the
model and sparsity of the constraint matrix, strengthen the bounds on variables, and detect the
primal and dual infeasibility of the model.

For details, see Andersen and Andersen [2] and Mészáros and Suhl [8].

Linear Programming

The initial relaxed problem is the linear programming problem with the same objective and
constraints as “Mixed-Integer Linear Programming Definition” on page 8-43, but no integer
constraints. Call xLP the solution to the relaxed problem, and x the solution to the original problem
with integer constraints. Clearly,

fTxLP ≤ fTx,

because xLP minimizes the same function but with fewer restrictions.

This initial relaxed LP (root node LP) and all generated LP relaxations during the branch-and-bound
algorithm are solved using linear programming solution techniques.

Mixed-Integer Program Preprocessing

During mixed-integer program preprocessing, intlinprog analyzes the linear inequalities A*x ≤ b
along with integrality restrictions to determine whether:

• The problem is infeasible.
• Some bounds can be tightened.
• Some inequalities are redundant, so can be ignored or removed.
• Some inequalities can be strengthened.

8 Linear Programming and Mixed-Integer Linear Programming

8-44

• Some integer variables can be fixed.

The IntegerPreprocess option lets you choose whether intlinprog takes several steps, takes all
of them, or takes almost none of them. If you include an x0 argument, intlinprog uses that value in
preprocessing.

The main goal of mixed-integer program preprocessing is to simplify ensuing branch-and-bound
calculations. Preprocessing involves quickly preexamining and eliminating some of the futile
subproblem candidates that branch-and-bound would otherwise analyze.

For details about integer preprocessing, see Savelsbergh [10].

Cut Generation

Cuts are additional linear inequality constraints that intlinprog adds to the problem. These
inequalities attempt to restrict the feasible region of the LP relaxations so that their solutions are
closer to integers. You control the type of cuts that intlinprog uses with the CutGeneration
option.

'basic' cuts include:

• Mixed-integer rounding cuts
• Gomory cuts
• Clique cuts
• Cover cuts
• Flow cover cuts

Furthermore, if the problem is purely integer (all variables are integer-valued), then intlinprog
also uses the following cuts:

• Strong Chvatal-Gomory cuts
• Zero-half cuts

'intermediate' cuts include all 'basic' cuts, plus:

• Simple lift-and-project cuts
• Simple pivot-and-reduce cuts
• Reduce-and-split cuts

'advanced' cuts include all 'intermediate' cuts except reduce-and-split cuts, plus:

• Strong Chvatal-Gomory cuts
• Zero-half cuts

For purely integer problems, 'intermediate' uses the most cut types, because it uses reduce-and-
split cuts, while 'advanced' does not.

Another option, CutMaxIterations, specifies an upper bound on the number of times intlinprog
iterates to generate cuts.

For details about cut generation algorithms (also called cutting plane methods), see Cornuéjols [5]
and, for clique cuts, Atamtürk, Nemhauser, and Savelsbergh [3].

 Mixed-Integer Linear Programming Algorithms

8-45

Heuristics for Finding Feasible Solutions

To get an upper bound on the objective function, the branch-and-bound procedure must find feasible
points. A solution to an LP relaxation during branch-and-bound can be integer feasible, which can
provide an improved upper bound to the original MILP. Certain techniques find feasible points faster
before or during branch-and-bound. intlinprog uses these techniques at the root node and during
some branch-and-bound iterations. These techniques are heuristic, meaning they are algorithms that
can succeed but can also fail.

Heuristics can be start heuristics, which help the solver find an initial or new integer-feasible
solution. Or heuristics can be improvement heuristics, which start at an integer-feasible point and
attempt to find a better integer-feasible point, meaning one with lower objective function value. The
intlinprog improvement heuristics are 'rins', 'rss', 1-opt, 2-opt, and guided diving.

Set the intlinprog heuristics using the 'Heuristics' option. The options are:

Option Description
'basic' (default) The solver runs rounding heuristics twice with different parameters,

runs diving heuristics twice with different parameters, then runs 'rss'.
The solver does not run later heuristics when earlier heuristics lead to a
sufficiently good integer-feasible solution.

'intermediate' The solver runs rounding heuristics twice with different parameters,
then runs diving heuristics twice with different parameters. If there is
an integer-feasible solution, the solver then runs 'rins' followed by
'rss'. If 'rss' finds a new solution, the solver runs 'rins' again.
The solver does not run later heuristics when earlier heuristics lead to a
sufficiently good integer-feasible solution.

'advanced' The solver runs rounding heuristics twice with different parameters,
then runs diving heuristics twice with different parameters. If there is
an integer-feasible solution, the solver then runs 'rins' followed by
'rss'. If 'rss' finds a new solution, the solver runs 'rins' again.
The solver does not run later heuristics when earlier heuristics lead to a
sufficiently good integer-feasible solution.

'rins' or the equivalent
'rins-diving'

intlinprog searches the neighborhood of the current, best integer-
feasible solution point (if available) to find a new and better solution.
See Danna, Rothberg, and Le Pape [6]. When you select 'rins', the
solver runs rounding heuristics twice with different parameters, runs
diving heuristics twice with different parameters, then runs 'rins'.

'rss' or the equivalent
'rss-diving'

intlinprog applies a hybrid procedure combining ideas from 'rins'
and local branching to search for integer-feasible solutions. When you
select 'rss', the solver runs rounding heuristics twice with different
parameters, runs diving heuristics twice with different parameters, then
runs 'rss'. The solver does not run later heuristics when earlier
heuristics lead to a sufficiently good integer-feasible solution. These
settings perform the same heuristics as 'basic'.

8 Linear Programming and Mixed-Integer Linear Programming

8-46

Option Description
'round' intlinprog takes the LP solution to the relaxed problem at a node,

and rounds the integer components in a way that attempts to maintain
feasibility. When you select 'round', the solver, at the root node, runs
rounding heuristics twice with different parameters, then runs diving
heuristics twice with different parameters. Thereafter, the solver runs
only rounding heuristics at some branch-and-bound nodes.

'round-diving' The solver works in a similar way to 'round', but also runs diving
heuristics (in addition to rounding heuristics) at some branch-and-
bound nodes, not just the root node.

'diving' intlinprog uses heuristics that are similar to branch-and-bound steps,
but follow just one branch of the tree down, without creating the other
branches. This single branch leads to a fast “dive” down the tree
fragment, thus the name “diving.” Currently, intlinprog uses six
diving heuristics in this order:

• Vector length diving
• Coefficient diving
• Fractional diving
• Pseudo cost diving
• Line search diving
• Guided diving (applies when the solver already found at least one

integer-feasible point)

Diving heuristics generally select one variable that should be integer-
valued, for which the current solution is fractional. The heuristics then
introduce a bound that forces the variable to be integer-valued, and
solve the associated relaxed LP again. The method of choosing the
variable to bound is the main difference between the diving heuristics.
See Berthold [4], Section 3.1.

'none' intlinprog does not search for a feasible point. The solver simply
takes any feasible point it encounters in its branch-and-bound search.

The main difference between 'intermediate' and 'advanced' is that 'advanced' runs
heuristics more frequently during branch-and-bound iterations.

In addition to the previous table, the following heuristics run when the Heuristics option is
'basic', 'intermediate', or 'advanced'.

• ZI round — This heuristic runs whenever an algorithm solves a relaxed LP. The heuristic goes
through each fractional integer variable to attempt to shift it to a neighboring integer without
affecting the feasibility with respect to other constraints. For details, see Hendel [7].

• 1-opt — This heuristic runs whenever an algorithm finds a new integer-feasible solution. The
heuristic goes through each integer variable to attempt to shift it to a neighboring integer without
affecting the feasibility with respect to other constraints, while lowering the objective function
value.

• 2-opt — This heuristic runs whenever an algorithm finds a new integer-feasible solution. 2-opt
finds all pairs of integer variables that affect the same constraint, meaning they have nonzero
entries in the same row of an A or Aeq constraint matrix. For each pair, 2-opt takes an integer-

 Mixed-Integer Linear Programming Algorithms

8-47

feasible solution and moves the values of the variable pairs up or down using all four possible
moves (up-up, up-down, down-up, and down-down), looking for a feasible neighboring solution
that has a better objective function value. The algorithm tests each integer variable pair by
calculating the largest size (same magnitude) of shifts for each variable in the pair that satisfies
the constraints and also improves the objective function value.

At the beginning of the heuristics phase, intlinprog runs the trivial heuristic unless Heuristics is
'none' or you provide an initial integer-feasible point in the x0 argument. The trivial heuristic
checks the following points for feasibility:

• All zeros
• Upper bound
• Lower bound (if nonzero)
• "Lock" point

The "lock" point is defined only for problems with finite upper and lower bounds for all variables. The
"lock" point for each variable is its upper or lower bound, chosen as follows. For each variable j,
count the number of corresponding positive entries in the linear constraint matrix A(:,j) and
subtract the number corresponding negative entries. If the result is positive, use the lower bound for
that variable, lb(j). Otherwise, use the upper bound for that variable, ub(j). The "lock" point
attempts to satisfy the largest number of linear inequality constraints for each variable, but is not
necessarily feasible.

After each heuristic completes with a feasible solution, intlinprog calls output functions and plot
functions. See “intlinprog Output Function and Plot Function Syntax” on page 14-36.

If you include an x0 argument, intlinprog uses that value in the 'rins' and guided diving
heuristics until it finds a better integer-feasible point. So when you provide x0, you can obtain good
results by setting the 'Heuristics' option to 'rins-diving' or another setting that uses
'rins'.

Branch and Bound

The branch-and-bound method constructs a sequence of subproblems that attempt to converge to a
solution of the MILP. The subproblems give a sequence of upper and lower bounds on the solution fTx.
The first upper bound is any feasible solution, and the first lower bound is the solution to the relaxed
problem. For a discussion of the upper bound, see “Heuristics for Finding Feasible Solutions” on page
8-46.

As explained in “Linear Programming” on page 8-44, any solution to the linear programming relaxed
problem has a lower objective function value than the solution to the MILP. Also, any feasible point
xfeas satisfies

fTxfeas ≥ fTx,

because fTx is the minimum among all feasible points.

In this context, a node is an LP with the same objective function, bounds, and linear constraints as
the original problem, but without integer constraints, and with particular changes to the linear
constraints or bounds. The root node is the original problem with no integer constraints and no
changes to the linear constraints or bounds, meaning the root node is the initial relaxed LP.

From the starting bounds, the branch-and-bound method constructs new subproblems by branching
from the root node. The branching step is taken heuristically, according to one of several rules. Each

8 Linear Programming and Mixed-Integer Linear Programming

8-48

rule is based on the idea of splitting a problem by restricting one variable to be less than or equal to
an integer J, or greater than or equal to J+1. These two subproblems arise when an entry in xLP,
corresponding to an integer specified in intcon, is not an integer. Here, xLP is the solution to a relaxed
problem. Take J as the floor of the variable (rounded down), and J+1 as the ceiling (rounded up). The
resulting two problems have solutions that are larger than or equal to fTxLP, because they have more
restrictions. Therefore, this procedure potentially raises the lower bound.

The performance of the branch-and-bound method depends on the rule for choosing which variable to
split (the branching rule). The algorithm uses these rules, which you can set in the BranchRule
option:

• 'maxpscost' — Choose the fractional variable with maximal pseudocost.

Pseudocost

The pseudocost of a variable i is based on empirical estimates of the change in the lower bound
when i has been chosen as the branching variable, combined with the fractional part of the i
component of the current point x. The fractional part p is in two pieces, the lower part and the
upper part:

pi
– = x(i) – ⌊x(i)⌋

pi
+ = 1 – pi

–.

Let xi
– be the solution of the linear program restricted to have x(i) ≤ ⌊x(i)⌋, and let the change in

objective function be denoted

Δi
– = fTxi

– – fTx.

Similarly, Δi
+ is the change in objective function when the problem is restricted to have

x(i) ≥ ⌈x(i)⌉.

The objective gain per unit change in variable xi is

di
− =

Δi
−

pi
− or di

+ =
Δi

+

pi
+ .

Let si
– and si

+ be the empirical averages of di
– and di

+ during the branch-and-bound algorithm up
to this point. The empirical values are initialized to the absolute value of the objective coefficient
f(i) for the terms before there are any observations. Then the 'maxpscost' rule is to branch on a
node i that maximizes, for some positive weights w+ and w–, the quantity

w– * pi
– * si

– + w+ * pi
+ * si

+.

Roughly speaking, this rule chooses a coefficient that is likely to increase the lower bound
maximally.

• 'strongpscost' — Similar to 'maxpscost', but instead of the pseudocost being initialized to 1
for each variable, the solver attempts to branch on a variable only after the pseudocost has a more
reliable estimate. To obtain a more reliable estimate, the solver does the following (see
Achterberg, Koch, and Martin [1]).

• Order all potential branching variables (those that are currently fractional but should be
integer) by their current pseudocost-based scores.

• Run the two relaxed linear programs based on the current branching variable, starting from
the variable with the highest score (if the variable has not yet been used for a branching

 Mixed-Integer Linear Programming Algorithms

8-49

calculation). The solver uses these two solutions to update the pseudocosts for the current
branching variable. The solver can halt this process early to save time in choosing the branch.

• Continue choosing variables in the list until the current highest pseudocost-based score does
not change for k consecutive variables, where k is an internally chosen value, usually between
5 and 10.

• Branch on the variable with the highest pseudocost-based score. The solver might have already
computed the relaxed linear programs based on this variable during an earlier pseudocost
estimation procedure.

Because of the extra linear program solutions, each iteration of 'strongpscost' branching
takes longer than the default 'maxpscost'. However, the number of branch-and-bound iterations
typically decreases, so the 'strongpscost' method can save time overall.

• 'reliability' — Similar to 'strongpscost', but instead of running the relaxed linear
programs only for uninitialized pseudocost branches, 'reliability' runs the programs up to
k2 times for each variable, where k2 is a small integer such as 4 or 8. Therefore, 'reliability'
has even slower branching, but potentially fewer branch-and-bound iterations, compared to
'strongpscost'.

• 'mostfractional' — Choose the variable with fractional part closest to 1/2.
• 'maxfun' — Choose the variable with maximal corresponding absolute value in the objective

vector f.

After the algorithm branches, there are two new nodes to explore. The algorithm chooses which node
to explore among all that are available using one of these rules:

• 'minobj' — Choose the node that has the lowest objective function value.
• 'mininfeas' — Choose the node with the minimal sum of integer infeasibilities. This means for

every integer-infeasible component x(i) in the node, add up the smaller of pi
– and pi

+, where

pi
– = x(i) – ⌊x(i)⌋

pi
+ = 1 – pi

–.
• 'simplebestproj' — Choose the node with the best projection.

Best Projection

Let xB denote the best integer-feasible point found so far, xR demote the LP relaxed solution at the
root node, and x denote the node we examine. Let in(x) denote the sum of integer infeasibilities at
the node x (see 'mininfeas'). The best projection rule is to minimize

f Tx +
f TxB− f TxR

in xR
in x .

If there is no integer-feasible point found so far, set fTxB = 0.

intlinprog skips the analysis of some subproblems by considering information from the original
problem such as the objective function’s greatest common divisor (GCD).

The branch-and-bound procedure continues, systematically generating subproblems to analyze and
discarding the ones that won’t improve an upper or lower bound on the objective, until one of these
stopping criteria is met:

• The algorithm exceeds the MaxTime option.

8 Linear Programming and Mixed-Integer Linear Programming

8-50

• The difference between the lower and upper bounds on the objective function is less than the
AbsoluteGapTolerance or RelativeGapTolerance tolerances.

• The number of explored nodes exceeds the MaxNodes option.
• The number of integer feasible points exceeds the MaxFeasiblePoints option.

For details about the branch-and-bound procedure, see Nemhauser and Wolsey [9] and Wolsey [11].

References
[1] Achterberg, T., T. Koch and A. Martin. Branching rules revisited. Operations Research Letters 33,

2005, pp. 42–54. Available at https://www-m9.ma.tum.de/downloads/felix-
klein/20B/AchterbergKochMartin-BranchingRulesRevisited.pdf.

[2] Andersen, E. D., and Andersen, K. D. Presolving in linear programming. Mathematical
Programming 71, pp. 221–245, 1995.

[3] Atamtürk, A., G. L. Nemhauser, M. W. P. Savelsbergh. Conflict graphs in solving integer
programming problems. European Journal of Operational Research 121, 2000, pp. 40–55.

[4] Berthold, T. Primal Heuristics for Mixed Integer Programs. Technischen Universität Berlin,
September 2006. Available at https://www.zib.de/groetschel/students/Diplom-
Berthold.pdf.

[5] Cornuéjols, G. Valid inequalities for mixed integer linear programs. Mathematical Programming B,
Vol. 112, pp. 3–44, 2008.

[6] Danna, E., Rothberg, E., Le Pape, C. Exploring relaxation induced neighborhoods to improve MIP
solutions. Mathematical Programming, Vol. 102, issue 1, pp. 71–90, 2005.

[7] Hendel, G. New Rounding and Propagation Heuristics for Mixed Integer Programming. Bachelor's
thesis at Technische Universität Berlin, 2011. PDF available at https://opus4.kobv.de/opus4-
zib/files/1332/bachelor_thesis_main.pdf.

[8] Mészáros C., and Suhl, U. H. Advanced preprocessing techniques for linear and quadratic
programming. OR Spectrum, 25(4), pp. 575–595, 2003.

[9] Nemhauser, G. L. and Wolsey, L. A. Integer and Combinatorial Optimization. Wiley-Interscience,
New York, 1999.

[10] Savelsbergh, M. W. P. Preprocessing and Probing Techniques for Mixed Integer Programming
Problems. ORSA J. Computing, Vol. 6, No. 4, pp. 445–454, 1994.

[11] Wolsey, L. A. Integer Programming. Wiley-Interscience, New York, 1998.

 Mixed-Integer Linear Programming Algorithms

8-51

https://www-m9.ma.tum.de/downloads/felix-klein/20B/AchterbergKochMartin-BranchingRulesRevisited.pdf
https://www-m9.ma.tum.de/downloads/felix-klein/20B/AchterbergKochMartin-BranchingRulesRevisited.pdf
https://www.zib.de/groetschel/students/Diplom-Berthold.pdf
https://www.zib.de/groetschel/students/Diplom-Berthold.pdf
https://opus4.kobv.de/opus4-zib/files/1332/bachelor_thesis_main.pdf
https://opus4.kobv.de/opus4-zib/files/1332/bachelor_thesis_main.pdf

Tuning Integer Linear Programming
In this section...
“Change Options to Improve the Solution Process” on page 8-52
“Some “Integer” Solutions Are Not Integers” on page 8-53
“Large Components Not Integer Valued” on page 8-53
“Large Coefficients Disallowed” on page 8-53

Change Options to Improve the Solution Process

Note Often, you can change the formulation of a MILP to make it more easily solvable. For
suggestions on how to change your formulation, see Williams [1].

After you run intlinprog once, you might want to change some options and rerun it. The changes
you might want to see include:

• Lower run time
• Lower final objective function value (a better solution)
• Smaller final gap
• More or different feasible points

Here are general recommendations for option changes that are most likely to help the solution
process. Try the suggestions in this order:

1 For a faster and more accurate solution, increase the CutMaxIterations option from its default
10 to a higher number such as 25. This can speed up the solution, but can also slow it.

2 For a faster and more accurate solution, change the CutGeneration option to
'intermediate' or 'advanced'. This can speed up the solution, but can use much more
memory, and can slow the solution.

3 For a faster and more accurate solution, change the IntegerPreprocess option to
'advanced'. This can have a large effect on the solution process, either beneficial or not.

4 For a faster and more accurate solution, change the RootLPAlgorithm option to 'primal-
simplex'. Usually this change is not beneficial, but occasionally it can be.

5 To try to find more or better feasible points, increase the HeuristicsMaxNodes option from its
default 50 to a higher number such as 100.

6 To try to find more or better feasible points, change the Heuristics option to either
'intermediate' or 'advanced'.

7 To try to find more or better feasible points, change the BranchRule option to
'strongpscost' or, if that choice fails to improve the solution, 'maxpscost'.

8 For a faster solution, increase the ObjectiveImprovementThreshold option from its default
of zero to a positive value such as 1e-4. However, this change can cause intlinprog to find
fewer integer feasible points or a less accurate solution.

9 To attempt to stop the solver more quickly, change the RelativeGapTolerance option to a
higher value than the default 1e-4. Similarly, to attempt to obtain a more accurate answer,

8 Linear Programming and Mixed-Integer Linear Programming

8-52

change the RelativeGapTolerance option to a lower value. These changes do not always
improve results.

Some “Integer” Solutions Are Not Integers
Often, some supposedly integer-valued components of the solution x(intcon) are not precisely
integers. intlinprog considers as integers all solution values within IntegerTolerance of an
integer.

To round all supposed integers to be precisely integers, use the round function.

x(intcon) = round(x(intcon));

Caution Rounding can cause solutions to become infeasible. Check feasibility after rounding:

max(A*x - b) % see if entries are not too positive, so have small infeasibility
max(abs(Aeq*x - beq)) % see if entries are near enough to zero
max(x - ub) % positive entries are violated bounds
max(lb - x) % positive entries are violated bounds

Large Components Not Integer Valued
intlinprog does not enforce that solution components be integer valued when their absolute values
exceed 2.1e9. When your solution has such components, intlinprog warns you. If you receive this
warning, check the solution to see whether supposedly integer-valued components of the solution are
close to integers.

Large Coefficients Disallowed
intlinprog does not allow components of the problem, such as coefficients in f, A, or ub, to exceed
1e15 in absolute value. If you try to run intlinprog with such a problem, intlinprog issues an
error.

If you get this error, sometimes you can scale the problem to have smaller coefficients:

• For coefficients in f that are too large, try multiplying f by a small positive scaling factor.
• For constraint coefficients that are too large, try multiplying all bounds and constraint matrices by

the same small positive scaling factor.

References
[1] Williams, H. Paul. Model Building in Mathematical Programming, 5th Edition. Wiley, 2013.

 Tuning Integer Linear Programming

8-53

Mixed-Integer Linear Programming Basics: Solver-Based
This example shows how to solve a mixed-integer linear problem. Although not complex, the example
shows the typical steps in formulating a problem using the syntax for intlinprog.

For the problem-based approach to this problem, see “Mixed-Integer Linear Programming Basics:
Problem-Based” on page 8-108.

Problem Description

You want to blend steels with various chemical compositions to obtain 25 tons of steel with a specific
chemical composition. The result should have 5% carbon and 5% molybdenum by weight, meaning 25
tons*5% = 1.25 tons of carbon and 1.25 tons of molybdenum. The objective is to minimize the cost for
blending the steel.

This problem is taken from Carl-Henrik Westerberg, Bengt Bjorklund, and Eskil Hultman, “An
Application of Mixed Integer Programming in a Swedish Steel Mill.” Interfaces February 1977 Vol. 7,
No. 2 pp. 39–43, whose abstract is at https://doi.org/10.1287/inte.7.2.39.

Four ingots of steel are available for purchase. Only one of each ingot is available.

Ingot Weight in Tons % Carbon % Molybdenum Cost
Ton

1 5 5 3 $ 350
2 3 4 3 $ 330
3 4 5 4 $ 310
4 6 3 4 $ 280

Three grades of alloy steel and one grade of scrap steel are available for purchase. Alloy and scrap
steels can be purchased in fractional amounts.

Alloy % Carbon % Molybdenum Cost
Ton

1 8 6 $ 500
2 7 7 $ 450
3 6 8 $ 400

Scrap 3 9 $ 100

To formulate the problem, first decide on the control variables. Take variable x(1) = 1 to mean you
purchase ingot 1, and x(1) = 0 to mean you do not purchase the ingot. Similarly, variables x(2)
through x(4) are binary variables indicating whether you purchase ingots 2 through 4.

Variables x(5) through x(7) are the quantities in tons of alloys 1, 2, and 3 that you purchase, and
x(8) is the quantity of scrap steel that you purchase.

MATLAB® Formulation

Formulate the problem by specifying the inputs for intlinprog. The relevant intlinprog syntax
is:

[x,fval] = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub)

Create the inputs for intlinprog from the first (f) through the last (ub).

8 Linear Programming and Mixed-Integer Linear Programming

8-54

https://doi.org/10.1287/inte.7.2.39

f is the vector of cost coefficients. The coefficients representing the costs of ingots are the ingot
weights times their cost per ton.

f = [350*5,330*3,310*4,280*6,500,450,400,100];

The integer variables are the first four.

intcon = 1:4;

Tip: To specify binary variables, set the variables to be integers in intcon, and give them a lower
bound of 0 and an upper bound of 1.

The problem has no linear inequality constraints, so A and b are empty matrices ([]).

A = [];
b = [];

The problem has three equality constraints. The first is that the total weight is 25 tons.

5*x(1) + 3*x(2) + 4*x(3) + 6*x(4) + x(5) + x(6) + x(7) + x(8) = 25

The second constraint is that the weight of carbon is 5% of 25 tons, or 1.25 tons.

5*0.05*x(1) + 3*0.04*x(2) + 4*0.05*x(3) + 6*0.03*x(4)

+ 0.08*x(5) + 0.07*x(6) + 0.06*x(7) + 0.03*x(8) = 1.25

The third constraint is that the weight of molybdenum is 1.25 tons.

5*0.03*x(1) + 3*0.03*x(2) + 4*0.04*x(3) + 6*0.04*x(4)

+ 0.06*x(5) + 0.07*x(6) + 0.08*x(7) + 0.09*x(8) = 1.25

Specify the constraints, which are Aeq*x = beq in matrix form.

Aeq = [5,3,4,6,1,1,1,1;
 5*0.05,3*0.04,4*0.05,6*0.03,0.08,0.07,0.06,0.03;
 5*0.03,3*0.03,4*0.04,6*0.04,0.06,0.07,0.08,0.09];
beq = [25;1.25;1.25];

Each variable is bounded below by zero. The integer variables are bounded above by one.

lb = zeros(8,1);
ub = ones(8,1);
ub(5:end) = Inf; % No upper bound on noninteger variables

Solve Problem

Now that you have all the inputs, call the solver.

[x,fval] = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub);

LP: Optimal objective value is 8125.600000.

Cut Generation: Applied 3 mir cuts.
 Lower bound is 8495.000000.
 Relative gap is 0.00%.

 Mixed-Integer Linear Programming Basics: Solver-Based

8-55

Optimal solution found.

Intlinprog stopped at the root node because the objective value is within a gap
tolerance of the optimal value, options.AbsoluteGapTolerance = 0 (the default
value). The intcon variables are integer within tolerance,
options.IntegerTolerance = 1e-05 (the default value).

View the solution.

x,fval

x = 8×1

 1.0000
 1.0000
 0
 1.0000
 7.2500
 0
 0.2500
 3.5000

fval = 8.4950e+03

The optimal purchase costs $8,495. Buy ingots 1, 2, and 4, but not 3, and buy 7.25 tons of alloy 1,
0.25 ton of alloy 3, and 3.5 tons of scrap steel.

Set intcon = [] to see the effect of solving the problem without integer constraints. The solution is
different, and is not realistic, because you cannot purchase a fraction of an ingot.

See Also

More About
• “Mixed-Integer Linear Programming Basics: Problem-Based” on page 8-108
• “Integer and Logical Modeling” on page 8-171
• “Solver-Based Optimization Problem Setup”

8 Linear Programming and Mixed-Integer Linear Programming

8-56

Factory, Warehouse, Sales Allocation Model: Solver-Based
This example shows how to set up and solve a mixed-integer linear programming problem. The
problem is to find the optimal production and distribution levels among a set of factories,
warehouses, and sales outlets. For the problem-based approach, see “Factory, Warehouse, Sales
Allocation Model: Problem-Based” on page 8-111.

The example first generates random locations for factories, warehouses, and sales outlets. Feel free
to modify the scaling parameter N, which scales both the size of the grid in which the production and
distribution facilities reside, but also scales the number of these facilities so that the density of
facilities of each type per grid area is independent of N.

Facility Locations

For a given value of the scaling parameter N, suppose that there are the following:

• ⌊f N2⌋ factories
• ⌊wN2⌋ warehouses
• ⌊sN2⌋ sales outlets

These facilities are on separate integer grid points between 1 and N in the x and y directions. In
order that the facilities have separate locations, you require that f + w + s ≤ 1. In this example, take
N = 20, f = 0 . 05, w = 0 . 05, and s = 0 . 1.

Production and Distribution

There are P products made by the factories. Take P = 20.

The demand for each product p in a sales outlet s is d(s, p). The demand is the quantity that can be
sold in a time interval. One constraint on the model is that the demand is met, meaning the system
produces and distributes exactly the quantities in the demand.

There are capacity constraints on each factory and each warehouse.

• The production of product p at factory f is less than pcap(f , p).
• The capacity of warehouse w is wcap(w).
• The amount of product p that can be transported from warehouse w to a sales outlet in the time

interval is less than turn(p) * wcap(w), where turn(p) is the turnover rate of product p.

Suppose that each sales outlet receives its supplies from just one warehouse. Part of the problem is to
determine the cheapest mapping of sales outlets to warehouses.

Costs

The cost of transporting products from factory to warehouse, and from warehouse to sales outlet,
depends on the distance between the facilities, and on the particular product. If dist(a, b) is the
distance between facilities a and b, then the cost of shipping a product p between these facilities is
the distance times the transportation cost tcost(p):

dist(a, b) * tcost(p) .

The distance in this example is the grid distance, also known as the L1 distance. It is the sum of the
absolute difference in x coordinates and y coordinates.

 Factory, Warehouse, Sales Allocation Model: Solver-Based

8-57

The cost of making a unit of product p in factory f is pcost(f , p).

Optimization Problem

Given a set of facility locations, and the demands and capacity constraints, find:

• A production level of each product at each factory
• A distribution schedule for products from factories to warehouses
• A distribution schedule for products from warehouses to sales outlets

These quantities must ensure that demand is satisfied and total cost is minimized. Also, each sales
outlet is required to receive all its products from exactly one warehouse.

Variables and Equations for the Optimization Problem

The control variables, meaning the ones you can change in the optimization, are

• x(p, f , w) = the amount of product p that is transported from factory f to warehouse w
• y(s, w) = a binary variable taking value 1 when sales outlet s is associated with warehouse w

The objective function to minimize is

∑
f
∑
p
∑
w

x(p, f , w) ⋅ (pcost(f , p) + tcost(p) ⋅ dist(f , w))

+∑
s
∑
w
∑
p

(d(s, p) ⋅ tcost(p) ⋅ dist(s, w) ⋅ y(s, w)) .

The constraints are

∑
w

x(p, f , w) ≤ pcap(f , p) (capacity of factory).

∑
f

x(p, f , w) = ∑
s

(d(s, p) ⋅ y(s, w)) (demand is met).

∑
p
∑
s

d(s, p)
turn(p) ⋅ y(s, w) ≤ wcap(w) (capacity of warehouse).

∑
w

y(s, w) = 1 (each sales outlet associates to one warehouse).

x(p, f , w) ≥ 0 (nonnegative production).

y(s, w) ϵ {0, 1} (binary y).

The variables x and y appear in the objective and constraint functions linearly. Because y is restricted
to integer values, the problem is a mixed-integer linear program (MILP).

Generate a Random Problem: Facility Locations

Set the values of the N, f , w, and s parameters, and generate the facility locations.

rng(1) % for reproducibility
N = 20; % N from 10 to 30 seems to work. Choose large values with caution.

8 Linear Programming and Mixed-Integer Linear Programming

8-58

N2 = N*N;
f = 0.05; % density of factories
w = 0.05; % density of warehouses
s = 0.1; % density of sales outlets

F = floor(f*N2); % number of factories
W = floor(w*N2); % number of warehouses
S = floor(s*N2); % number of sales outlets

xyloc = randperm(N2,F+W+S); % unique locations of facilities
[xloc,yloc] = ind2sub([N N],xyloc);

Of course, it is not realistic to take random locations for facilities. This example is intended to show
solution techniques, not how to generate good facility locations.

Plot the facilities. Facilities 1 through F are factories, F+1 through F+W are warehouses, and F+W
+1 through F+W+S are sales outlets.

h = figure;
plot(xloc(1:F),yloc(1:F),'rs',xloc(F+1:F+W),yloc(F+1:F+W),'k*',...
 xloc(F+W+1:F+W+S),yloc(F+W+1:F+W+S),'bo');
lgnd = legend('Factory','Warehouse','Sales outlet','Location','EastOutside');
lgnd.AutoUpdate = 'off';
xlim([0 N+1]);ylim([0 N+1])

Generate Random Capacities, Costs, and Demands

Generate random production costs, capacities, turnover rates, and demands.

 Factory, Warehouse, Sales Allocation Model: Solver-Based

8-59

P = 20; % 20 products

% Production costs between 20 and 100
pcost = 80*rand(F,P) + 20;

% Production capacity between 500 and 1500 for each product/factory
pcap = 1000*rand(F,P) + 500;

% Warehouse capacity between P*400 and P*800 for each product/warehouse
wcap = P*400*rand(W,1) + P*400;

% Product turnover rate between 1 and 3 for each product
turn = 2*rand(1,P) + 1;

% Product transport cost per distance between 5 and 10 for each product
tcost = 5*rand(1,P) + 5;

% Product demand by sales outlet between 200 and 500 for each
% product/outlet
d = 300*rand(S,P) + 200;

These random demands and capacities can lead to infeasible problems. In other words, sometimes
the demand exceeds the production and warehouse capacity constraints. If you alter some
parameters and get an infeasible problem, during solution you will get an exitflag of -2.

Generate Objective and Constraint Matrices and Vectors

The objective function vector obj in intlincon consists of the coefficients of the variables x(p, f , w)
and y(s, w). So there are naturally P*F*W + S*W coefficients in obj.

One way to generate the coefficients is to begin with a P-by-F-by-W array obj1 for the x
coefficients, and an S-by-W array obj2 for the y(s, w) coefficients. Then convert these arrays to two
vectors and combine them into obj by calling

obj = [obj1(:);obj2(:)];

obj1 = zeros(P,F,W); % Allocate arrays
obj2 = zeros(S,W);

Throughout the generation of objective and constraint vectors and matrices, we generate the (p, f , w)
array or the (s, w) array, and then convert the result to a vector.

To begin generating the inputs, generate the distance arrays distfw(i,j) and distsw(i,j).

distfw = zeros(F,W); % Allocate matrix for factory-warehouse distances
for ii = 1:F
 for jj = 1:W
 distfw(ii,jj) = abs(xloc(ii) - xloc(F + jj)) + abs(yloc(ii) ...
 - yloc(F + jj));
 end
end

distsw = zeros(S,W); % Allocate matrix for sales outlet-warehouse distances
for ii = 1:S
 for jj = 1:W
 distsw(ii,jj) = abs(xloc(F + W + ii) - xloc(F + jj)) ...
 + abs(yloc(F + W + ii) - yloc(F + jj));

8 Linear Programming and Mixed-Integer Linear Programming

8-60

 end
end

Generate the entries of obj1 and obj2.

for ii = 1:P
 for jj = 1:F
 for kk = 1:W
 obj1(ii,jj,kk) = pcost(jj,ii) + tcost(ii)*distfw(jj,kk);
 end
 end
end

for ii = 1:S
 for jj = 1:W
 obj2(ii,jj) = distsw(ii,jj)*sum(d(ii,:).*tcost);
 end
end

Combine the entries into one vector.

obj = [obj1(:);obj2(:)]; % obj is the objective function vector

Now create the constraint matrices.

The width of each linear constraint matrix is the length of the obj vector.

matwid = length(obj);

There are two types of linear inequalities: the production capacity constraints, and the warehouse
capacity constraints.

There are P*F production capacity constraints, and W warehouse capacity constraints. The constraint
matrices are quite sparse, on the order of 1% nonzero, so save memory by using sparse matrices.

Aineq = spalloc(P*F + W,matwid,P*F*W + S*W); % Allocate sparse Aeq
bineq = zeros(P*F + W,1); % Allocate bineq as full

% Zero matrices of convenient sizes:
clearer1 = zeros(size(obj1));
clearer12 = clearer1(:);
clearer2 = zeros(size(obj2));
clearer22 = clearer2(:);

% First the production capacity constraints
counter = 1;
for ii = 1:F
 for jj = 1:P
 xtemp = clearer1;
 xtemp(jj,ii,:) = 1; % Sum over warehouses for each product and factory
 xtemp = sparse([xtemp(:);clearer22]); % Convert to sparse
 Aineq(counter,:) = xtemp'; % Fill in the row
 bineq(counter) = pcap(ii,jj);
 counter = counter + 1;
 end
end

% Now the warehouse capacity constraints

 Factory, Warehouse, Sales Allocation Model: Solver-Based

8-61

vj = zeros(S,1); % The multipliers
for jj = 1:S
 vj(jj) = sum(d(jj,:)./turn); % A sum of P elements
end

for ii = 1:W
 xtemp = clearer2;
 xtemp(:,ii) = vj;
 xtemp = sparse([clearer12;xtemp(:)]); % Convert to sparse
 Aineq(counter,:) = xtemp'; % Fill in the row
 bineq(counter) = wcap(ii);
 counter = counter + 1;
end

There are two types of linear equality constraints: the constraint that demand is met, and the
constraint that each sales outlet corresponds to one warehouse.

Aeq = spalloc(P*W + S,matwid,P*W*(F+S) + S*W); % Allocate as sparse
beq = zeros(P*W + S,1); % Allocate vectors as full

counter = 1;
% Demand is satisfied:
for ii = 1:P
 for jj = 1:W
 xtemp = clearer1;
 xtemp(ii,:,jj) = 1;
 xtemp2 = clearer2;
 xtemp2(:,jj) = -d(:,ii);
 xtemp = sparse([xtemp(:);xtemp2(:)]'); % Change to sparse row
 Aeq(counter,:) = xtemp; % Fill in row
 counter = counter + 1;
 end
end

% Only one warehouse for each sales outlet:
for ii = 1:S
 xtemp = clearer2;
 xtemp(ii,:) = 1;
 xtemp = sparse([clearer12;xtemp(:)]'); % Change to sparse row
 Aeq(counter,:) = xtemp; % Fill in row
 beq(counter) = 1;
 counter = counter + 1;
end

Bound Constraints and Integer Variables

The integer variables are those from length(obj1) + 1 to the end.

intcon = P*F*W+1:length(obj);

The upper bounds are from length(obj1) + 1 to the end also.

lb = zeros(length(obj),1);
ub = Inf(length(obj),1);
ub(P*F*W+1:end) = 1;

Turn off iterative display so that you don't get hundreds of lines of output. Include a plot function to
monitor the solution progress.

8 Linear Programming and Mixed-Integer Linear Programming

8-62

opts = optimoptions('intlinprog','Display','off','PlotFcn',@optimplotmilp);

Solve the Problem

You generated all the solver inputs. Call the solver to find the solution.

[solution,fval,exitflag,output] = intlinprog(obj,intcon,...
 Aineq,bineq,Aeq,beq,lb,ub,opts);

if isempty(solution) % If the problem is infeasible or you stopped early with no solution
 disp('intlinprog did not return a solution.')
 return % Stop the script because there is nothing to examine
end

Examine the Solution

The solution is feasible, to within the given tolerances.

exitflag

exitflag = 1

infeas1 = max(Aineq*solution - bineq)

infeas1 = 9.0949e-13

infeas2 = norm(Aeq*solution - beq,Inf)

infeas2 = 2.1998e-11

 Factory, Warehouse, Sales Allocation Model: Solver-Based

8-63

Check that the integer components are really integers, or are close enough that it is reasonable to
round them. To understand why these variables might not be exactly integers, see “Some “Integer”
Solutions Are Not Integers” on page 8-53.

diffint = norm(solution(intcon) - round(solution(intcon)),Inf)

diffint = 1.2212e-14

Some integer variables are not exactly integers, but all are very close. So round the integer variables.

solution(intcon) = round(solution(intcon));

Check the feasibility of the rounded solution, and the change in objective function value.

infeas1 = max(Aineq*solution - bineq)

infeas1 = 9.0949e-13

infeas2 = norm(Aeq*solution - beq,Inf)

infeas2 = 2.1885e-11

diffrounding = norm(fval - obj(:)'*solution,Inf)

diffrounding = 7.4506e-09

Rounding the solution did not appreciably change its feasibility.

You can examine the solution most easily by reshaping it back to its original dimensions.

solution1 = solution(1:P*F*W); % The continuous variables
solution2 = solution(intcon); % The integer variables
solution1 = reshape(solution1,P,F,W);
solution2 = reshape(solution2,S,W);

For example, how many sales outlets are associated with each warehouse? Notice that, in this case,
some warehouses have 0 associated outlets, meaning the warehouses are not in use in the optimal
solution.

outlets = sum(solution2,1) % Sum over the sales outlets

outlets = 1×20

 3 0 3 2 2 2 3 2 3 1 1 0 0 3 4 3 2 3 2 1

Plot the connection between each sales outlet and its warehouse.

figure(h);
hold on
for ii = 1:S
 jj = find(solution2(ii,:)); % Index of warehouse associated with ii
 xsales = xloc(F+W+ii); ysales = yloc(F+W+ii);
 xwarehouse = xloc(F+jj); ywarehouse = yloc(F+jj);
 if rand(1) < .5 % Draw y direction first half the time
 plot([xsales,xsales,xwarehouse],[ysales,ywarehouse,ywarehouse],'g--')
 else % Draw x direction first the rest of the time
 plot([xsales,xwarehouse,xwarehouse],[ysales,ysales,ywarehouse],'g--')
 end

8 Linear Programming and Mixed-Integer Linear Programming

8-64

end
hold off

title('Mapping of sales outlets to warehouses')

The black * with no green lines represent the unused warehouses.

See Also

More About
• “Factory, Warehouse, Sales Allocation Model: Problem-Based” on page 8-111

 Factory, Warehouse, Sales Allocation Model: Solver-Based

8-65

Traveling Salesman Problem: Solver-Based
This example shows how to use binary integer programming to solve the classic traveling salesman
problem. This problem involves finding the shortest closed tour (path) through a set of stops (cities).
In this case there are 200 stops, but you can easily change the nStops variable to get a different
problem size. You'll solve the initial problem and see that the solution has subtours. This means the
optimal solution found doesn't give one continuous path through all the points, but instead has
several disconnected loops. You'll then use an iterative process of determining the subtours, adding
constraints, and rerunning the optimization until the subtours are eliminated.

For the problem-based approach, see “Traveling Salesman Problem: Problem-Based” on page 8-119.

Problem Formulation

Formulate the traveling salesman problem for integer linear programming as follows:

• Generate all possible trips, meaning all distinct pairs of stops.
• Calculate the distance for each trip.
• The cost function to minimize is the sum of the trip distances for each trip in the tour.
• The decision variables are binary, and associated with each trip, where each 1 represents a trip

that exists on the tour, and each 0 represents a trip that is not on the tour.
• To ensure that the tour includes every stop, include the linear constraint that each stop is on

exactly two trips. This means one arrival and one departure from the stop.

Generate Stops

Generate random stops inside a crude polygonal representation of the continental U.S.

load('usborder.mat','x','y','xx','yy');
rng(3,'twister') % Makes a plot with stops in Maine & Florida, and is reproducible
nStops = 200; % You can use any number, but the problem size scales as N^2
stopsLon = zeros(nStops,1); % Allocate x-coordinates of nStops
stopsLat = stopsLon; % Allocate y-coordinates
n = 1;
while (n <= nStops)
 xp = rand*1.5;
 yp = rand;
 if inpolygon(xp,yp,x,y) % Test if inside the border
 stopsLon(n) = xp;
 stopsLat(n) = yp;
 n = n+1;
 end
end

Calculate Distances Between Points

Because there are 200 stops, there are 19,900 trips, meaning 19,900 binary variables (# variables =
200 choose 2).

Generate all the trips, meaning all pairs of stops.

idxs = nchoosek(1:nStops,2);

Calculate all the trip distances, assuming that the earth is flat in order to use the Pythagorean rule.

8 Linear Programming and Mixed-Integer Linear Programming

8-66

dist = hypot(stopsLat(idxs(:,1)) - stopsLat(idxs(:,2)), ...
 stopsLon(idxs(:,1)) - stopsLon(idxs(:,2)));
lendist = length(dist);

With this definition of the dist vector, the length of a tour is

dist'*x_tsp

where x_tsp is the binary solution vector. This is the distance of a tour that you try to minimize.

Create Graph and Draw Map

Represent the problem as a graph. Create a graph where the stops are nodes and the trips are edges.

G = graph(idxs(:,1),idxs(:,2));

Display the stops using a graph plot. Plot the nodes without the graph edges.

figure
hGraph = plot(G,'XData',stopsLon,'YData',stopsLat,'LineStyle','none','NodeLabel',{});
hold on
% Draw the outside border
plot(x,y,'r-')
hold off

 Traveling Salesman Problem: Solver-Based

8-67

Constraints

Create the linear constraints that each stop has two associated trips, because there must be a trip to
each stop and a trip departing each stop.

Aeq = spalloc(nStops,length(idxs),nStops*(nStops-1)); % Allocate a sparse matrix
for ii = 1:nStops
 whichIdxs = (idxs == ii); % Find the trips that include stop ii
 whichIdxs = sparse(sum(whichIdxs,2)); % Include trips where ii is at either end
 Aeq(ii,:) = whichIdxs'; % Include in the constraint matrix
end
beq = 2*ones(nStops,1);

Binary Bounds

All decision variables are binary. Now, set the intcon argument to the number of decision variables,
put a lower bound of 0 on each, and an upper bound of 1.

intcon = 1:lendist;
lb = zeros(lendist,1);
ub = ones(lendist,1);

Optimize Using intlinprog

The problem is ready for solution. To suppress iterative output, turn off the default display.

opts = optimoptions('intlinprog','Display','off');
[x_tsp,costopt,exitflag,output] = intlinprog(dist,intcon,[],[],Aeq,beq,lb,ub,opts);

Create a new graph with the solution trips as edges. To do so, round the solution in case some values
are not exactly integers, and convert the resulting values to logical.

x_tsp = logical(round(x_tsp));
Gsol = graph(idxs(x_tsp,1),idxs(x_tsp,2),[],numnodes(G));
% Gsol = graph(idxs(x_tsp,1),idxs(x_tsp,2)); % Also works in most cases

Visualize Solution

hold on
highlight(hGraph,Gsol,'LineStyle','-')
title('Solution with Subtours')

8 Linear Programming and Mixed-Integer Linear Programming

8-68

As can be seen on the map, the solution has several subtours. The constraints specified so far do not
prevent these subtours from happening. In order to prevent any possible subtour from happening,
you would need an incredibly large number of inequality constraints.

Subtour Constraints

Because you can't add all of the subtour constraints, take an iterative approach. Detect the subtours
in the current solution, then add inequality constraints to prevent those particular subtours from
happening. By doing this, you find a suitable tour in a few iterations.

Eliminate subtours with inequality constraints. An example of how this works is if you have five points
in a subtour, then you have five lines connecting those points to create the subtour. Eliminate this
subtour by implementing an inequality constraint to say there must be less than or equal to four lines
between these five points.

Even more, find all lines between these five points, and constrain the solution not to have more than
four of these lines present. This is a correct constraint because if five or more of the lines existed in a
solution, then the solution would have a subtour (a graph with n nodes and n edges always contains a
cycle).

Detect the subtours by identifying the connected components in Gsol, the graph built with the edges
in the current solution. conncomp returns a vector with the number of the subtour to which each
edge belongs.

tourIdxs = conncomp(Gsol);
numtours = max(tourIdxs); % number of subtours
fprintf('# of subtours: %d\n',numtours);

 Traveling Salesman Problem: Solver-Based

8-69

of subtours: 27

Include the linear inequality constraints to eliminate subtours, and repeatedly call the solver, until
just one subtour remains.

A = spalloc(0,lendist,0); % Allocate a sparse linear inequality constraint matrix
b = [];
while numtours > 1 % Repeat until there is just one subtour
 % Add the subtour constraints
 b = [b;zeros(numtours,1)]; % allocate b
 A = [A;spalloc(numtours,lendist,nStops)]; % A guess at how many nonzeros to allocate
 for ii = 1:numtours
 rowIdx = size(A,1) + 1; % Counter for indexing
 subTourIdx = find(tourIdxs == ii); % Extract the current subtour
% The next lines find all of the variables associated with the
% particular subtour, then add an inequality constraint to prohibit
% that subtour and all subtours that use those stops.
 variations = nchoosek(1:length(subTourIdx),2);
 for jj = 1:length(variations)
 whichVar = (sum(idxs==subTourIdx(variations(jj,1)),2)) & ...
 (sum(idxs==subTourIdx(variations(jj,2)),2));
 A(rowIdx,whichVar) = 1;
 end
 b(rowIdx) = length(subTourIdx) - 1; % One less trip than subtour stops
 end

 % Try to optimize again
 [x_tsp,costopt,exitflag,output] = intlinprog(dist,intcon,A,b,Aeq,beq,lb,ub,opts);
 x_tsp = logical(round(x_tsp));
 Gsol = graph(idxs(x_tsp,1),idxs(x_tsp,2),[],numnodes(G));
 % Gsol = graph(idxs(x_tsp,1),idxs(x_tsp,2)); % Also works in most cases

 % Visualize result
 hGraph.LineStyle = 'none'; % Remove the previous highlighted path
 highlight(hGraph,Gsol,'LineStyle','-')
 drawnow

 % How many subtours this time?
 tourIdxs = conncomp(Gsol);
 numtours = max(tourIdxs); % number of subtours
 fprintf('# of subtours: %d\n',numtours)
end

of subtours: 20
of subtours: 7
of subtours: 9
of subtours: 9
of subtours: 3
of subtours: 2
of subtours: 7
of subtours: 2
of subtours: 1

title('Solution with Subtours Eliminated');
hold off

8 Linear Programming and Mixed-Integer Linear Programming

8-70

Solution Quality

The solution represents a feasible tour, because it is a single closed loop. But is it a minimal-cost
tour? One way to find out is to examine the output structure.

disp(output.absolutegap)

 0

The smallness of the absolute gap implies that the solution is either optimal or has a total length that
is close to optimal.

See Also

More About
• “Traveling Salesman Problem: Problem-Based” on page 8-119

 Traveling Salesman Problem: Solver-Based

8-71

Optimal Dispatch of Power Generators: Solver-Based
This example shows how to schedule two gas-fired electric generators optimally, meaning to get the
most revenue minus cost. While the example is not entirely realistic, it does show how to take into
account costs that depend on decision timing.

For the problem-based approach to this problem, see “Optimal Dispatch of Power Generators:
Problem-Based” on page 8-125.

Problem Definition

The electricity market has different prices at different times of day. If you have generators, you can
take advantage of this variable pricing by scheduling your generators to operate when prices are
high. Suppose that there are two generators that you control. Each generator has three power levels
(off, low, and high). Each generator has a specified rate of fuel consumption and power production at
each power level. Of course, fuel consumption is 0 when the generator is off.

You can assign a power level to each generator during each half-hour time interval during a day (24
hours, so 48 intervals). Based on historical records, you can assume that you know the revenue per
megawatt-hour (MWh) that you get in each time interval. The data for this example is from the
Australian Energy Market Operator https://www.nemweb.com.au/REPORTS/CURRENT/ in
mid-2013, and is used under their terms https://www.aemo.com.au/privacy-and-legal-
notices/copyright-permissions.

load dispatchPrice; % Get poolPrice, which is the revenue per MWh
bar(poolPrice,.5)
xlim([.5,48.5])
xlabel('Price per MWh at each period')

8 Linear Programming and Mixed-Integer Linear Programming

8-72

https://www.nemweb.com.au/REPORTS/CURRENT/
https://www.aemo.com.au/privacy-and-legal-notices/copyright-permissions
https://www.aemo.com.au/privacy-and-legal-notices/copyright-permissions

There is a cost to start a generator after it has been off. The other constraint is a maximum fuel usage
for the day. The maximum fuel constraint is because you buy your fuel a day ahead of time, so can use
only what you just bought.

Problem Notation and Parameters

You can formulate the scheduling problem as a binary integer programming problem as follows.
Define indexes i, j, and k, and a binary scheduling vector y as:

• nPeriods = the number of time periods, 48 in this case.
• i = a time period, 1 <= i <= 48.
• j = a generator index, 1 <= j <= 2 for this example.
• y(i,j,k) = 1 when period i, generator j is operating at power level k. Let low power be k =

1, and high power be k = 2. The generator is off when sum_k y(i,j,k) = 0.

You need to determine when a generator starts after being off. Let

• z(i,j) = 1 when generator j is off at period i, but is on at period i + 1. z(i,j) = 0
otherwise. In other words, z(i,j) = 1 when sum_k y(i,j,k) = 0 and sum_k y(i+1,j,k)
= 1.

Obviously, you need a way to set z automatically based on the settings of y. A linear constraint below
handles this setting.

You also need the parameters of the problem for costs, generation levels for each generator,
consumption levels of the generators, and fuel available.

 Optimal Dispatch of Power Generators: Solver-Based

8-73

• poolPrice(i) -- Revenue in dollars per MWh in interval i.
• gen(j,k) -- MW generated by generator j at power level k.
• fuel(j,k) -- Fuel used by generator j at power level k.
• totalfuel -- Fuel available in one day.
• startCost -- Cost in dollars to start a generator after it has been off.
• fuelPrice -- Cost for a unit of fuel.

You got poolPrice when you executed load dispatchPrice;. Set the other parameters as
follows.

fuelPrice = 3;
totalfuel = 3.95e4;
nPeriods = length(poolPrice); % 48 periods
nGens = 2; % Two generators
gen = [61,152;50,150]; % Generator 1 low = 61 MW, high = 152 MW
fuel = [427,806;325,765]; % Fuel consumption for generator 2 is low = 325, high = 765
startCost = 1e4; % Cost to start a generator after it has been off

Generator Efficiency

Examine the efficiency of the two generators at their two operating points.

efficiency = gen./fuel; % Calculate electricity per unit fuel use
rr = efficiency'; % for plotting
h = bar(rr);
h(1).FaceColor = 'g';
h(2).FaceColor = 'c';
legend(h,'Generator 1','Generator 2','Location','NorthEastOutside')
ax = gca;
ax.XTick = [1,2];
ax.XTickLabel = {'Low','High'};
ylim([.1,.2])
ylabel('Efficiency')

8 Linear Programming and Mixed-Integer Linear Programming

8-74

Notice that generator 2 is a bit more efficient than generator 1 at its corresponding operating points
(low or high), but generator 1 at its high operating point is more efficient than generator 2 at its low
operating point.

Variables for Solution

To set up the problem, you need to encode all the problem data and constraints in the form that the
intlinprog solver requires. You have variables y(i,j,k) that represent the solution of the
problem, and z(i,j) auxiliary variables for charging to turn on a generator. y is an nPeriods-by-
nGens-by-2 array, and z is an nPeriods-by-nGens array.

To put these variables in one long vector, define the variable of unknowns x:

x = [y(:);z(:)];

For bounds and linear constraints, it is easiest to use the natural array formulation of y and z, then
convert the constraints to the total decision variable, the vector x.

Bounds

The solution vector x consists of binary variables. Set up the bounds lb and ub.

lby = zeros(nPeriods,nGens,2); % 0 for the y variables
lbz = zeros(nPeriods,nGens); % 0 for the z variables
lb = [lby(:);lbz(:)]; % Column vector lower bound
ub = ones(size(lb)); % Binary variables have lower bound 0, upper bound 1

 Optimal Dispatch of Power Generators: Solver-Based

8-75

Linear Constraints

For linear constraints A*x <= b, the number of columns in the A matrix must be the same as the
length of x, which is the same as the length of lb. To create rows of A of the appropriate size, create
zero matrices of the sizes of the y and z matrices.

cleary = zeros(nPeriods,nGens,2);
clearz = zeros(nPeriods,nGens);

To ensure that the power level has no more than one component equal to 1, set a linear inequality
constraint:

x(i,j,1) + x(i,j,2) <= 1

A = spalloc(nPeriods*nGens,length(lb),2*nPeriods*nGens); % nPeriods*nGens inequalities
counter = 1;
for ii = 1:nPeriods
 for jj = 1:nGens
 temp = cleary;
 temp(ii,jj,:) = 1;
 addrow = [temp(:);clearz(:)]';
 A(counter,:) = sparse(addrow);
 counter = counter + 1;
 end
end
b = ones(nPeriods*nGens,1); % A*x <= b means no more than one of x(i,j,1) and x(i,j,2) are equal to 1

The running cost per period is the cost for fuel for that period. For generator j operating at level k,
the cost is fuelPrice * fuel(j,k).

To ensure that the generators do not use too much fuel, create an inequality constraint on the sum of
fuel usage.

yFuel = lby; % Initialize fuel usage array
yFuel(:,1,1) = fuel(1,1); % Fuel use of generator 1 in low setting
yFuel(:,1,2) = fuel(1,2); % Fuel use of generator 1 in high setting
yFuel(:,2,1) = fuel(2,1); % Fuel use of generator 2 in low setting
yFuel(:,2,2) = fuel(2,2); % Fuel use of generator 2 in high setting

addrow = [yFuel(:);clearz(:)]';
A = [A;sparse(addrow)];
b = [b;totalfuel]; % A*x <= b means the total fuel usage is <= totalfuel

Set the Generator Startup Indicator Variables

How can you get the solver to set the z variables automatically to match the active/off periods that
the y variables represent? Recall that the condition to satisfy is z(i,j) = 1 exactly when

sum_k y(i,j,k) = 0 and sum_k y(i+1,j,k) = 1.

Notice that

sum_k (- y(i,j,k) + y(i+1,j,k)) > 0 exactly when you want z(i,j) = 1.

Therefore, include the linear inequality constraints

sum_k (- y(i,j,k) + y(i+1,j,k)) - z(i,j) < = 0

8 Linear Programming and Mixed-Integer Linear Programming

8-76

in the problem formulation, and include the z variables in the objective function cost. By including
the z variables in the objective function, the solver attempts to lower the values of the z variables,
meaning it tries to set them all equal to 0. But for those intervals when a generator turns on, the
linear inequality forces the z(i,j) to equal 1.

Add extra rows to the linear inequality constraint matrix A to represent these new inequalities. Wrap
around the time so that interval 1 logically follows interval 48.

tempA = spalloc(nPeriods*nGens,length(lb),2*nPeriods*nGens);
counter = 1;
for ii = 1:nPeriods
 for jj = 1:nGens
 temp = cleary;
 tempy = clearz;
 temp(ii,jj,1) = -1;
 temp(ii,jj,2) = -1;
 if ii < nPeriods % Intervals 1 to 47
 temp(ii+1,jj,1) = 1;
 temp(ii+1,jj,2) = 1;
 else % Interval 1 follows interval 48
 temp(1,jj,1) = 1;
 temp(1,jj,2) = 1;
 end
 tempy(ii,jj) = -1;
 temp = [temp(:);tempy(:)]'; % Row vector for inclusion in tempA matrix
 tempA(counter,:) = sparse(temp);
 counter = counter + 1;
 end
end
A = [A;tempA];
b = [b;zeros(nPeriods*nGens,1)]; % A*x <= b sets z(i,j) = 1 at generator startup

Sparsity of Constraints

If you have a large problem, using sparse constraint matrices saves memory, and can save
computational time as well. The constraint matrix A is quite sparse:

filledfraction = nnz(A)/numel(A)

filledfraction = 0.0155

intlinprog accepts sparse linear constraint matrices A and Aeq, but requires their corresponding
vector constraints b and beq to be full.

Define Objective

The objective function includes fuel costs for running the generators, revenue from running the
generators, and costs for starting the generators.

generatorlevel = lby; % Generation in MW, start with 0s
generatorlevel(:,1,1) = gen(1,1); % Fill in the levels
generatorlevel(:,1,2) = gen(1,2);
generatorlevel(:,2,1) = gen(2,1);
generatorlevel(:,2,2) = gen(2,2);

Incoming revenue = x.*generatorlevel.*poolPrice

revenue = generatorlevel; % Allocate revenue array
for ii = 1:nPeriods

 Optimal Dispatch of Power Generators: Solver-Based

8-77

 revenue(ii,:,:) = poolPrice(ii)*generatorlevel(ii,:,:);
end

Total fuel cost = y.*yFuel*fuelPrice

fuelCost = yFuel*fuelPrice;

Startup cost = z.*ones(size(z))*startCost

starts = (clearz + 1)*startCost;
starts = starts(:); % Generator startup cost vector

The vector x = [y(:);z(:)]. Write the total profit in terms of x:

profit = Incoming revenue - Total fuel cost - Startup cost

f = [revenue(:) - fuelCost(:);-starts]; % f is the objective function vector

Solve the Problem

To save space, suppress iterative display.

options = optimoptions('intlinprog','Display','final');
[x,fval,eflag,output] = intlinprog(-f,1:length(f),A,b,[],[],lb,ub,options);

Optimal solution found.

Intlinprog stopped because the objective value is within a gap tolerance of the
optimal value, options.RelativeGapTolerance = 0.0001 (the default value). The
intcon variables are integer within tolerance, options.IntegerTolerance = 1e-05
(the default value).

Examine the Solution

The easiest way to examine the solution is dividing the solution vector x into its two components, y
and z.

ysolution = x(1:nPeriods*nGens*2);
zsolution = x(nPeriods*nGens*2+1:end);
ysolution = reshape(ysolution,[nPeriods,nGens,2]);
zsolution = reshape(zsolution,[nPeriods,nGens]);

Plot the solution as a function of time.

subplot(3,1,1)
bar(ysolution(:,1,1)*gen(1,1)+ysolution(:,1,2)*gen(1,2),.5,'g')
xlim([.5,48.5])
ylabel('MWh')
title('Generator 1 optimal schedule','FontWeight','bold')
subplot(3,1,2)
bar(ysolution(:,2,1)*gen(2,1)+ysolution(:,2,2)*gen(2,2),.5,'c')
title('Generator 2 optimal schedule','FontWeight','bold')
xlim([.5,48.5])
ylabel('MWh')
subplot(3,1,3)
bar(poolPrice,.5)
xlim([.5,48.5])
title('Energy price','FontWeight','bold')

8 Linear Programming and Mixed-Integer Linear Programming

8-78

xlabel('Period')
ylabel('$ / MWh')

Generator 2 runs longer than generator 1, which you would expect because it is more efficient.
Generator 2 runs at its high power level whenever it is on. Generator 1 runs mainly at its high power
level, but dips down to low power for one time unit. Each generator runs for one contiguous set of
periods daily, so incurs only one startup cost.

Check that the z variable is 1 for the periods when the generators start.

starttimes = find(round(zsolution) == 1); % Use round for noninteger results
[theperiod,thegenerator] = ind2sub(size(zsolution),starttimes)

theperiod = 2×1

 23
 16

thegenerator = 2×1

 1
 2

The periods when the generators start match the plots.

 Optimal Dispatch of Power Generators: Solver-Based

8-79

Compare to Lower Penalty for Startup

If you choose a small value of startCost, the solution involves multiple generation periods.

startCost = 500; % Choose a lower penalty for starting the generators
starts = (clearz + 1)*startCost;
starts = starts(:); % Start cost vector
fnew = [revenue(:) - fuelCost(:);-starts]; % New objective function
[xnew,fvalnew,eflagnew,outputnew] = ...
 intlinprog(-fnew,1:length(fnew),A,b,[],[],lb,ub,options);

Optimal solution found.

Intlinprog stopped because the objective value is within a gap tolerance of the
optimal value, options.RelativeGapTolerance = 0.0001 (the default value). The
intcon variables are integer within tolerance, options.IntegerTolerance = 1e-05
(the default value).

ysolutionnew = xnew(1:nPeriods*nGens*2);
zsolutionnew = xnew(nPeriods*nGens*2+1:end);
ysolutionnew = reshape(ysolutionnew,[nPeriods,nGens,2]);
zsolutionnew = reshape(zsolutionnew,[nPeriods,nGens]);

subplot(3,1,1)
bar(ysolutionnew(:,1,1)*gen(1,1)+ysolutionnew(:,1,2)*gen(1,2),.5,'g')
xlim([.5,48.5])
ylabel('MWh')
title('Generator 1 optimal schedule','FontWeight','bold')
subplot(3,1,2)
bar(ysolutionnew(:,2,1)*gen(2,1)+ysolutionnew(:,2,2)*gen(2,2),.5,'c')
title('Generator 2 optimal schedule','FontWeight','bold')
xlim([.5,48.5])
ylabel('MWh')
subplot(3,1,3)
bar(poolPrice,.5)
xlim([.5,48.5])
title('Energy price','FontWeight','bold')
xlabel('Period')
ylabel('$ / MWh')

8 Linear Programming and Mixed-Integer Linear Programming

8-80

starttimes = find(round(zsolutionnew) == 1); % Use round for noninteger results
[theperiod,thegenerator] = ind2sub(size(zsolution),starttimes)

theperiod = 3×1

 22
 16
 45

thegenerator = 3×1

 1
 2
 2

See Also

More About
• “Optimal Dispatch of Power Generators: Problem-Based” on page 8-125
• “Integer and Logical Modeling” on page 8-171

 Optimal Dispatch of Power Generators: Solver-Based

8-81

Mixed-Integer Quadratic Programming Portfolio Optimization:
Solver-Based

This example shows how to solve a Mixed-Integer Quadratic Programming (MIQP) portfolio
optimization problem using the intlinprog Mixed-Integer Linear Programming (MILP) solver. The
idea is to iteratively solve a sequence of MILP problems that locally approximate the MIQP problem.
For the problem-based approach, see “Mixed-Integer Quadratic Programming Portfolio Optimization:
Problem-Based” on page 8-139.

Problem Outline

As Markowitz showed ("Portfolio Selection," J. Finance Volume 7, Issue 1, pp. 77-91, March 1952),
you can express many portfolio optimization problems as quadratic programming problems. Suppose
that you have a set of N assets and want to choose a portfolio, with x(i) being the fraction of your
investment that is in asset i. If you know the vector r of mean returns of each asset, and the
covariance matrix Q of the returns, then for a given level of risk-aversion λ you maximize the risk-
adjusted expected return:

max
x

(rTx− λxTQx) .

The quadprog solver addresses this quadratic programming problem. However, in addition to the
plain quadratic programming problem, you might want to restrict a portfolio in a variety of ways,
such as:

• Having no more than M assets in the portfolio, where M <= N.
• Having at least m assets in the portfolio, where 0 < m <= M.
• Having semicontinuous constraints, meaning either x(i) = 0, or fmin ≤ x(i) ≤ fmax for some fixed

fractions fmin > 0 and fmax ≥ fmin.

You cannot include these constraints in quadprog. The difficulty is the discrete nature of the
constraints. Furthermore, while the mixed-integer linear programming solver intlinprog does
handle discrete constraints, it does not address quadratic objective functions.

This example constructs a sequence of MILP problems that satisfy the constraints, and that
increasingly approximate the quadratic objective function. While this technique works for this
example, it might not apply to different problem or constraint types.

Begin by modeling the constraints.

Modeling Discrete Constraints

x is the vector of asset allocation fractions, with 0 ≤ x(i) ≤ 1 for each i. To model the number of assets
in the portfolio, you need indicator variables v such that v(i) = 0 when x(i) = 0, and v(i) = 1 when
x(i) > 0. To get variables that satisfy this restriction, set the v vector to be a binary variable, and
impose the linear constraints

v(i)fmin ≤ x(i) ≤ v(i)fmax .

These inequalities both enforce that x(i) and v(i) are zero at exactly the same time, and they also
enforce that fmin ≤ x(i) ≤ fmax whenever x(i) > 0.

Also, to enforce the constraints on the number of assets in the portfolio, impose the linear constraints

8 Linear Programming and Mixed-Integer Linear Programming

8-82

m ≤ ∑
i

v(i) ≤ M .

Objective and Successive Linear Approximations

As first formulated, you try to maximize the objective function. However, all Optimization Toolbox™
solvers minimize. So formulate the problem as minimizing the negative of the objective:

min
x

λxTQx− rTx .

This objective function is nonlinear. The intlinprog MILP solver requires a linear objective
function. There is a standard technique to reformulate this problem into one with linear objective and
nonlinear constraints. Introduce a slack variable z to represent the quadratic term.

min
x, z

λz − rTx such that xTQx− z ≤ 0, z ≥ 0 .

As you iteratively solve MILP approximations, you include new linear constraints, each of which
approximates the nonlinear constraint locally near the current point. In particular, for x = x0 + δ
where x0 is a constant vector and δ is a variable vector, the first-order Taylor approximation to the
constraint is

xTQx− z = x0
TQx0 + 2x0

TQδ− z + O(|δ |2) .

Replacing δ by x− x0 gives

xTQx− z = − x0
TQx0 + 2x0

TQx− z + O(|x− x0 |2) .

For each intermediate solution xk you introduce a new linear constraint in x and z as the linear part of
the expression above:

−xk
TQxk + 2xk

TQx− z ≤ 0 .

This has the form Ax ≤ b, where A = 2xk
TQ, there is a −1 multiplier for the z term, and b = xk

TQxk.

This method of adding new linear constraints to the problem is called a cutting plane method. For
details, see J. E. Kelley, Jr. "The Cutting-Plane Method for Solving Convex Programs." J. Soc. Indust.
Appl. Math. Vol. 8, No. 4, pp. 703-712, December, 1960.

MATLAB® Problem Formulation

To express problems for the intlinprog solver, you need to do the following:

• Decide what your variables represent
• Express lower and upper bounds in terms of these variables
• Give linear equality and inequality matrices

Have the first N variables represent the x vector, the next N variables represent the binary v vector,
and the final variable represent the z slack variable. There are 2N + 1 variables in the problem.

 Mixed-Integer Quadratic Programming Portfolio Optimization: Solver-Based

8-83

Load the data for the problem. This data has 225 expected returns in the vector r and the covariance
of the returns in the 225-by-225 matrix Q. The data is the same as in the Using Quadratic
Programming on Portfolio Optimization Problems example.

load port5
r = mean_return;
Q = Correlation .* (stdDev_return * stdDev_return');

Set the number of assets as N.

N = length(r);

Set indexes for the variables

xvars = 1:N;
vvars = N+1:2*N;
zvar = 2*N+1;

The lower bounds of all the 2N+1 variables in the problem are zero. The upper bounds of the first 2N
variables are one, and the last variable has no upper bound.

lb = zeros(2*N+1,1);
ub = ones(2*N+1,1);
ub(zvar) = Inf;

Set the number of assets in the solution to be between 100 and 150. Incorporate this constraint into
the problem in the form, namely

m ≤ ∑
i

v(i) ≤ M,

by writing two linear constraints of the form Ax ≤ b:

∑
i

v(i) ≤ M

∑
i
− v(i) ≤ −m .

M = 150;
m = 100;
A = zeros(1,2*N+1); % Allocate A matrix
A(vvars) = 1; % A*x represents the sum of the v(i)
A = [A;-A];
b = zeros(2,1); % Allocate b vector
b(1) = M;
b(2) = -m;

Include semicontinuous constraints. Take the minimal nonzero fraction of assets to be 0.001 for each
asset type, and the maximal fraction to be 0.05.

fmin = 0.001;
fmax = 0.05;

Include the inequalities x(i) ≤ fmax(i) * v(i) and fmin(i) * v(i) ≤ x(i) as linear inequalities.

Atemp = eye(N);
Amax = horzcat(Atemp,-Atemp*fmax,zeros(N,1));

8 Linear Programming and Mixed-Integer Linear Programming

8-84

A = [A;Amax];
b = [b;zeros(N,1)];
Amin = horzcat(-Atemp,Atemp*fmin,zeros(N,1));
A = [A;Amin];
b = [b;zeros(N,1)];

Include the constraint that the portfolio is 100% invested, meaning ∑xi = 1.

Aeq = zeros(1,2*N+1); % Allocate Aeq matrix
Aeq(xvars) = 1;
beq = 1;

Set the risk-aversion coefficient λ to 100.

lambda = 100;

Define the objective function λz − rTx as a vector. Include zeros for the multipliers of the v variables.

f = [-r;zeros(N,1);lambda];

Solve the Problem

To solve the problem iteratively, begin by solving the problem with the current constraints, which do
not yet reflect any linearization. The integer constraints are in the vvars vector.

options = optimoptions(@intlinprog,'Display','off'); % Suppress iterative display
[xLinInt,fval,exitFlagInt,output] = intlinprog(f,vvars,A,b,Aeq,beq,lb,ub,options);

Prepare a stopping condition for the iterations: stop when the slack variable z is within 0.01% of the
true quadratic value. Set tighter tolerances than default to help ensure that the problem remains
strictly feasible as constraints accumulate.

thediff = 1e-4;
iter = 1; % iteration counter
assets = xLinInt(xvars); % the x variables
truequadratic = assets'*Q*assets;
zslack = xLinInt(zvar); % slack variable value
options = optimoptions(options,'LPOptimalityTolerance',1e-10,'RelativeGapTolerance',1e-8,...
 'ConstraintTolerance',1e-9,'IntegerTolerance',1e-6);

Keep a history of the computed true quadratic and slack variables for plotting.

history = [truequadratic,zslack];

Compute the quadratic and slack values. If they differ, then add another linear constraint and solve
again.

In toolbox syntax, each new linear constraint Ax ≤ b comes from the linear approximation

−xk
TQxk + 2xk

TQx− z ≤ 0 .

You see that the new row of A = 2xk
TQ and the new element in b = xk

TQxk, with the z term represented
by a -1 coefficient in A.

After you find a new solution, use a linear constraint halfway between the old and new solutions. This
heuristic way of including linear constraints can be faster than simply taking the new solution. To use

 Mixed-Integer Quadratic Programming Portfolio Optimization: Solver-Based

8-85

the solution instead of the halfway heuristic, comment the "Midway" line below, and uncomment the
following one.

while abs((zslack - truequadratic)/truequadratic) > thediff % relative error
 newArow = horzcat(2*assets'*Q,zeros(1,N),-1); % Linearized constraint
 rhs = assets'*Q*assets; % right hand side of the linearized constraint
 A = [A;newArow];
 b = [b;rhs];
 % Solve the problem with the new constraints
 [xLinInt,fval,exitFlagInt,output] = intlinprog(f,vvars,A,b,Aeq,beq,lb,ub,options);
 assets = (assets+xLinInt(xvars))/2; % Midway from the previous to the current
% assets = xLinInt(xvars); % Use the previous line or this one
 truequadratic = xLinInt(xvars)'*Q* xLinInt(xvars);
 zslack = xLinInt(zvar);
 history = [history;truequadratic,zslack];
 iter = iter + 1;
end

Examine the Solution and Convergence Rate

Plot the history of the slack variable and the quadratic part of the objective function to see how they
converged.

plot(history)
legend('Quadratic','Slack')
xlabel('Iteration number')
title('Quadratic and linear approximation (slack)')

8 Linear Programming and Mixed-Integer Linear Programming

8-86

What is the quality of the MILP solution? The output structure contains that information. Examine
the absolute gap between the internally-calculated bounds on the objective at the solution.

disp(output.absolutegap)

 0

The absolute gap is zero, indicating that the MILP solution is accurate.

Plot the optimal allocation. Use xLinInt(xvars), not assets, because assets might not satisfy
the constraints when using the midway update.

bar(xLinInt(xvars))
grid on
xlabel('Asset index')
ylabel('Proportion of investment')
title('Optimal Asset Allocation')

You can easily see that all nonzero asset allocations are between the semicontinuous bounds
fmin = 0 . 001 and fmax = 0 . 05.

How many nonzero assets are there? The constraint is that there are between 100 and 150 nonzero
assets.

sum(xLinInt(vvars))

ans = 100

 Mixed-Integer Quadratic Programming Portfolio Optimization: Solver-Based

8-87

What is the expected return for this allocation, and the value of the risk-adjusted return?

fprintf('The expected return is %g, and the risk-adjusted return is %g.\n',...
 r'*xLinInt(xvars),-fval)

The expected return is 0.000595107, and the risk-adjusted return is -0.0360382.

More elaborate analyses are possible by using features specifically designed for portfolio optimization
in Financial Toolbox™. For an example that shows how to use the Portfolio class to directly handle
semicontinuous and cardinality constraints, see “Portfolio Optimization with Semicontinuous and
Cardinality Constraints” (Financial Toolbox).

See Also

More About
• “Mixed-Integer Quadratic Programming Portfolio Optimization: Problem-Based” on page 8-139
• “Integer and Logical Modeling” on page 8-171

8 Linear Programming and Mixed-Integer Linear Programming

8-88

Solve Sudoku Puzzles Via Integer Programming: Solver-Based
This example shows how to solve a Sudoku puzzle using binary integer programming. For the
problem-based approach, see “Solve Sudoku Puzzles Via Integer Programming: Problem-Based” on
page 8-151.

You probably have seen Sudoku puzzles. A puzzle is to fill a 9-by-9 grid with integers from 1 through
9 so that each integer appears only once in each row, column, and major 3-by-3 square. The grid is
partially populated with clues, and your task is to fill in the rest of the grid.

Initial Puzzle

Here is a data matrix B of clues. The first row, B(1,2,2), means row 1, column 2 has a clue 2. The
second row, B(1,5,3), means row 1, column 5 has a clue 3. Here is the entire matrix B.

B = [1,2,2;
 1,5,3;
 1,8,4;
 2,1,6;
 2,9,3;
 3,3,4;
 3,7,5;
 4,4,8;
 4,6,6;
 5,1,8;
 5,5,1;
 5,9,6;
 6,4,7;
 6,6,5;
 7,3,7;
 7,7,6;
 8,1,4;
 8,9,8;
 9,2,3;
 9,5,4;
 9,8,2];

drawSudoku(B) % For the listing of this program, see the end of this example.

 Solve Sudoku Puzzles Via Integer Programming: Solver-Based

8-89

This puzzle, and an alternative MATLAB® solution technique, was featured in Cleve's Corner in 2009.

There are many approaches to solving Sudoku puzzles manually, as well as many programmatic
approaches. This example shows a straightforward approach using binary integer programming.

This approach is particularly simple because you do not give a solution algorithm. Just express the
rules of Sudoku, express the clues as constraints on the solution, and then intlinprog produces the
solution.

Binary Integer Programming Approach

The key idea is to transform a puzzle from a square 9-by-9 grid to a cubic 9-by-9-by-9 array of binary
values (0 or 1). Think of the cubic array as being 9 square grids stacked on top of each other. The top
grid, a square layer of the array, has a 1 wherever the solution or clue has a 1. The second layer has a
1 wherever the solution or clue has a 2. The ninth layer has a 1 wherever the solution or clue has a 9.

This formulation is precisely suited for binary integer programming.

The objective function is not needed here, and might as well be 0. The problem is really just to find a
feasible solution, meaning one that satisfies all the constraints. However, for tie breaking in the
internals of the integer programming solver, giving increased solution speed, use a nonconstant
objective function.

8 Linear Programming and Mixed-Integer Linear Programming

8-90

https://www.mathworks.com/company/newsletters/articles/solving-sudoku-with-matlab.html

Express the Rules for Sudoku as Constraints

Suppose a solution x is represented in a 9-by-9-by-9 binary array. What properties does x have? First,
each square in the 2-D grid (i,j) has exactly one value, so there is exactly one nonzero element among
the 3-D array entries x(i, j, 1), . . . , x(i, j, 9). In other words, for every i and j,

∑
k = 1

9
x(i, j, k) = 1 .

Similarly, in each row i of the 2-D grid, there is exactly one value out of each of the digits from 1 to 9.
In other words, for each i and k,

∑
j = 1

9
x(i, j, k) = 1 .

And each column j in the 2-D grid has the same property: for each j and k,

∑
i = 1

9
x(i, j, k) = 1 .

The major 3-by-3 grids have a similar constraint. For the grid elements 1 ≤ i ≤ 3 and 1 ≤ j ≤ 3, and
for each 1 ≤ k ≤ 9,

∑
i = 1

3
∑

j = 1

3
x(i, j, k) = 1 .

To represent all nine major grids, just add 3 or 6 to each i and j index:

∑
i = 1

3
∑

j = 1

3
x(i + U, j + V, k) = 1, where U, V ϵ {0, 3, 6} .

Express Clues

Each initial value (clue) can be expressed as a constraint. Suppose that the (i, j) clue is m for some

1 ≤ m ≤ 9. Then x(i, j, m) = 1. The constraint ∑
k = 1

9
x(i, j, k) = 1 ensures that all other x(i, j, k) = 0 for

k ≠ m.

Write the Rules for Sudoku

Although the Sudoku rules are conveniently expressed in terms of a 9-by-9-by-9 solution array x,
linear constraints are given in terms of a vector solution matrix x(:). Therefore, when you write a
Sudoku program, you have to use constraint matrices derived from 9-by-9-by-9 initial arrays.

Here is one approach to set up Sudoku rules, and also include the clues as constraints. The
sudokuEngine file comes with your software.

type sudokuEngine

function [S,eflag] = sudokuEngine(B)
% This function sets up the rules for Sudoku. It reads in the puzzle
% expressed in matrix B, calls intlinprog to solve the puzzle, and returns

 Solve Sudoku Puzzles Via Integer Programming: Solver-Based

8-91

% the solution in matrix S.
%
% The matrix B should have 3 columns and at least 17 rows (because a Sudoku
% puzzle needs at least 17 entries to be uniquely solvable). The first two
% elements in each row are the i,j coordinates of a clue, and the third
% element is the value of the clue, an integer from 1 to 9. If B is a
% 9-by-9 matrix, the function first converts it to 3-column form.

% Copyright 2014 The MathWorks, Inc.

if isequal(size(B),[9,9]) % 9-by-9 clues
 % Convert to 81-by-3
 [SM,SN] = meshgrid(1:9); % make i,j entries
 B = [SN(:),SM(:),B(:)]; % i,j,k rows
 % Now delete zero rows
 [rrem,~] = find(B(:,3) == 0);
 B(rrem,:) = [];
end

if size(B,2) ~= 3 || length(size(B)) > 2
 error('The input matrix must be N-by-3 or 9-by-9')
end

if sum([any(B ~= round(B)),any(B < 1),any(B > 9)]) % enforces entries 1-9
 error('Entries must be integers from 1 to 9')
end

%% The rules of Sudoku:
N = 9^3; % number of independent variables in x, a 9-by-9-by-9 array
M = 4*9^2; % number of constraints, see the construction of Aeq
Aeq = zeros(M,N); % allocate equality constraint matrix Aeq*x = beq
beq = ones(M,1); % allocate constant vector beq
f = (1:N)'; % the objective can be anything, but having nonconstant f can speed the solver
lb = zeros(9,9,9); % an initial zero array
ub = lb+1; % upper bound array to give binary variables

counter = 1;
for j = 1:9 % one in each row
 for k = 1:9
 Astuff = lb; % clear Astuff
 Astuff(1:end,j,k) = 1; % one row in Aeq*x = beq
 Aeq(counter,:) = Astuff(:)'; % put Astuff in a row of Aeq
 counter = counter + 1;
 end
end

for i = 1:9 % one in each column
 for k = 1:9
 Astuff = lb;
 Astuff(i,1:end,k) = 1;
 Aeq(counter,:) = Astuff(:)';
 counter = counter + 1;
 end
end

for U = 0:3:6 % one in each square
 for V = 0:3:6
 for k = 1:9

8 Linear Programming and Mixed-Integer Linear Programming

8-92

 Astuff = lb;
 Astuff(U+(1:3),V+(1:3),k) = 1;
 Aeq(counter,:) = Astuff(:)';
 counter = counter + 1;
 end
 end
end

for i = 1:9 % one in each depth
 for j = 1:9
 Astuff = lb;
 Astuff(i,j,1:end) = 1;
 Aeq(counter,:) = Astuff(:)';
 counter = counter + 1;
 end
end

%% Put the particular puzzle in the constraints
% Include the initial clues in the |lb| array by setting corresponding
% entries to 1. This forces the solution to have |x(i,j,k) = 1|.

for i = 1:size(B,1)
 lb(B(i,1),B(i,2),B(i,3)) = 1;
end

%% Solve the Puzzle
% The Sudoku problem is complete: the rules are represented in the |Aeq|
% and |beq| matrices, and the clues are ones in the |lb| array. Solve the
% problem by calling |intlinprog|. Ensure that the integer program has all
% binary variables by setting the intcon argument to |1:N|, with lower and
% upper bounds of 0 and 1.

intcon = 1:N;

[x,~,eflag] = intlinprog(f,intcon,[],[],Aeq,beq,lb,ub);

%% Convert the Solution to a Usable Form
% To go from the solution x to a Sudoku grid, simply add up the numbers at
% each (i,j) entry, multiplied by the depth at which the numbers appear:

if eflag > 0 % good solution
 x = reshape(x,9,9,9); % change back to a 9-by-9-by-9 array
 x = round(x); % clean up non-integer solutions
 y = ones(size(x));
 for k = 2:9
 y(:,:,k) = k; % multiplier for each depth k
 end

 S = x.*y; % multiply each entry by its depth
 S = sum(S,3); % S is 9-by-9 and holds the solved puzzle
else
 S = [];
end

Call the Sudoku Solver

S = sudokuEngine(B); % Solves the puzzle pictured at the start

 Solve Sudoku Puzzles Via Integer Programming: Solver-Based

8-93

LP: Optimal objective value is 29565.000000.

Optimal solution found.

Intlinprog stopped at the root node because the objective value is within a gap
tolerance of the optimal value, options.AbsoluteGapTolerance = 0 (the default
value). The intcon variables are integer within tolerance,
options.IntegerTolerance = 1e-05 (the default value).

drawSudoku(S)

You can easily check that the solution is correct.

Function to Draw the Sudoku Puzzle

type drawSudoku

function drawSudoku(B)
% Function for drawing the Sudoku board

% Copyright 2014 The MathWorks, Inc.

figure;hold on;axis off;axis equal % prepare to draw
rectangle('Position',[0 0 9 9],'LineWidth',3,'Clipping','off') % outside border
rectangle('Position',[3,0,3,9],'LineWidth',2) % heavy vertical lines
rectangle('Position',[0,3,9,3],'LineWidth',2) % heavy horizontal lines

8 Linear Programming and Mixed-Integer Linear Programming

8-94

rectangle('Position',[0,1,9,1],'LineWidth',1) % minor horizontal lines
rectangle('Position',[0,4,9,1],'LineWidth',1)
rectangle('Position',[0,7,9,1],'LineWidth',1)
rectangle('Position',[1,0,1,9],'LineWidth',1) % minor vertical lines
rectangle('Position',[4,0,1,9],'LineWidth',1)
rectangle('Position',[7,0,1,9],'LineWidth',1)

% Fill in the clues
%
% The rows of B are of the form (i,j,k) where i is the row counting from
% the top, j is the column, and k is the clue. To place the entries in the
% boxes, j is the horizontal distance, 10-i is the vertical distance, and
% we subtract 0.5 to center the clue in the box.
%
% If B is a 9-by-9 matrix, convert it to 3 columns first

if size(B,2) == 9 % 9 columns
 [SM,SN] = meshgrid(1:9); % make i,j entries
 B = [SN(:),SM(:),B(:)]; % i,j,k rows
end

for ii = 1:size(B,1)
 text(B(ii,2)-0.5,9.5-B(ii,1),num2str(B(ii,3)))
end

hold off

end

See Also

More About
• “Solve Sudoku Puzzles Via Integer Programming: Problem-Based” on page 8-151

 Solve Sudoku Puzzles Via Integer Programming: Solver-Based

8-95

Office Assignments by Binary Integer Programming: Solver-
Based

This example shows how to solve an assignment problem by binary integer programming using the
intlinprog function. For the problem-based approach to this problem, see “Office Assignments by
Binary Integer Programming: Problem-Based” on page 8-134.

Office Assignment Problem

You want to assign six people, Marcelo, Rakesh, Peter, Tom, Marjorie, and Mary Ann, to seven offices.
Each office can have no more than one person, and each person gets exactly one office. So there will
be one empty office. People can give preferences for the offices, and their preferences are considered
based on their seniority. The longer they have been at the MathWorks, the higher the seniority. Some
offices have windows, some do not, and one window is smaller than others. Additionally, Peter and
Tom often work together, so should be in adjacent offices. Marcelo and Rakesh often work together,
and should be in adjacent offices.

Office Layout

Offices 1, 2, 3, and 4 are inside offices (no windows). Offices 5, 6, and 7 have windows, but the
window in office 5 is smaller than the other two. Here is how the offices are arranged.

name = {'Office 1','Office 2','Office 3','Office 4','Office 5','Office 6','Office 7'};
printofficeassign(name)

8 Linear Programming and Mixed-Integer Linear Programming

8-96

Problem Formulation

You need to formulate the problem mathematically. First, choose what each element of your solution
variable x represents in the problem. Since this is a binary integer problem, a good choice is that
each element represents a person assigned to an office. If the person is assigned to the office, the
variable has value 1. If the person is not assigned to the office, the variable has value 0. Number
people as follows:

1 Mary Ann
2 Marjorie
3 Tom
4 Peter
5 Marcelo
6 Rakesh

x is a vector. The elements x(1) to x(7) correspond to Mary Ann being assigned to office 1, office 2,
etc., to office 7. The next seven elements correspond to Marjorie being assigned to the seven offices,
etc. In all, the x vector has 42 elements, since six people are assigned to seven offices.

Seniority

You want to weight the preferences based on seniority so that the longer you have been at
MathWorks, the more your preferences count. The seniority is as follows: Mary Ann 9 years, Marjorie
10 years, Tom 5 years, Peter 3 years, Marcelo 1.5 years, and Rakesh 2 years. Create a normalized
weight vector based on seniority.

seniority = [9 10 5 3 1.5 2];
weightvector = seniority/sum(seniority);

People's Office Preferences

Set up a preference matrix where the rows correspond to offices and the columns correspond to
people. Ask each person to give values for each office so that the sum of all their choices, i.e., their
column, sums to 100. A higher number means the person prefers the office. Each person's
preferences are listed in a column vector.

MaryAnn = [0; 0; 0; 0; 10; 40; 50];
Marjorie = [0; 0; 0; 0; 20; 40; 40];
Tom = [0; 0; 0; 0; 30; 40; 30];
Peter = [1; 3; 3; 3; 10; 40; 40];
Marcelo = [3; 4; 1; 2; 10; 40; 40];
Rakesh = [10; 10; 10; 10; 20; 20; 20];

The ith element of a person's preference vector is how highly they value the ith office. Thus, the
combined preference matrix is as follows.

prefmatrix = [MaryAnn Marjorie Tom Peter Marcelo Rakesh];

Weight the preferences matrix by weightvector to scale the columns by seniority. Also, it's more
convenient to reshape this matrix as a vector in column order so that it corresponds to the x vector.

PM = prefmatrix * diag(weightvector);
c = PM(:);

 Office Assignments by Binary Integer Programming: Solver-Based

8-97

Objective Function

The objective is to maximize the satisfaction of the preferences weighted by seniority. This is a linear
objective function

max c'*x

or equivalently

min -c'*x.

Constraints

The first set of constraints requires that each person gets exactly one office, that is for each person,
the sum of the x values corresponding to that person is exactly one. For example, since Marjorie is
the second person, this means that sum(x(8:14))=1. Represent these linear constraints in an
equality matrix Aeq and vector beq, where Aeq*x = beq, by building the appropriate matrices. The
matrix Aeq consists of ones and zeros. For example, the second row of Aeq will correspond to
Marjorie getting one office, so the row looks like this:

0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0

There are seven 1s in columns 8 through 14 and 0s elsewhere. Then Aeq(2,:)*x = 1 is equivalent
to sum(x(8:14)) = 1.

numOffices = 7;
numPeople = 6;
numDim = numOffices * numPeople;
onesvector = ones(1,numOffices);

Each row of Aeq corresponds to one person.

Aeq = blkdiag(onesvector,onesvector,onesvector,onesvector, ...
 onesvector,onesvector);
beq = ones(numPeople,1);

The second set of constraints are inequalities. These constraints specify that each office has no more
than one person in it, i.e., each office has one person in it, or is empty. Build the matrix A and the
vector b such that A*x <= b to capture these constraints. Each row of A and b corresponds to an
office and so row 1 corresponds to people assigned to office 1. This time, the rows have this type of
pattern, for row 1:

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 ... 1 0 0 0 0 0 0

Each row after this is similar but shifted (circularly) to the right by one spot. For example, row 3
corresponds to office 3 and says that A(3,:)*x <= 1, i.e., office 3 cannot have more than one
person in it.

A = repmat(eye(numOffices),1,numPeople);
b = ones(numOffices,1);

The next set of constraints are also inequalities, so add them to the matrix A and vector b, which
already contain the inequalities from above. You want Tom and Peter no more than one office away
from each other, and the same with Marcelo and Rakesh. First, build the distance matrix of the offices
based on their physical locations and using approximate Manhattan distances. This is a symmetric
matrix.

8 Linear Programming and Mixed-Integer Linear Programming

8-98

D = zeros(numOffices);

Set up the top right half of the matrix.

D(1,2:end) = [1 2 3 2 3 4];
D(2,3:end) = [1 2 1 2 3];
D(3,4:end) = [1 2 1 2];
D(4,5:end) = [3 2 1];
D(5,6:end) = [1 2];
D(6,end) = 1;

The lower left half is the same as the upper right.

D = triu(D)' + D;

Find the offices that are more than one distance unit away.

[officeA,officeB] = find(D > 1);
numPairs = length(officeA)

numPairs = 26

This finds numPairs pairs of offices that are not adjacent. For these pairs, if Tom occupies one office
in the pair, then Peter cannot occupy the other office in the pair. If he did, they would not be adjacent.
The same is true for Marcelo and Rakesh. This gives 2*numPairs more inequality constraints that
you add to A and b.

Add enough rows to A to accommodate these constraints.

numrows = 2*numPairs + numOffices;
A((numOffices+1):numrows, 1:numDim) = zeros(2*numPairs,numDim);

For each pair of offices in numPairs, for the x(i) that corresponds to Tom in officeA and for the
x(j) that corresponds to Peter in OfficeB,

x(i) + x(j) <= 1.

This means that either Tom or Peter can occupy one of these offices, but they both cannot.

Tom is person 3 and Peter is person 4.

tom = 3;
peter = 4;

Marcelo is person 5 and Rakesh is person 6.

marcelo = 5;
rakesh = 6;

The following anonymous functions return the index in x corresponding to Tom, Peter, Marcelo and
Rakesh respectively in office i.

tom_index=@(officenum) (tom-1)*numOffices+officenum;
peter_index=@(officenum) (peter-1)*numOffices+officenum;
marcelo_index=@(officenum) (marcelo-1)*numOffices+officenum;
rakesh_index=@(officenum) (rakesh-1)*numOffices+officenum;

for i = 1:numPairs

 Office Assignments by Binary Integer Programming: Solver-Based

8-99

 tomInOfficeA = tom_index(officeA(i));
 peterInOfficeB = peter_index(officeB(i));
 A(i+numOffices, [tomInOfficeA, peterInOfficeB]) = 1;

 % Repeat for Marcelo and Rakesh, adding more rows to A and b.
 marceloInOfficeA = marcelo_index(officeA(i));
 rakeshInOfficeB = rakesh_index(officeB(i));
 A(i+numPairs+numOffices, [marceloInOfficeA, rakeshInOfficeB]) = 1;
end
b(numOffices+1:numOffices+2*numPairs) = ones(2*numPairs,1);

Solve Using intlinprog

The problem formulation consists of a linear objective function

min -c'*x

subject to the linear constraints

Aeq*x = beq

A*x <= b

all variables binary

You already made the A, b, Aeq, and beq entries. Now set the objective function.

f = -c;

To ensure that the variables are binary, put lower bounds of 0, upper bounds of 1, and set intvars to
represent all variables.

lb = zeros(size(f));
ub = lb + 1;
intvars = 1:length(f);

Call intlinprog to solve the problem.

[x,fval,exitflag,output] = intlinprog(f,intvars,A,b,Aeq,beq,lb,ub);

LP: Optimal objective value is -33.868852.

Cut Generation: Applied 1 Gomory cut.
 Lower bound is -33.836066.
 Relative gap is 0.00%.

Optimal solution found.

Intlinprog stopped at the root node because the objective value is within a gap tolerance of the optimal value,
options.AbsoluteGapTolerance = 0 (the default value). The intcon variables are integer within tolerance,
options.IntegerTolerance = 1e-05 (the default value).

View the Solution -- Who Got Each Office?

numPeople = 7; office = cell(numPeople,1);
for i=1:numPeople
 office{i} = find(x(i:numPeople:end)); % people index in office
end

8 Linear Programming and Mixed-Integer Linear Programming

8-100

people = {'Mary Ann', 'Marjorie',' Tom ',' Peter ','Marcelo ',' Rakesh '};
for i=1:numPeople
 if isempty(office{i})
 name{i} = ' empty ';
 else
 name{i} = people(office{i});
 end
end

printofficeassign(name);
title('Solution of the Office Assignment Problem');

Solution Quality

For this problem, the satisfaction of the preferences by seniority is maximized to the value of -fval.
exitflag = 1 tells you that intlinprog converged to an optimal solution. The output structure
gives information about the solution process, such as how many nodes were explored, and the gap
between the lower and upper bounds in the branching calculation. In this case, no branch-and-bound
nodes were generated, meaning the problem was solved without a branch-and-bound step. The gap is
0, meaning the solution is optimal, with no difference between the internally calculated lower and
upper bounds on the objective function.

fval,exitflag,output

fval = -33.8361

exitflag = 1

 Office Assignments by Binary Integer Programming: Solver-Based

8-101

output = struct with fields:
 relativegap: 0
 absolutegap: 0
 numfeaspoints: 1
 numnodes: 0
 constrviolation: 0
 message: 'Optimal solution found.↵↵Intlinprog stopped at the root node because the objective value is within a gap tolerance of the optimal value, options.AbsoluteGapTolerance = 0 (the default value). The intcon variables are integer within tolerance, options.IntegerTolerance = 1e-05 (the default value).'

See Also

More About
• “Office Assignments by Binary Integer Programming: Problem-Based” on page 8-134

8 Linear Programming and Mixed-Integer Linear Programming

8-102

Cutting Stock Problem: Solver-Based
This example shows how to solve a cutting stock problem using linear programming with an integer
linear programming subroutine. The example uses the “Solver-Based Optimization Problem Setup”
approach. For the problem-based approach, see “Cutting Stock Problem: Problem-Based” on page 8-
146.

Problem Overview

A lumber mill starts with trees that have been trimmed to fixed-length logs. Specify the fixed log
length.

logLength = 40;

The mill then cuts the logs into fixed lengths suitable for further processing. The problem is how to
make the cuts so that the mill satisfies a set of orders with the fewest logs.

Specify these fixed lengths and the order quantities for the lengths.

lengthlist = [8; 12; 16; 20];
quantity = [90; 111; 55; 30];
nLengths = length(lengthlist);

Assume that there is no material loss in making cuts, and no cost for cutting.

Linear Programming Formulation

Several authors, including Ford and Fulkerson [1] and Gilmore and Gomory [2], suggest the following
procedure, which you implement in the next section. A cutting pattern is a set of lengths to which a
single log can be cut.

Instead of generating every possible cutting pattern, it is more efficient to generate cutting patterns
as the solution of a subproblem. Starting from a base set of cutting patterns, solve the linear
programming problem of minimizing the number of logs used subject to the constraint that the cuts,
using the existing patterns, satisfy the demands.

After solving that problem, generate a new pattern by solving an integer linear programming
subproblem. The subproblem is to find the best new pattern, meaning the number of cuts from each
length in lengthlist that add up to no more than the total possible length logLength. The
quantity to optimize is the reduced cost of the new pattern, which is one minus the sum of the
Lagrange multipliers for the current solution times the new cutting pattern. If this quantity is
negative, then bringing that pattern into the linear program will improve its objective. If not, then no
better cutting pattern exists, and the patterns used so far give the optimal linear programming
solution. The reason for this conclusion is exactly parallel to the reason for when to stop the primal
simplex method: the method terminates when there is no variable with a negative reduced cost. The
problem in this example terminates when there is no pattern with negative reduced cost. For details
and an example, see Column generation algorithms and its references.

After solving the linear programming problem in this way, you can have noninteger solutions.
Therefore, solve the problem once more, using the generated patterns and constraining the variables
to have integer values.

 Cutting Stock Problem: Solver-Based

8-103

https://en.wikipedia.org/wiki/Cutting_stock_problem
https://optimization.mccormick.northwestern.edu/index.php/Column_generation_algorithms

MATLAB Solver-Based Formulation

A pattern, in this formulation, is a vector of integers containing the number of cuts of each length in
lengthlist. Arrange a matrix named patterns to store the patterns, where each column in the
matrix gives a pattern. For example,

patterns =

2 0
0 2
0 1
1 0

.

The first pattern (column) represents two cuts of length 8 and one cut of length 20. The second
pattern represents two cuts of length 12 and one cut of length 16. Each is a feasible pattern because
the total of the cuts is no more than logLength = 40.

In this formulation, if x is a column vector of integers containing the number of times each pattern is
used, then patterns*x is a column vector giving the number of cuts of each type. The constraint of
meeting demand is patterns*x >= quantity. For example, using the previous patterns matrix,

suppose that x =
45
56

. (This x uses 101 logs.) Then

patterns * x =

90
112
56
45

,

which represents a feasible solution because the result exceeds the demand

quantity =

90
111
55
30

.

To have an initial feasible cutting pattern, use the simplest patterns, which have just one length of
cut. Use as many cuts of that length as feasible for the log.

patterns = diag(floor(logLength./lengthlist));
nPatterns = size(patterns,2);

To generate new patterns from the existing ones based on the current Lagrange multipliers, solve a
subproblem. Call the subproblem in a loop to generate patterns until no further improvement is
found. The subproblem objective depends only on the current Lagrange multipliers. The variables are
nonnegative integers representing the number of cuts of each length. The only constraint is that the
sum of the lengths of the cuts in a pattern is no more than the log length. Create a lower bound
vector lb2 and matrices A2 and b2 that represent these bounds and linear constraints.

lb2 = zeros(nLengths,1);
A2 = lengthlist';
b2 = logLength;

To avoid unnecessary feedback from the solvers, set the Display option to 'off' for both the outer
loop and the inner subproblem solution.

8 Linear Programming and Mixed-Integer Linear Programming

8-104

lpopts = optimoptions('linprog','Display','off');
ipopts = optimoptions('intlinprog',lpopts);

Initialize the variables for the loop.

reducedCost = -Inf;
reducedCostTolerance = -0.0001;
exitflag = 1;

Call the loop.

while reducedCost < reducedCostTolerance && exitflag > 0
 lb = zeros(nPatterns,1);
 f = lb + 1;
 A = -patterns;
 b = -quantity;

 [values,nLogs,exitflag,~,lambda] = linprog(f,A,b,[],[],lb,[],lpopts);
 if exitflag > 0
 fprintf('Using %g logs\n',nLogs);
 % Now generate a new pattern, if possible
 f2 = -lambda.ineqlin;
 [values,reducedCost,pexitflag] = intlinprog(f2,1:nLengths,A2,b2,[],[],lb2,[],ipopts);
 reducedCost = 1 + reducedCost; % continue if this reducedCost is negative
 newpattern = round(values);
 if pexitflag > 0 && reducedCost < reducedCostTolerance
 patterns = [patterns newpattern];
 nPatterns = nPatterns + 1;
 end
 end
end

Using 97.5 logs
Using 92 logs
Using 89.9167 logs
Using 88.3 logs

You now have the solution of the linear programming problem. To complete the solution, solve the
problem again with the final patterns, using intlinprog with all variables being integers. Also,
compute the waste, which is the quantity of unused logs (in feet) for each pattern and for the problem
as a whole.

if exitflag <= 0
 disp('Error in column generation phase')
else
 [values,logsUsed,exitflag] = intlinprog(f,1:length(lb),A,b,[],[],lb,[],[],ipopts);
 if exitflag > 0
 values = round(values);
 logsUsed = round(logsUsed);
 fprintf('Optimal solution uses %g logs\n', logsUsed);
 totalwaste = sum((patterns*values - quantity).*lengthlist); % waste due to overproduction
 for j = 1:size(values)
 if values(j) > 0
 fprintf('Cut %g logs with pattern\n',values(j));
 for w = 1:size(patterns,1)
 if patterns(w,j) > 0
 fprintf(' %d cut(s) of length %d\n', patterns(w,j),lengthlist(w));
 end

 Cutting Stock Problem: Solver-Based

8-105

 end
 wastej = logLength - dot(patterns(:,j),lengthlist); % waste due to pattern inefficiency
 totalwaste = totalwaste + wastej;
 fprintf(' Waste of this pattern is %g\n', wastej);
 end
 end
 fprintf('Total waste in this problem is %g.\n',totalwaste);
 else
 disp('Error in final optimization')
 end
end

Optimal solution uses 89 logs

Cut 15 logs with pattern

 2 cut(s) of length 20

 Waste of this pattern is 0

Cut 18 logs with pattern

 1 cut(s) of length 8
 2 cut(s) of length 16

 Waste of this pattern is 0

Cut 37 logs with pattern

 2 cut(s) of length 8
 2 cut(s) of length 12

 Waste of this pattern is 0

Cut 19 logs with pattern

 2 cut(s) of length 12
 1 cut(s) of length 16

 Waste of this pattern is 0

Total waste in this problem is 28.

Part of the waste is due to overproduction, because the mill cuts one log into three 12-foot pieces, but
uses only one. Part of the waste is due to pattern inefficiency, because the three 12-foot pieces are 4
feet short of the total length of 40 feet.

References

[1] Ford, L. R., Jr. and D. R. Fulkerson. A Suggested Computation for Maximal Multi-Commodity
Network Flows. Management Science 5, 1958, pp. 97-101.

8 Linear Programming and Mixed-Integer Linear Programming

8-106

[2] Gilmore, P. C., and R. E. Gomory. A Linear Programming Approach to the Cutting Stock Problem--
Part II. Operations Research 11, No. 6, 1963, pp. 863-888.

See Also

More About
• “Cutting Stock Problem: Problem-Based” on page 8-146

 Cutting Stock Problem: Solver-Based

8-107

Mixed-Integer Linear Programming Basics: Problem-Based
This example shows how to solve a mixed-integer linear problem. Although not complex, the example
shows the typical steps in formulating a problem using the problem-based approach. For a video
showing this example, see Solve a Mixed-Integer Linear Programming Problem using Optimization
Modeling.

For the solver-based approach to this problem, see “Mixed-Integer Linear Programming Basics:
Solver-Based” on page 8-54.

Problem Description

You want to blend steels with various chemical compositions to obtain 25 tons of steel with a specific
chemical composition. The result should have 5% carbon and 5% molybdenum by weight, meaning 25
tons*5% = 1.25 tons of carbon and 1.25 tons of molybdenum. The objective is to minimize the cost for
blending the steel.

This problem is taken from Carl-Henrik Westerberg, Bengt Bjorklund, and Eskil Hultman, “An
Application of Mixed Integer Programming in a Swedish Steel Mill.” Interfaces February 1977 Vol. 7,
No. 2 pp. 39–43, whose abstract is at https://doi.org/10.1287/inte.7.2.39.

Four ingots of steel are available for purchase. Only one of each ingot is available.

Ingot Weight in Tons % Carbon % Molybdenum Cost
Ton

1 5 5 3 $ 350
2 3 4 3 $ 330
3 4 5 4 $ 310
4 6 3 4 $ 280

Three grades of alloy steel and one grade of scrap steel are available for purchase. Alloy and scrap
steels can be purchased in fractional amounts.

Alloy % Carbon % Molybdenum Cost
Ton

1 8 6 $ 500
2 7 7 $ 450
3 6 8 $ 400

Scrap 3 9 $ 100

Formulate Problem

To formulate the problem, first decide on the control variables. Take variable ingots(1) = 1 to
mean that you purchase ingot 1, and ingots(1) = 0 to mean that you do not purchase the ingot.
Similarly, variables ingots(2) through ingots(4) are binary variables indicating whether you
purchase ingots 2 through 4.

Variables alloys(1) through alloys(3) are the quantities in tons of alloys 1, 2, and 3 that you
purchase. scrap is the quantity of scrap steel that you purchase.

steelprob = optimproblem;
ingots = optimvar('ingots',4,'Type','integer','LowerBound',0,'UpperBound',1);

8 Linear Programming and Mixed-Integer Linear Programming

8-108

https://www.mathworks.com/videos/mathematical-modeling-with-optimization-part-3-problem-based-mixed-integer-linear-programming-1500392000631.html
https://www.mathworks.com/videos/mathematical-modeling-with-optimization-part-3-problem-based-mixed-integer-linear-programming-1500392000631.html
https://doi.org/10.1287/inte.7.2.39

alloys = optimvar('alloys',3,'LowerBound',0);
scrap = optimvar('scrap','LowerBound',0);

Create expressions for the costs associated with the variables.

weightIngots = [5,3,4,6];
costIngots = weightIngots.*[350,330,310,280];
costAlloys = [500,450,400];
costScrap = 100;
cost = costIngots*ingots + costAlloys*alloys + costScrap*scrap;

Include the cost as the objective function in the problem.

steelprob.Objective = cost;

The problem has three equality constraints. The first constraint is that the total weight is 25 tons.
Calculate the weight of the steel.

totalWeight = weightIngots*ingots + sum(alloys) + scrap;

The second constraint is that the weight of carbon is 5% of 25 tons, or 1.25 tons. Calculate the weight
of the carbon in the steel.

carbonIngots = [5,4,5,3]/100;
carbonAlloys = [8,7,6]/100;
carbonScrap = 3/100;
totalCarbon = (weightIngots.*carbonIngots)*ingots + carbonAlloys*alloys + carbonScrap*scrap;

The third constraint is that the weight of molybdenum is 1.25 tons. Calculate the weight of the
molybdenum in the steel.

molybIngots = [3,3,4,4]/100;
molybAlloys = [6,7,8]/100;
molybScrap = 9/100;
totalMolyb = (weightIngots.*molybIngots)*ingots + molybAlloys*alloys + molybScrap*scrap;

Include the constraints in the problem.

steelprob.Constraints.conswt = totalWeight == 25;
steelprob.Constraints.conscarb = totalCarbon == 1.25;
steelprob.Constraints.consmolyb = totalMolyb == 1.25;

Solve Problem

Now that you have all the inputs, call the solver.

[sol,fval] = solve(steelprob);

Solving problem using intlinprog.
LP: Optimal objective value is 8125.600000.

Cut Generation: Applied 3 mir cuts.
 Lower bound is 8495.000000.
 Relative gap is 0.00%.

Optimal solution found.

Intlinprog stopped at the root node because the objective value is within a gap

 Mixed-Integer Linear Programming Basics: Problem-Based

8-109

tolerance of the optimal value, options.AbsoluteGapTolerance = 0 (the default
value). The intcon variables are integer within tolerance,
options.IntegerTolerance = 1e-05 (the default value).

View the solution.

sol.ingots

ans = 4×1

 1.0000
 1.0000
 0
 1.0000

sol.alloys

ans = 3×1

 7.2500
 0
 0.2500

sol.scrap

ans = 3.5000

fval

fval = 8.4950e+03

The optimal purchase costs $8,495. Buy ingots 1, 2, and 4, but not 3, and buy 7.25 tons of alloy 1,
0.25 ton of alloy 3, and 3.5 tons of scrap steel.

See Also

More About
• “Mixed-Integer Linear Programming Basics: Solver-Based” on page 8-54
• “Problem-Based Optimization Workflow” on page 9-2
• “Integer and Logical Modeling” on page 8-171
• Solve a Mixed-Integer Linear Programming Problem using Optimization Modeling

8 Linear Programming and Mixed-Integer Linear Programming

8-110

https://www.mathworks.com/videos/mathematical-modeling-with-optimization-part-3-problem-based-mixed-integer-linear-programming-1500392000631.html

Factory, Warehouse, Sales Allocation Model: Problem-Based
This example shows how to set up and solve a mixed-integer linear programming problem. The
problem is to find the optimal production and distribution levels among a set of factories,
warehouses, and sales outlets. For the solver-based approach, see “Factory, Warehouse, Sales
Allocation Model: Solver-Based” on page 8-57.

The example first generates random locations for factories, warehouses, and sales outlets. Feel free
to modify the scaling parameter N, which scales both the size of the grid in which the production and
distribution facilities reside, but also scales the number of these facilities so that the density of
facilities of each type per grid area is independent of N.

Facility Locations

For a given value of the scaling parameter N, suppose that there are the following:

• ⌊f N2⌋ factories
• ⌊wN2⌋ warehouses
• ⌊sN2⌋ sales outlets

These facilities are on separate integer grid points between 1 and N in the x and y directions. In
order that the facilities have separate locations, you require that f + w + s ≤ 1. In this example, take
N = 20, f = 0 . 05, w = 0 . 05, and s = 0 . 1.

Production and Distribution

There are P products made by the factories. Take P = 20.

The demand for each product p in a sales outlet s is d(s, p). The demand is the quantity that can be
sold in a time interval. One constraint on the model is that the demand is met, meaning the system
produces and distributes exactly the quantities in the demand.

There are capacity constraints on each factory and each warehouse.

• The production of product p at factory f is less than pcap(f , p).
• The capacity of warehouse w is wcap(w).
• The amount of product p that can be transported from warehouse w to a sales outlet in the time

interval is less than turn(p) * wcap(w), where turn(p) is the turnover rate of product p.

Suppose that each sales outlet receives its supplies from just one warehouse. Part of the problem is to
determine the cheapest mapping of sales outlets to warehouses.

Costs

The cost of transporting products from factory to warehouse, and from warehouse to sales outlet,
depends on the distance between the facilities, and on the particular product. If dist(a, b) is the
distance between facilities a and b, then the cost of shipping a product p between these facilities is
the distance times the transportation cost tcost(p):

dist(a, b) * tcost(p) .

The distance in this example is the grid distance, also known as the L1 distance. It is the sum of the
absolute difference in x coordinates and y coordinates.

 Factory, Warehouse, Sales Allocation Model: Problem-Based

8-111

The cost of making a unit of product p in factory f is pcost(f , p).

Optimization Problem

Given a set of facility locations, and the demands and capacity constraints, find:

• A production level of each product at each factory
• A distribution schedule for products from factories to warehouses
• A distribution schedule for products from warehouses to sales outlets

These quantities must ensure that demand is satisfied and total cost is minimized. Also, each sales
outlet is required to receive all its products from exactly one warehouse.

Variables and Equations for the Optimization Problem

The control variables, meaning the ones you can change in the optimization, are

• x(p, f , w) = the amount of product p that is transported from factory f to warehouse w
• y(s, w) = a binary variable taking value 1 when sales outlet s is associated with warehouse w

The objective function to minimize is

∑
f
∑
p
∑
w

x(p, f , w) ⋅ (pcost(f , p) + tcost(p) ⋅ dist(f , w))

+∑
s
∑
w
∑
p

(d(s, p) ⋅ tcost(p) ⋅ dist(s, w) ⋅ y(s, w)) .

The constraints are

∑
w

x(p, f , w) ≤ pcap(f , p) (capacity of factory).

∑
f

x(p, f , w) = ∑
s

(d(s, p) ⋅ y(s, w)) (demand is met).

∑
p
∑
s

d(s, p)
turn(p) ⋅ y(s, w) ≤ wcap(w) (capacity of warehouse).

∑
w

y(s, w) = 1 (each sales outlet associates to one warehouse).

x(p, f , w) ≥ 0 (nonnegative production).

y(s, w) ϵ {0, 1} (binary y).

The variables x and y appear in the objective and constraint functions linearly. Because y is restricted
to integer values, the problem is a mixed-integer linear program (MILP).

Generate a Random Problem: Facility Locations

Set the values of the N, f , w, and s parameters, and generate the facility locations.

rng(1) % for reproducibility
N = 20; % N from 10 to 30 seems to work. Choose large values with caution.

8 Linear Programming and Mixed-Integer Linear Programming

8-112

N2 = N*N;
f = 0.05; % density of factories
w = 0.05; % density of warehouses
s = 0.1; % density of sales outlets

F = floor(f*N2); % number of factories
W = floor(w*N2); % number of warehouses
S = floor(s*N2); % number of sales outlets

xyloc = randperm(N2,F+W+S); % unique locations of facilities
[xloc,yloc] = ind2sub([N N],xyloc);

Of course, it is not realistic to take random locations for facilities. This example is intended to show
solution techniques, not how to generate good facility locations.

Plot the facilities. Facilities 1 through F are factories, F+1 through F+W are warehouses, and F+W
+1 through F+W+S are sales outlets.

h = figure;
plot(xloc(1:F),yloc(1:F),'rs',xloc(F+1:F+W),yloc(F+1:F+W),'k*',...
 xloc(F+W+1:F+W+S),yloc(F+W+1:F+W+S),'bo');
lgnd = legend('Factory','Warehouse','Sales outlet','Location','EastOutside');
lgnd.AutoUpdate = 'off';
xlim([0 N+1]);ylim([0 N+1])

Generate Random Capacities, Costs, and Demands

Generate random production costs, capacities, turnover rates, and demands.

 Factory, Warehouse, Sales Allocation Model: Problem-Based

8-113

P = 20; % 20 products

% Production costs between 20 and 100
pcost = 80*rand(F,P) + 20;

% Production capacity between 500 and 1500 for each product/factory
pcap = 1000*rand(F,P) + 500;

% Warehouse capacity between P*400 and P*800 for each product/warehouse
wcap = P*400*rand(W,1) + P*400;

% Product turnover rate between 1 and 3 for each product
turn = 2*rand(1,P) + 1;

% Product transport cost per distance between 5 and 10 for each product
tcost = 5*rand(1,P) + 5;

% Product demand by sales outlet between 200 and 500 for each
% product/outlet
d = 300*rand(S,P) + 200;

These random demands and capacities can lead to infeasible problems. In other words, sometimes
the demand exceeds the production and warehouse capacity constraints. If you alter some
parameters and get an infeasible problem, during solution you will get an exitflag of -2.

Generate Variables and Constraints

To begin specifying the problem, generate the distance arrays distfw(i,j) and distsw(i,j).

distfw = zeros(F,W); % Allocate matrix for factory-warehouse distances
for ii = 1:F
 for jj = 1:W
 distfw(ii,jj) = abs(xloc(ii) - xloc(F + jj)) + abs(yloc(ii) ...
 - yloc(F + jj));
 end
end

distsw = zeros(S,W); % Allocate matrix for sales outlet-warehouse distances
for ii = 1:S
 for jj = 1:W
 distsw(ii,jj) = abs(xloc(F + W + ii) - xloc(F + jj)) ...
 + abs(yloc(F + W + ii) - yloc(F + jj));
 end
end

Create variables for the optimization problem. x represents the production, a continuous variable,
with dimension P-by-F-by-W. y represents the binary allocation of sales outlet to warehouse, an S-by-W
variable.

x = optimvar('x',P,F,W,'LowerBound',0);
y = optimvar('y',S,W,'Type','integer','LowerBound',0,'UpperBound',1);

Now create the constraints. The first constraint is a capacity constraint on production.

capconstr = sum(x,3) <= pcap';

The next constraint is that the demand is met at each sales outlet.

demconstr = squeeze(sum(x,2)) == d'*y;

8 Linear Programming and Mixed-Integer Linear Programming

8-114

There is a capacity constraint at each warehouse.

warecap = sum(diag(1./turn)*(d'*y),1) <= wcap';

Finally, there is a requirement that each sales outlet connects to exactly one warehouse.

salesware = sum(y,2) == ones(S,1);

Create Problem and Objective

Create an optimization problem.

factoryprob = optimproblem;

The objective function has three parts. The first part is the sum of the production costs.

objfun1 = sum(sum(sum(x,3).*(pcost'),2),1);

The second part is the sum of the transportation costs from factories to warehouses.

objfun2 = 0;
for p = 1:P
 objfun2 = objfun2 + tcost(p)*sum(sum(squeeze(x(p,:,:)).*distfw));
end

The third part is the sum of the transportation costs from warehouses to sales outlets.

r = sum(distsw.*y,2); % r is a length s vector
v = d*(tcost(:));
objfun3 = sum(v.*r);

The objective function to minimize is the sum of the three parts.

factoryprob.Objective = objfun1 + objfun2 + objfun3;

Include the constraints in the problem.

factoryprob.Constraints.capconstr = capconstr;
factoryprob.Constraints.demconstr = demconstr;
factoryprob.Constraints.warecap = warecap;
factoryprob.Constraints.salesware = salesware;

Solve the Problem

Turn off iterative display so that you don't get hundreds of lines of output. Include a plot function to
monitor the solution progress.

opts = optimoptions('intlinprog','Display','off','PlotFcn',@optimplotmilp);

Call the solver to find the solution.

[sol,fval,exitflag,output] = solve(factoryprob,'options',opts);

 Factory, Warehouse, Sales Allocation Model: Problem-Based

8-115

if isempty(sol) % If the problem is infeasible or you stopped early with no solution
 disp('The solver did not return a solution.')
 return % Stop the script because there is nothing to examine
end

Examine the Solution

Examine the exit flag and the infeasibility of the solution.

exitflag

exitflag =
 OptimalSolution

infeas1 = max(max(infeasibility(capconstr,sol)))

infeas1 = 9.0949e-13

infeas2 = max(max(infeasibility(demconstr,sol)))

infeas2 = 4.5475e-11

infeas3 = max(infeasibility(warecap,sol))

infeas3 = 0

infeas4 = max(infeasibility(salesware,sol))

infeas4 = 1.3078e-13

8 Linear Programming and Mixed-Integer Linear Programming

8-116

Round the y portion of the solution to be exactly integer-valued. To understand why these variables
might not be exactly integers, see “Some “Integer” Solutions Are Not Integers” on page 8-53.

sol.y = round(sol.y); % get integer solutions

How many sales outlets are associated with each warehouse? Notice that, in this case, some
warehouses have 0 associated outlets, meaning the warehouses are not in use in the optimal solution.

outlets = sum(sol.y,1)

outlets = 1×20

 2 0 3 2 2 2 3 2 3 2 1 0 0 3 4 3 2 3 2 1

Plot the connection between each sales outlet and its warehouse.

figure(h);
hold on
for ii = 1:S
 jj = find(sol.y(ii,:)); % Index of warehouse associated with ii
 xsales = xloc(F+W+ii); ysales = yloc(F+W+ii);
 xwarehouse = xloc(F+jj); ywarehouse = yloc(F+jj);
 if rand(1) < .5 % Draw y direction first half the time
 plot([xsales,xsales,xwarehouse],[ysales,ywarehouse,ywarehouse],'g--')
 else % Draw x direction first the rest of the time
 plot([xsales,xwarehouse,xwarehouse],[ysales,ysales,ywarehouse],'g--')
 end
end
hold off

title('Mapping of sales outlets to warehouses')

 Factory, Warehouse, Sales Allocation Model: Problem-Based

8-117

The black * with no green lines represent the unused warehouses.

See Also

More About
• “Factory, Warehouse, Sales Allocation Model: Solver-Based” on page 8-57
• “Problem-Based Optimization Workflow” on page 9-2

8 Linear Programming and Mixed-Integer Linear Programming

8-118

Traveling Salesman Problem: Problem-Based
This example shows how to use binary integer programming to solve the classic traveling salesman
problem. This problem involves finding the shortest closed tour (path) through a set of stops (cities).
In this case there are 200 stops, but you can easily change the nStops variable to get a different
problem size. You'll solve the initial problem and see that the solution has subtours. This means the
optimal solution found doesn't give one continuous path through all the points, but instead has
several disconnected loops. You'll then use an iterative process of determining the subtours, adding
constraints, and rerunning the optimization until the subtours are eliminated.

For the solver-based approach to this problem, see “Traveling Salesman Problem: Solver-Based” on
page 8-66.

Problem Formulation

Formulate the traveling salesman problem for integer linear programming as follows:

• Generate all possible trips, meaning all distinct pairs of stops.
• Calculate the distance for each trip.
• The cost function to minimize is the sum of the trip distances for each trip in the tour.
• The decision variables are binary, and associated with each trip, where each 1 represents a trip

that exists on the tour, and each 0 represents a trip that is not on the tour.
• To ensure that the tour includes every stop, include the linear constraint that each stop is on

exactly two trips. This means one arrival and one departure from the stop.

Generate Stops

Generate random stops inside a crude polygonal representation of the continental U.S.

load('usborder.mat','x','y','xx','yy');
rng(3,'twister') % Makes stops in Maine & Florida, and is reproducible
nStops = 200; % You can use any number, but the problem size scales as N^2
stopsLon = zeros(nStops,1); % Allocate x-coordinates of nStops
stopsLat = stopsLon; % Allocate y-coordinates
n = 1;
while (n <= nStops)
 xp = rand*1.5;
 yp = rand;
 if inpolygon(xp,yp,x,y) % Test if inside the border
 stopsLon(n) = xp;
 stopsLat(n) = yp;
 n = n+1;
 end
end

Calculate Distances Between Points

Because there are 200 stops, there are 19,900 trips, meaning 19,900 binary variables (# variables =
200 choose 2).

Generate all the trips, meaning all pairs of stops.

idxs = nchoosek(1:nStops,2);

Calculate all the trip distances, assuming that the earth is flat in order to use the Pythagorean rule.

 Traveling Salesman Problem: Problem-Based

8-119

dist = hypot(stopsLat(idxs(:,1)) - stopsLat(idxs(:,2)), ...
 stopsLon(idxs(:,1)) - stopsLon(idxs(:,2)));
lendist = length(dist);

With this definition of the dist vector, the length of a tour is

dist'*trips

where trips is the binary vector representing the trips that the solution takes. This is the distance of
a tour that you try to minimize.

Create Graph and Draw Map

Represent the problem as a graph. Create a graph where the stops are nodes and the trips are edges.

G = graph(idxs(:,1),idxs(:,2));

Display the stops using a graph plot. Plot the nodes without the graph edges.

figure
hGraph = plot(G,'XData',stopsLon,'YData',stopsLat,'LineStyle','none','NodeLabel',{});
hold on
% Draw the outside border
plot(x,y,'r-')
hold off

8 Linear Programming and Mixed-Integer Linear Programming

8-120

Create Variables and Problem

Create an optimization problem with binary optimization variables representing the potential trips.

tsp = optimproblem;
trips = optimvar('trips',lendist,1,'Type','integer','LowerBound',0,'UpperBound',1);

Include the objective function in the problem.

tsp.Objective = dist'*trips;

Constraints

Create the linear constraints that each stop has two associated trips, because there must be a trip to
each stop and a trip departing each stop.

Use the graph representation to identify all trips starting or ending at a stop by finding all edges
connecting to that stop. For each stop, create the constraint that the sum of trips for that stop equals
two.

constr2trips = optimconstr(nStops,1);
for stop = 1:nStops
 whichIdxs = outedges(G,stop); % Identify trips associated with the stop
 constr2trips(stop) = sum(trips(whichIdxs)) == 2;
end
tsp.Constraints.constr2trips = constr2trips;

Solve Initial Problem

The problem is ready to be solved. To suppress iterative output, turn off the default display.

opts = optimoptions('intlinprog','Display','off');
tspsol = solve(tsp,'options',opts)

tspsol = struct with fields:
 trips: [19900×1 double]

Visualize Solution

Create a new graph with the solution trips as edges. To do so, round the solution in case some values
are not exactly integers, and convert the resulting values to logical.

tspsol.trips = logical(round(tspsol.trips));
Gsol = graph(idxs(tspsol.trips,1),idxs(tspsol.trips,2),[],numnodes(G));
% Gsol = graph(idxs(tspsol.trips,1),idxs(tspsol.trips,2)); % Also works in most cases

Overlay the new graph on the existing plot and highlight its edges.

hold on
highlight(hGraph,Gsol,'LineStyle','-')
title('Solution with Subtours')

 Traveling Salesman Problem: Problem-Based

8-121

As can be seen on the map, the solution has several subtours. The constraints specified so far do not
prevent these subtours from happening. In order to prevent any possible subtour from happening,
you would need an incredibly large number of inequality constraints.

Subtour Constraints

Because you can't add all of the subtour constraints, take an iterative approach. Detect the subtours
in the current solution, then add inequality constraints to prevent those particular subtours from
happening. By doing this, you find a suitable tour in a few iterations.

Eliminate subtours with inequality constraints. An example of how this works is if you have five points
in a subtour, then you have five lines connecting those points to create the subtour. Eliminate this
subtour by implementing an inequality constraint to say there must be less than or equal to four lines
between these five points.

Even more, find all lines between these five points, and constrain the solution not to have more than
four of these lines present. This is a correct constraint because if five or more of the lines existed in a
solution, then the solution would have a subtour (a graph with n nodes and n edges always contains a
cycle).

Detect the subtours by identifying the connected components in Gsol, the graph built with the edges
in the current solution. conncomp returns a vector with the number of the subtour to which each
edge belongs.

tourIdxs = conncomp(Gsol);
numtours = max(tourIdxs); % Number of subtours
fprintf('# of subtours: %d\n',numtours);

8 Linear Programming and Mixed-Integer Linear Programming

8-122

of subtours: 27

Include the linear inequality constraints to eliminate subtours, and repeatedly call the solver, until
just one subtour remains.

% Index of added constraints for subtours
k = 1;
while numtours > 1 % Repeat until there is just one subtour
 % Add the subtour constraints
 for ii = 1:numtours
 inSubTour = (tourIdxs == ii); % Edges in current subtour
 a = all(inSubTour(idxs),2); % Complete graph indices with both ends in subtour
 constrname = "subtourconstr" + num2str(k);
 tsp.Constraints.(constrname) = sum(trips(a)) <= (nnz(inSubTour) - 1);
 k = k + 1;
 end

 % Try to optimize again
 [tspsol,fval,exitflag,output] = solve(tsp,'options',opts);
 tspsol.trips = logical(round(tspsol.trips));
 Gsol = graph(idxs(tspsol.trips,1),idxs(tspsol.trips,2),[],numnodes(G));
 % Gsol = graph(idxs(tspsol.trips,1),idxs(tspsol.trips,2)); % Also works in most cases

 % Plot new solution
 hGraph.LineStyle = 'none'; % Remove the previous highlighted path
 highlight(hGraph,Gsol,'LineStyle','-')
 drawnow

 % How many subtours this time?
 tourIdxs = conncomp(Gsol);
 numtours = max(tourIdxs); % Number of subtours
 fprintf('# of subtours: %d\n',numtours)
end

of subtours: 20
of subtours: 7
of subtours: 9
of subtours: 9
of subtours: 3
of subtours: 2
of subtours: 7
of subtours: 2
of subtours: 1

title('Solution with Subtours Eliminated');
hold off

 Traveling Salesman Problem: Problem-Based

8-123

Solution Quality

The solution represents a feasible tour, because it is a single closed loop. But is it a minimal-cost
tour? One way to find out is to examine the output structure.

disp(output.absolutegap)

 0

The smallness of the absolute gap implies that the solution is either optimal or has a total length that
is close to optimal.

See Also

More About
• “Traveling Salesman Problem: Solver-Based” on page 8-66
• “Problem-Based Optimization Workflow” on page 9-2

8 Linear Programming and Mixed-Integer Linear Programming

8-124

Optimal Dispatch of Power Generators: Problem-Based
This example shows how to schedule two gas-fired electric generators optimally, meaning to get the
most revenue minus cost. While the example is not entirely realistic, it does show how to take into
account costs that depend on decision timing.

For the solver-based approach to this problem, see “Optimal Dispatch of Power Generators: Solver-
Based” on page 8-72.

Problem Definition

The electricity market has different prices at different times of day. If you have generators supplying
electricity, you can take advantage of this variable pricing by scheduling your generators to operate
when prices are high. Suppose that you control two generators. Each generator has three power
levels (off, low, and high). Each generator has a specified rate of fuel consumption and power
production at each power level. Fuel consumption is 0 when the generator is off.

You can assign a power level to each generator for each half-hour time interval during a day (24
hours, so 48 intervals). Based on historical records, assume that you know the revenue per megawatt-
hour (MWh) that you receive in each time interval. The data for this example is from the Australian
Energy Market Operator https://www.nemweb.com.au/REPORTS/CURRENT/ in mid-2013, and is
used under their terms https://www.aemo.com.au/privacy-and-legal-notices/
copyright-permissions.

load dispatchPrice; % Get poolPrice, which is the revenue per MWh
bar(poolPrice,.5)
xlim([.5,48.5])
xlabel('Price per MWh at each period')

 Optimal Dispatch of Power Generators: Problem-Based

8-125

https://www.nemweb.com.au/REPORTS/CURRENT/
https://www.aemo.com.au/privacy-and-legal-notices/copyright-permissions
https://www.aemo.com.au/privacy-and-legal-notices/copyright-permissions

There is a cost to start a generator after it has been off. Also, there is a constraint on the maximum
fuel usage for the day. This constraint exists because you buy your fuel a day ahead of time, so you
can use only what you just bought.

Problem Notation and Parameters

You can formulate the scheduling problem as a binary integer programming problem. Define indexes
i, j, and k, and a binary scheduling vector y, as follows:

• nPeriods = the number of time periods, 48 in this case.
• i = a time period, 1 <= i <= 48.
• j = a generator index, 1 <= j <= 2 for this example.
• y(i,j,k) = 1 when period i, generator j is operating at power level k. Let low power be k =

1, and high power be k = 2. The generator is off when sum_k y(i,j,k) = 0.

Determine when a generator starts after being off. To do so, define the auxiliary binary variable
z(i,j) that indicates whether to charge for turning on generator j at period i.

• z(i,j) = 1 when generator j is off at period i, but is on at period i + 1. z(i,j) = 0
otherwise. In other words, z(i,j) = 1 when sum_k y(i,j,k) = 0 and sum_k y(i+1,j,k)
= 1.

You need a way to set z automatically based on the settings of y. A linear constraint below handles
this setting.

8 Linear Programming and Mixed-Integer Linear Programming

8-126

You also need the parameters of the problem for costs, generation levels for each generator,
consumption levels of the generators, and fuel available.

• poolPrice(i) -- Revenue in dollars per MWh in interval i
• gen(j,k) -- MW generated by generator j at power level k
• fuel(j,k) -- Fuel used by generator j at power level k
• totalFuel -- Fuel available in one day
• startCost -- Cost in dollars to start a generator after it has been off
• fuelPrice -- Cost for a unit of fuel

You got poolPrice when you executed load dispatchPrice;. Set the other parameters as
follows.

fuelPrice = 3;
totalFuel = 3.95e4;
nPeriods = length(poolPrice); % 48 periods
nGens = 2; % Two generators
gen = [61,152;50,150]; % Generator 1 low = 61 MW, high = 152 MW
fuel = [427,806;325,765]; % Fuel consumption for generator 2 is low = 325, high = 765
startCost = 1e4; % Cost to start a generator after it has been off

Generator Efficiency

Examine the efficiency of the two generators at their two operating points.

efficiency = gen./fuel; % Calculate electricity per unit fuel use
rr = efficiency'; % for plotting
h = bar(rr);
h(1).FaceColor = 'g';
h(2).FaceColor = 'c';
legend(h,'Generator 1','Generator 2','Location','NorthEastOutside')
ax = gca;
ax.XTick = [1,2];
ax.XTickLabel = {'Low','High'};
ylim([.1,.2])
ylabel('Efficiency')

 Optimal Dispatch of Power Generators: Problem-Based

8-127

Notice that generator 2 is a bit more efficient than generator 1 at its corresponding operating points
(low and high), but generator 1 at its high operating point is more efficient than generator 2 at its low
operating point.

Variables for Solution

To set up the problem, you need to encode all the problem data and constraints in problem form. The
variables y(i,j,k) represent the solution of the problem, and the auxiliary variables z(i,j)
indicate whether to charge for turning on a generator. y is an nPeriods-by-nGens-by-2 array, and
z is an nPeriods-by-nGens array. All variables are binary.

y = optimvar('y',nPeriods,nGens,{'Low','High'},'Type','integer','LowerBound',0,...
 'UpperBound',1);
z = optimvar('z',nPeriods,nGens,'Type','integer','LowerBound',0,...
 'UpperBound',1);

Linear Constraints

To ensure that the power level has no more than one component equal to 1, set a linear inequality
constraint.

powercons = y(:,:,'Low') + y(:,:,'High') <= 1;

The running cost per period is the cost of fuel for that period. For generator j operating at level k,
the cost is fuelPrice * fuel(j,k).

Create an expression fuelUsed that accounts for all the fuel used.

8 Linear Programming and Mixed-Integer Linear Programming

8-128

yFuel = zeros(nPeriods,nGens,2);
yFuel(:,1,1) = fuel(1,1); % Fuel use of generator 1 in low setting
yFuel(:,1,2) = fuel(1,2); % Fuel use of generator 1 in high setting
yFuel(:,2,1) = fuel(2,1); % Fuel use of generator 2 in low setting
yFuel(:,2,2) = fuel(2,2); % Fuel use of generator 2 in high setting

fuelUsed = sum(sum(sum(y.*yFuel)));

The constraint is that the fuel used is no more than the fuel available.

fuelcons = fuelUsed <= totalFuel;

Set the Generator Startup Indicator Variables

How can you get the solver to set the z variables automatically to match the active/off periods of the
y variables? Recall that the condition to satisfy is z(i,j) = 1 exactly when sum_k y(i,j,k) = 0
and sum_k y(i+1,j,k) = 1.

Notice that sum_k (- y(i,j,k) + y(i+1,j,k)) > 0 exactly when you want z(i,j) = 1.

Therefore, include these linear inequality constraints in the problem formulation.

sum_k (- y(i,j,k) + y(i+1,j,k)) - z(i,j) < = 0.

Also, include the z variables in the objective function cost. With the z variables in the objective
function, the solver attempts to lower their values, meaning it tries to set them all equal to 0. But for
those intervals when a generator turns on, the linear inequality forces z(i,j) to equal 1.

Create an auxiliary variable w that represents y(i+1,j,k) - y(i,j,k). Represent the generator
startup inequality in terms of w.

w = optimexpr(nPeriods,nGens); % Allocate w
idx = 1:(nPeriods-1);
w(idx,:) = y(idx+1,:,'Low') - y(idx,:,'Low') + y(idx+1,:,'High') - y(idx,:,'High');
w(nPeriods,:) = y(1,:,'Low') - y(nPeriods,:,'Low') + y(1,:,'High') - y(nPeriods,:,'High');
switchcons = w - z <= 0;

Define Objective

The objective function includes fuel costs for running the generators, revenue from running the
generators, and costs for starting the generators.

generatorlevel = zeros(size(yFuel));
generatorlevel(:,1,1) = gen(1,1); % Fill in the levels
generatorlevel(:,1,2) = gen(1,2);
generatorlevel(:,2,1) = gen(2,1);
generatorlevel(:,2,2) = gen(2,2);

Incoming revenue = y.*generatorlevel.*poolPrice.

revenue = optimexpr(size(y));
for ii = 1:nPeriods
 revenue(ii,:,:) = poolPrice(ii)*y(ii,:,:).*generatorlevel(ii,:,:);
end

The total fuel cost = fuelUsed*fuelPrice.

fuelCost = fuelUsed*fuelPrice;

 Optimal Dispatch of Power Generators: Problem-Based

8-129

The generator startup cost = z*startCost.

startingCost = z*startCost;

The profit = incoming revenue - total fuel cost - startup cost.

profit = sum(sum(sum(revenue))) - fuelCost - sum(sum(startingCost));

Solve the Problem

Create an optimization problem and include the objective and constraints.

dispatch = optimproblem('ObjectiveSense','maximize');
dispatch.Objective = profit;
dispatch.Constraints.switchcons = switchcons;
dispatch.Constraints.fuelcons = fuelcons;
dispatch.Constraints.powercons = powercons;

To save space, suppress iterative display.

options = optimoptions('intlinprog','Display','final');

Solve the problem.

[dispatchsol,fval,exitflag,output] = solve(dispatch,'options',options);

Solving problem using intlinprog.

Optimal solution found.

Intlinprog stopped because the objective value is within a gap tolerance of the
optimal value, options.RelativeGapTolerance = 0.0001 (the default value). The
intcon variables are integer within tolerance, options.IntegerTolerance = 1e-05
(the default value).

Examine the Solution

Plot the solution as a function of time.

subplot(3,1,1)
bar(dispatchsol.y(:,1,1)*gen(1,1)+dispatchsol.y(:,1,2)*gen(1,2),.5,'g')
xlim([.5,48.5])
ylabel('MWh')
title('Generator 1 Optimal Schedule','FontWeight','bold')
subplot(3,1,2)
bar(dispatchsol.y(:,2,1)*gen(2,1)+dispatchsol.y(:,2,2)*gen(2,2),.5,'c')
title('Generator 2 Optimal Schedule','FontWeight','bold')
xlim([.5,48.5])
ylabel('MWh')
subplot(3,1,3)
bar(poolPrice,.5)
xlim([.5,48.5])
title('Energy Price','FontWeight','bold')
xlabel('Period')
ylabel('$ / MWh')

8 Linear Programming and Mixed-Integer Linear Programming

8-130

Generator 2 runs longer than generator 1, which you would expect because it is more efficient.
Generator 2 runs at its high power level whenever it is on. Generator 1 runs mainly at its high power
level, but dips down to low power for one time unit. Each generator runs for one contiguous set of
periods daily, and, therefore, incurs only one startup cost each day.

Check that the z variable is 1 for the periods when the generators start.

starttimes = find(round(dispatchsol.z) == 1); % Use round for noninteger results
[theperiod,thegenerator] = ind2sub(size(dispatchsol.z),starttimes)

theperiod = 2×1

 23
 16

thegenerator = 2×1

 1
 2

The periods when the generators start match the plots.

Compare to Lower Penalty for Startup

If you specify a lower value for startCost, the solution involves multiple generation periods.

 Optimal Dispatch of Power Generators: Problem-Based

8-131

startCost = 500; % Choose a lower penalty for starting the generators
startingCost = z*startCost;
profit = sum(sum(sum(revenue))) - fuelCost - sum(sum(startingCost));
dispatch.Objective = profit;
[dispatchsolnew,fvalnew,exitflagnew,outputnew] = solve(dispatch,'options',options);

Solving problem using intlinprog.

Optimal solution found.

Intlinprog stopped because the objective value is within a gap tolerance of the
optimal value, options.RelativeGapTolerance = 0.0001 (the default value). The
intcon variables are integer within tolerance, options.IntegerTolerance = 1e-05
(the default value).

subplot(3,1,1)
bar(dispatchsolnew.y(:,1,1)*gen(1,1)+dispatchsolnew.y(:,1,2)*gen(1,2),.5,'g')
xlim([.5,48.5])
ylabel('MWh')
title('Generator 1 Optimal Schedule','FontWeight','bold')
subplot(3,1,2)
bar(dispatchsolnew.y(:,2,1)*gen(2,1)+dispatchsolnew.y(:,2,2)*gen(2,2),.5,'c')
title('Generator 2 Optimal Schedule','FontWeight','bold')
xlim([.5,48.5])
ylabel('MWh')
subplot(3,1,3)
bar(poolPrice,.5)
xlim([.5,48.5])
title('Energy Price','FontWeight','bold')
xlabel('Period')
ylabel('$ / MWh')

8 Linear Programming and Mixed-Integer Linear Programming

8-132

starttimes = find(round(dispatchsolnew.z) == 1); % Use round for noninteger results
[theperiod,thegenerator] = ind2sub(size(dispatchsolnew.z),starttimes)

theperiod = 3×1

 22
 16
 45

thegenerator = 3×1

 1
 2
 2

See Also

More About
• “Optimal Dispatch of Power Generators: Solver-Based” on page 8-72
• “Integer and Logical Modeling” on page 8-171
• “Problem-Based Optimization Workflow” on page 9-2

 Optimal Dispatch of Power Generators: Problem-Based

8-133

Office Assignments by Binary Integer Programming: Problem-
Based

This example shows how to solve an assignment problem by binary integer programming using the
optimization problem approach. For the solver-based approach, see “Office Assignments by Binary
Integer Programming: Solver-Based” on page 8-96.

Office Assignment Problem

You want to assign six people, Marcelo, Rakesh, Peter, Tom, Marjorie, and Mary Ann, to seven offices.
Each office can have no more than one person, and each person gets exactly one office. So there will
be one empty office. People can give preferences for the offices, and their preferences are considered
based on their seniority. The longer they have been at MathWorks, the higher the seniority. Some
offices have windows, some do not, and one window is smaller than others. Additionally, Peter and
Tom often work together, so should be in adjacent offices. Marcelo and Rakesh often work together,
and should be in adjacent offices.

Office Layout

Offices 1, 2, 3, and 4 are inside offices (no windows). Offices 5, 6, and 7 have windows, but the
window in office 5 is smaller than the other two. Here is how the offices are arranged.

officelist = {'Office 1','Office 2','Office 3','Office 4','Office 5','Office 6','Office 7'};
printofficeassign(officelist)

8 Linear Programming and Mixed-Integer Linear Programming

8-134

Problem Formulation

You need to formulate the problem mathematically. Create binary variables that indicate whether a
person occupies an office. The list of people's names is

namelist = {'Mary Ann','Marjorie','Tom','Peter','Marcelo','Rakesh'};

Create binary variables indexed by office number and name.

occupy = optimvar('occupy',namelist,officelist,...
 'Type','integer','LowerBound',0,'Upperbound',1);

Seniority

You want to weight the preferences based on seniority so that the longer you have been at
MathWorks, the more your preferences count. The seniority is as follows: Mary Ann 9 years, Marjorie
10 years, Tom 5 years, Peter 3 years, Marcelo 1.5 years, and Rakesh 2 years. Create a normalized
weight vector based on seniority.

seniority = [9 10 5 3 1.5 2];
weightvector = seniority/sum(seniority);

People's Office Preferences

Set up a preference matrix where the rows correspond to offices and the columns correspond to
people. Ask each person to give values for each office so that the sum of all their choices, i.e., their
column, sums to 100. A higher number means the person prefers the office. Each person's
preferences are listed in a column vector.

MaryAnn = [0, 0, 0, 0, 10, 40, 50];
Marjorie = [0, 0, 0, 0, 20, 40, 40];
Tom = [0, 0, 0, 0, 30, 40, 30];
Peter = [1, 3, 3, 3, 10, 40, 40];
Marcelo = [3, 4, 1, 2, 10, 40, 40];
Rakesh = [10, 10, 10, 10, 20, 20, 20];

The ith element of a person's preference vector is how highly they value the ith office. Thus, the
combined preference matrix is as follows.

prefmatrix = [MaryAnn;Marjorie;Tom;Peter;Marcelo;Rakesh];

Weight the preferences matrix by weightvector to scale the columns by seniority.

PM = diag(weightvector) * prefmatrix;

Objective Function

The objective is to maximize the satisfaction of the preferences weighted by seniority. This is the
linear objective function sum(sum(occupy.*PM)).

Create an optimization problem and include the objective function.

peopleprob = optimproblem('ObjectiveSense','maximize','Objective',sum(sum(occupy.*PM)));

Constraints

The first set of constraints requires that each person gets exactly one office, that is for each person,
the sum of the occupy values corresponding to that person is exactly one.

 Office Assignments by Binary Integer Programming: Problem-Based

8-135

peopleprob.Constraints.constr1 = sum(occupy,2) == 1;

The second set of constraints are inequalities. These constraints specify that each office has no more
than one person in it.

peopleprob.Constraints.constr2 = sum(occupy,1) <= 1;

You want Tom and Peter no more than one office away from each other, and the same with Marcelo
and Rakesh.

Set constraints that Tom and Peter are not more than 1 away from each other.

peopleprob.Constraints.constrpt1 = occupy('Tom','Office 1') + sum(occupy('Peter',:)) - occupy('Peter','Office 2') <= 1;
peopleprob.Constraints.constrpt2 = occupy('Tom','Office 2') + sum(occupy('Peter',:)) - occupy('Peter','Office 1') ...
 - occupy('Peter','Office 3') - occupy('Peter','Office 5') <= 1;
peopleprob.Constraints.constrpt3 = occupy('Tom','Office 3') + sum(occupy('Peter',:)) - occupy('Peter','Office 2') ...
 - occupy('Peter','Office 4') - occupy('Peter','Office 6') <= 1;
peopleprob.Constraints.constrpt4 = occupy('Tom','Office 4') + sum(occupy('Peter',:)) - occupy('Peter','Office 3') ...
 - occupy('Peter','Office 7') <= 1;
peopleprob.Constraints.constrpt5 = occupy('Tom','Office 5') + sum(occupy('Peter',:)) - occupy('Peter','Office 2') ...
 - occupy('Peter','Office 6') <= 1;
peopleprob.Constraints.constrpt6 = occupy('Tom','Office 6') + sum(occupy('Peter',:)) - occupy('Peter','Office 3') ...
 - occupy('Peter','Office 5') - occupy('Peter','Office 7') <= 1;
peopleprob.Constraints.constrpt7 = occupy('Tom','Office 7') + sum(occupy('Peter',:)) - occupy('Peter','Office 4') ...
 - occupy('Peter','Office 6') <= 1;

Now create constraints that Marcelo and Rakesh are not more than 1 away from each other.

peopleprob.Constraints.constmr1 = occupy('Marcelo','Office 1') + sum(occupy('Rakesh',:)) - occupy('Rakesh','Office 2') <= 1;
peopleprob.Constraints.constmr2 = occupy('Marcelo','Office 2') + sum(occupy('Rakesh',:)) - occupy('Rakesh','Office 1') ...
 - occupy('Rakesh','Office 3') - occupy('Rakesh','Office 5') <= 1;
peopleprob.Constraints.constmr3 = occupy('Marcelo','Office 3') + sum(occupy('Rakesh',:)) - occupy('Rakesh','Office 2') ...
 - occupy('Rakesh','Office 4') - occupy('Rakesh','Office 6') <= 1;
peopleprob.Constraints.constmr4 = occupy('Marcelo','Office 4') + sum(occupy('Rakesh',:)) - occupy('Rakesh','Office 3') ...
 - occupy('Rakesh','Office 7') <= 1;
peopleprob.Constraints.constmr5 = occupy('Marcelo','Office 5') + sum(occupy('Rakesh',:)) - occupy('Rakesh','Office 2') ...
 - occupy('Rakesh','Office 6') <= 1;
peopleprob.Constraints.constmr6 = occupy('Marcelo','Office 6') + sum(occupy('Rakesh',:)) - occupy('Rakesh','Office 3') ...
 - occupy('Rakesh','Office 5') - occupy('Rakesh','Office 7') <= 1;
peopleprob.Constraints.constmr7 = occupy('Marcelo','Office 7') + sum(occupy('Rakesh',:)) - occupy('Rakesh','Office 4') ...
 - occupy('Rakesh','Office 6') <= 1;

Solve Assignment Problem

Call solve to solve the problem.

[soln,fval,exitflag,output] = solve(peopleprob);

LP: Optimal objective value is -33.836066.

Optimal solution found.

Intlinprog stopped at the root node because the objective value is within a gap tolerance of the optimal value,
options.AbsoluteGapTolerance = 0 (the default value). The intcon variables are integer within tolerance,
options.IntegerTolerance = 1e-05 (the default value).

8 Linear Programming and Mixed-Integer Linear Programming

8-136

View the Solution -- Who Got Each Office?

numOffices = length(officelist);
office = cell(numOffices,1);
for i=1:numOffices
 office{i} = find(soln.occupy(:,i)); % people index in office
end

whoinoffice = officelist; % allocate
for i=1:numOffices
 if isempty(office{i})
 whoinoffice{i} = ' empty ';
 else
 whoinoffice{i} = namelist(office{i});
 end
end

printofficeassign(whoinoffice);
title('Solution of the Office Assignment Problem');

Solution Quality

For this problem, the satisfaction of the preferences by seniority is maximized to the value of fval.
The value of exitflag indicates that solve converged to an optimal solution. The output structure
gives information about the solution process, such as how many nodes were explored, and the gap
between the lower and upper bounds in the branching calculation. In this case, no branch-and-bound
nodes were generated, meaning the problem was solved without a branch-and-bound step. The

 Office Assignments by Binary Integer Programming: Problem-Based

8-137

absolute gap is 0, meaning the solution is optimal, with no difference between the internally
calculated lower and upper bounds on the objective function.

fval,exitflag,output

fval = 33.8361

exitflag = 1

output = struct with fields:
 relativegap: 0
 absolutegap: 0
 numfeaspoints: 1
 numnodes: 0
 constrviolation: 0
 message: 'Optimal solution found.↵↵Intlinprog stopped at the root node because the objective value is within a gap tolerance of the optimal value, options.AbsoluteGapTolerance = 0 (the default value). The intcon variables are integer within tolerance, options.IntegerTolerance = 1e-05 (the default value).'
 solver: 'intlinprog'

See Also

More About
• “Office Assignments by Binary Integer Programming: Solver-Based” on page 8-96
• “Problem-Based Optimization Workflow” on page 9-2

8 Linear Programming and Mixed-Integer Linear Programming

8-138

Mixed-Integer Quadratic Programming Portfolio Optimization:
Problem-Based

This example shows how to solve a Mixed-Integer Quadratic Programming (MIQP) portfolio
optimization problem using the problem-based approach. The idea is to iteratively solve a sequence of
mixed-integer linear programming (MILP) problems that locally approximate the MIQP problem. For
the solver-based approach, see “Mixed-Integer Quadratic Programming Portfolio Optimization:
Solver-Based” on page 8-82.

Problem Outline

As Markowitz showed ("Portfolio Selection," J. Finance Volume 7, Issue 1, pp. 77-91, March 1952),
you can express many portfolio optimization problems as quadratic programming problems. Suppose
that you have a set of N assets and want to choose a portfolio, with x(i) being the fraction of your
investment that is in asset i. If you know the vector r of mean returns of each asset, and the
covariance matrix Q of the returns, then for a given level of risk-aversion λ you maximize the risk-
adjusted expected return:

max
x

(rTx− λxTQx) .

The quadprog solver addresses this quadratic programming problem. However, in addition to the
plain quadratic programming problem, you might want to restrict a portfolio in a variety of ways,
such as:

• Having no more than M assets in the portfolio, where M <= N.
• Having at least m assets in the portfolio, where 0 < m <= M.
• Having semicontinuous constraints, meaning either x(i) = 0, or fmin ≤ x(i) ≤ fmax for some fixed

fractions fmin > 0 and fmax ≥ fmin.

You cannot include these constraints in quadprog. The difficulty is the discrete nature of the
constraints. Furthermore, while the mixed-integer linear programming solver does handle discrete
constraints, it does not address quadratic objective functions.

This example constructs a sequence of MILP problems that satisfy the constraints, and that
increasingly approximate the quadratic objective function. While this technique works for this
example, it might not apply to different problem or constraint types.

Begin by modeling the constraints.

Modeling Discrete Constraints

x is the vector of asset allocation fractions, with 0 ≤ x(i) ≤ 1 for each i. To model the number of assets
in the portfolio, you need indicator variables v such that v(i) = 0 when x(i) = 0, and v(i) = 1 when
x(i) > 0. To get variables that satisfy this restriction, set the v vector to be a binary variable, and
impose the linear constraints

v(i)fmin ≤ x(i) ≤ v(i)fmax .

These inequalities both enforce that x(i) and v(i) are zero at exactly the same time, and they also
enforce that fmin ≤ x(i) ≤ fmax whenever x(i) > 0.

Also, to enforce the constraints on the number of assets in the portfolio, impose the linear constraints

 Mixed-Integer Quadratic Programming Portfolio Optimization: Problem-Based

8-139

m ≤ ∑
i

v(i) ≤ M .

Objective and Successive Linear Approximations

As first formulated, you try to maximize the objective function. However, all Optimization Toolbox™
solvers minimize. So formulate the problem as minimizing the negative of the objective:

min
x

λxTQx− rTx .

This objective function is nonlinear. The MILP solver requires a linear objective function. There is a
standard technique to reformulate this problem into one with linear objective and nonlinear
constraints. Introduce a slack variable z to represent the quadratic term.

min
x, z

λz − rTx such that xTQx− z ≤ 0, z ≥ 0 .

As you iteratively solve MILP approximations, you include new linear constraints, each of which
approximates the nonlinear constraint locally near the current point. In particular, for x = x0 + δ
where x0 is a constant vector and δ is a variable vector, the first-order Taylor approximation to the
constraint is

xTQx− z = x0
TQx0 + 2x0

TQδ− z + O(|δ |2) .

Replacing δ by x− x0 gives

xTQx− z = − x0
TQx0 + 2x0

TQx− z + O(|x− x0 |2) .

For each intermediate solution xk you introduce a new linear constraint in x and z as the linear part of
the expression above:

−xk
TQxk + 2xk

TQx− z ≤ 0 .

This has the form Ax ≤ b, where A = 2xk
TQ, there is a −1 multiplier for the z term, and b = xk

TQxk.

This method of adding new linear constraints to the problem is called a cutting plane method. For
details, see J. E. Kelley, Jr. "The Cutting-Plane Method for Solving Convex Programs." J. Soc. Indust.
Appl. Math. Vol. 8, No. 4, pp. 703-712, December, 1960.

MATLAB® Problem Formulation

To express optimization problems:

• Decide what your variables represent
• Express lower and upper bounds in these variables
• Give linear equality and inequality expressions

Load the data for the problem. This data has 225 expected returns in the vector r and the covariance
of the returns in the 225-by-225 matrix Q. The data is the same as in the Using Quadratic
Programming on Portfolio Optimization Problems example.

8 Linear Programming and Mixed-Integer Linear Programming

8-140

load port5
r = mean_return;
Q = Correlation .* (stdDev_return * stdDev_return');

Set the number of assets as N.

N = length(r);

Create Problem Variables, Constraints, and Objective

Create continuous variables xvars representing the asset allocation fraction, binary variables vvars
representing whether or not the associated xvars is zero or strictly positive, and zvar representing
the z variable, a positive scalar.

xvars = optimvar('xvars',N,1,'LowerBound',0,'UpperBound',1);
vvars = optimvar('vvars',N,1,'Type','integer','LowerBound',0,'UpperBound',1);
zvar = optimvar('zvar',1,'LowerBound',0);

The lower bounds of all the 2N+1 variables in the problem are zero. The upper bounds of the xvars
and yvars variables are one, and zvar has no upper bound.

Set the number of assets in the solution to be between 100 and 150. Incorporate this constraint into
the problem in the form, namely

m ≤ ∑
i

v(i) ≤ M,

by writing two linear constraints:

∑
i

v(i) ≤ M

∑
i

v(i) ≥ m .

M = 150;
m = 100;
qpprob = optimproblem('ObjectiveSense','maximize');
qpprob.Constraints.mconstr = sum(vvars) <= M;
qpprob.Constraints.mconstr2 = sum(vvars) >= m;

Include semicontinuous constraints. Take the minimal nonzero fraction of assets to be 0.001 for each
asset type, and the maximal fraction to be 0.05.

fmin = 0.001;
fmax = 0.05;

Include the inequalities x(i) ≤ fmax(i) * v(i) and fmin(i) * v(i) ≤ x(i).

qpprob.Constraints.fmaxconstr = xvars <= fmax*vvars;
qpprob.Constraints.fminconstr = fmin*vvars <= xvars;

Include the constraint that the portfolio is 100% invested, meaning ∑xi = 1.

qpprob.Constraints.allin = sum(xvars) == 1;

Set the risk-aversion coefficient λ to 100.

 Mixed-Integer Quadratic Programming Portfolio Optimization: Problem-Based

8-141

lambda = 100;

Define the objective function rTx− λz and include it in the problem.

qpprob.Objective = r'*xvars - lambda*zvar;

Solve the Problem

To solve the problem iteratively, begin by solving the problem with the current constraints, which do
not yet reflect any linearization.

options = optimoptions(@intlinprog,'Display','off'); % Suppress iterative display
[xLinInt,fval,exitFlagInt,output] = solve(qpprob,'options',options);

Prepare a stopping condition for the iterations: stop when the slack variable z is within 0.01% of the
true quadratic value.

thediff = 1e-4;
iter = 1; % iteration counter
assets = xLinInt.xvars;
truequadratic = assets'*Q*assets;
zslack = xLinInt.zvar;

Keep a history of the computed true quadratic and slack variables for plotting. Set tighter tolerances
than default to help the iterations converge to a correct solution.

history = [truequadratic,zslack];

options = optimoptions(options,'LPOptimalityTolerance',1e-10,'RelativeGapTolerance',1e-8,...
 'ConstraintTolerance',1e-9,'IntegerTolerance',1e-6);

Compute the quadratic and slack values. If they differ, then add another linear constraint and solve
again.

Each new linear constraint Ax ≤ b comes from the linear approximation

−xk
TQxk + 2xk

TQx− z ≤ 0 .

After you find a new solution, use a linear constraint halfway between the old and new solutions. This
heuristic way of including linear constraints can be faster than simply taking the new solution. To use
the solution instead of the halfway heuristic, comment the "Midway" line below, and uncomment the
following one.

while abs((zslack - truequadratic)/truequadratic) > thediff % relative error
 constr = 2*assets'*Q*xvars - zvar <= assets'*Q*assets;
 newname = ['iteration',num2str(iter)];
 qpprob.Constraints.(newname) = constr;
 % Solve the problem with the new constraints
 [xLinInt,fval,exitFlagInt,output] = solve(qpprob,'options',options);
 assets = (assets+xLinInt.xvars)/2; % Midway from the previous to the current
% assets = xLinInt(xvars); % Use the previous line or this one
 truequadratic = xLinInt.xvars'*Q*xLinInt.xvars;
 zslack = xLinInt.zvar;
 history = [history;truequadratic,zslack];
 iter = iter + 1;
end

8 Linear Programming and Mixed-Integer Linear Programming

8-142

Examine the Solution and Convergence Rate

Plot the history of the slack variable and the quadratic part of the objective function to see how they
converged.

plot(history)
legend('Quadratic','Slack')
xlabel('Iteration number')
title('Quadratic and linear approximation (slack)')

What is the quality of the MILP solution? The output structure contains that information. Examine
the absolute gap between the internally-calculated bounds on the objective at the solution.

disp(output.absolutegap)

 0

The absolute gap is zero, indicating that the MILP solution is accurate.

Plot the optimal allocation. Use xLinInt.xvars, not assets, because assets might not satisfy the
constraints when using the midway update.

bar(xLinInt.xvars)
grid on
xlabel('Asset index')
ylabel('Proportion of investment')
title('Optimal asset allocation')

 Mixed-Integer Quadratic Programming Portfolio Optimization: Problem-Based

8-143

You can easily see that all nonzero asset allocations are between the semicontinuous bounds
fmin = 0 . 001 and fmax = 0 . 05.

How many nonzero assets are there? The constraint is that there are between 100 and 150 nonzero
assets.

sum(xLinInt.vvars)

ans = 100

What is the expected return for this allocation, and the value of the risk-adjusted return?

fprintf('The expected return is %g, and the risk-adjusted return is %g.\n',...
 r'*xLinInt.xvars,fval)

The expected return is 0.000595107, and the risk-adjusted return is -0.0360382.

More elaborate analyses are possible by using features specifically designed for portfolio optimization
in Financial Toolbox®. For an example that shows how to use the Portfolio class to directly handle

8 Linear Programming and Mixed-Integer Linear Programming

8-144

semicontinuous and cardinality constraints, see “Portfolio Optimization with Semicontinuous and
Cardinality Constraints” (Financial Toolbox).

See Also

More About
• “Mixed-Integer Quadratic Programming Portfolio Optimization: Solver-Based” on page 8-82
• “Integer and Logical Modeling” on page 8-171
• “Problem-Based Optimization Workflow” on page 9-2

 Mixed-Integer Quadratic Programming Portfolio Optimization: Problem-Based

8-145

Cutting Stock Problem: Problem-Based
This example shows how to solve a cutting stock problem using linear programming with an integer
linear programming subroutine. The example uses the “Problem-Based Optimization Setup”
approach. For the solver-based approach, see “Cutting Stock Problem: Solver-Based” on page 8-103.

Problem Overview

A lumber mill starts with trees that have been trimmed to fixed-length logs. Specify the fixed log
length.

logLength = 40;

The mill then cuts the logs into fixed lengths suitable for further processing. The problem is how to
make the cuts so that the mill satisfies a set of orders with the fewest logs.

Specify these fixed lengths and the order quantities for the lengths.

lengthlist = [8; 12; 16; 20];
quantity = [90; 111; 55; 30];
nLengths = length(lengthlist);

Assume that there is no material loss in making cuts, and no cost for cutting.

Linear Programming Formulation

Several authors, including Ford and Fulkerson [1] and Gilmore and Gomory [2], suggest the following
procedure, which you implement in the next section. A cutting pattern is a set of lengths to which a
single log can be cut.

Instead of generating every possible cutting pattern, it is more efficient to generate cutting patterns
as the solution of a subproblem. Starting from a base set of cutting patterns, solve the linear
programming problem of minimizing the number of logs used subject to the constraint that the cuts,
using the existing patterns, satisfy the demands.

After solving that problem, generate a new pattern by solving an integer linear programming
subproblem. The subproblem is to find the best new pattern, meaning the number of cuts from each
length in lengthlist that add up to no more than the total possible length logLength. The
quantity to optimize is the reduced cost of the new pattern, which is one minus the sum of the
Lagrange multipliers for the current solution times the new cutting pattern. If this quantity is
negative, then bringing that pattern into the linear program will improve its objective. If not, then no
better cutting pattern exists, and the patterns used so far give the optimal linear programming
solution. The reason for this conclusion is exactly parallel to the reason for when to stop the primal
simplex method: the method terminates when there is no variable with a negative reduced cost. The
problem in this example terminates when there is no pattern with negative reduced cost. For details
and an example, see Column generation algorithms and its references.

After solving the linear programming problem in this way, you can have noninteger solutions.
Therefore, solve the problem once more, using the generated patterns and constraining the variables
to have integer values.

8 Linear Programming and Mixed-Integer Linear Programming

8-146

https://en.wikipedia.org/wiki/Cutting_stock_problem
https://optimization.mccormick.northwestern.edu/index.php/Column_generation_algorithms

MATLAB Problem-Based Formulation

A pattern, in this formulation, is a vector of integers containing the number of cuts of each length in
lengthlist. Arrange a matrix named patterns to store the patterns, where each column in the
matrix gives a pattern. For example,

patterns =

2 0
0 2
0 1
1 0

.

The first pattern (column) represents two cuts of length 8 and one cut of length 20. The second
pattern represents two cuts of length 12 and one cut of length 16. Each is a feasible pattern because
the total of the cuts is no more than logLength = 40.

In this formulation, if x is a column vector of integers containing the number of times each pattern is
used, then patterns*x is a column vector giving the number of cuts of each type. The constraint of
meeting demand is patterns*x >= quantity. For example, using the previous patterns matrix,

suppose that x =
45
56

. (This x uses 101 logs.) Then

patterns * x =

90
112
56
45

,

which represents a feasible solution because the result exceeds the demand

quantity =

90
111
55
30

.

To have an initial feasible cutting pattern, use the simplest patterns, which have just one length of
cut. Use as many cuts of that length as feasible for the log.

patterns = diag(floor(logLength./lengthlist));
nPatterns = size(patterns,2);

To generate new patterns from the existing ones based on the current Lagrange multipliers, solve a
subproblem. Call the subproblem in a loop to generate patterns until no further improvement is
found. The subproblem objective depends only on the current Lagrange multipliers. The variables are
nonnegative integers representing the number of cuts of each length. The only constraint is that the
sum of the lengths of the cuts in a pattern is no more than the log length.

subproblem = optimproblem();
cuts = optimvar('cuts', nLengths, 1, 'Type','integer','LowerBound',zeros(nLengths,1));
subproblem.Constraints = dot(lengthlist,cuts) <= logLength;

To avoid unnecessary feedback from the solvers, set the Display option to 'off' for both the outer
loop and the inner subproblem solution.

 Cutting Stock Problem: Problem-Based

8-147

lpopts = optimoptions('linprog','Display','off');
ipopts = optimoptions('intlinprog',lpopts);

Initialize the variables for the loop.

reducedCost = -inf;
reducedCostTolerance = -0.0001;
exitflag = 1;

Call the loop.

while reducedCost < reducedCostTolerance && exitflag > 0
 logprob = optimproblem('Description','Cut Logs');
 % Create variables representing the number of each pattern used
 x = optimvar('x', nPatterns, 1, 'LowerBound', 0);
 % The objective is the number of logs used
 logprob.Objective.logsUsed = sum(x);
 % The constraint is that the cuts satisfy the demand
 logprob.Constraints.Demand = patterns*x >= quantity;

 [values,nLogs,exitflag,~,lambda] = solve(logprob,'options',lpopts);

 if exitflag > 0
 fprintf('Using %g logs\n',nLogs);
 % Now generate a new pattern, if possible
 subproblem.Objective = 1.0 - dot(lambda.Constraints.Demand,cuts);
 [values,reducedCost,pexitflag] = solve(subproblem,'options',ipopts);
 newpattern = round(values.cuts);
 if double(pexitflag) > 0 && reducedCost < reducedCostTolerance
 patterns = [patterns newpattern];
 nPatterns = nPatterns + 1;
 end
 end
end

Using 97.5 logs
Using 92 logs
Using 89.9167 logs
Using 88.3 logs

You now have the solution of the linear programming problem. To complete the solution, solve the
problem again with the final patterns, changing the solution variable x to the integer type. Also,
compute the waste, which is the quantity of unused logs (in feet) for each pattern and for the problem
as a whole.

if exitflag <= 0
 disp('Error in column generation phase')
else
 x.Type = 'integer';
 [values,logsUsed,exitflag] = solve(logprob,'options',ipopts);
 if double(exitflag) > 0
 values.x = round(values.x); % in case some values were not exactly integers
 logsUsed = sum(values.x);
 fprintf('Optimal solution uses %g logs\n', logsUsed);
 totalwaste = sum((patterns*values.x - quantity).*lengthlist); % waste due to overproduction
 for j = 1:size(values.x)
 if values.x(j) > 0
 fprintf('Cut %g logs with pattern\n',values.x(j));

8 Linear Programming and Mixed-Integer Linear Programming

8-148

 for w = 1:size(patterns,1)
 if patterns(w,j) > 0
 fprintf(' %g cut(s) of length %d\n', patterns(w,j),lengthlist(w));
 end
 end
 wastej = logLength - dot(patterns(:,j),lengthlist); % waste due to pattern inefficiency
 totalwaste = totalwaste + wastej;
 fprintf(' Waste of this pattern is %g\n',wastej);
 end
 end
 fprintf('Total waste in this problem is %g.\n',totalwaste);
 else
 disp('Error in final optimization')
 end
end

Optimal solution uses 89 logs

Cut 15 logs with pattern

 2 cut(s) of length 20

 Waste of this pattern is 0

Cut 18 logs with pattern

 1 cut(s) of length 8
 2 cut(s) of length 16

 Waste of this pattern is 0

Cut 37 logs with pattern

 2 cut(s) of length 8
 2 cut(s) of length 12

 Waste of this pattern is 0

Cut 19 logs with pattern

 2 cut(s) of length 12
 1 cut(s) of length 16

 Waste of this pattern is 0

Total waste in this problem is 28.

Part of the waste is due to overproduction, because the mill cuts one log into three 12-foot pieces, but
uses only one. Part of the waste is due to pattern inefficiency, because the three 12-foot pieces are 4
feet short of the total length of 40 feet.

References

[1] Ford, L. R., Jr. and D. R. Fulkerson. A Suggested Computation for Maximal Multi-Commodity
Network Flows. Management Science 5, 1958, pp. 97-101.

 Cutting Stock Problem: Problem-Based

8-149

[2] Gilmore, P. C., and R. E. Gomory. A Linear Programming Approach to the Cutting Stock Problem--
Part II. Operations Research 11, No. 6, 1963, pp. 863-888.

See Also

More About
• “Cutting Stock Problem: Solver-Based” on page 8-103
• “Problem-Based Optimization Workflow” on page 9-2

8 Linear Programming and Mixed-Integer Linear Programming

8-150

Solve Sudoku Puzzles Via Integer Programming: Problem-
Based

This example shows how to solve a Sudoku puzzle using binary integer programming. For the solver-
based approach, see “Solve Sudoku Puzzles Via Integer Programming: Solver-Based” on page 8-89.

You probably have seen Sudoku puzzles. A puzzle is to fill a 9-by-9 grid with integers from 1 through
9 so that each integer appears only once in each row, column, and major 3-by-3 square. The grid is
partially populated with clues, and your task is to fill in the rest of the grid.

Initial Puzzle

Here is a data matrix B of clues. The first row, B(1,2,2), means row 1, column 2 has a clue 2. The
second row, B(1,5,3), means row 1, column 5 has a clue 3. Here is the entire matrix B.

B = [1,2,2;
 1,5,3;
 1,8,4;
 2,1,6;
 2,9,3;
 3,3,4;
 3,7,5;
 4,4,8;
 4,6,6;
 5,1,8;
 5,5,1;
 5,9,6;
 6,4,7;
 6,6,5;
 7,3,7;
 7,7,6;
 8,1,4;
 8,9,8;
 9,2,3;
 9,5,4;
 9,8,2];

drawSudoku(B) % For the listing of this program, see the end of this example.

 Solve Sudoku Puzzles Via Integer Programming: Problem-Based

8-151

This puzzle, and an alternative MATLAB® solution technique, was featured in Cleve's Corner in 2009.

There are many approaches to solving Sudoku puzzles manually, as well as many programmatic
approaches. This example shows a straightforward approach using binary integer programming.

This approach is particularly simple because you do not give a solution algorithm. Just express the
rules of Sudoku, express the clues as constraints on the solution, and then MATLAB produces the
solution.

Binary Integer Programming Approach

The key idea is to transform a puzzle from a square 9-by-9 grid to a cubic 9-by-9-by-9 array of binary
values (0 or 1). Think of the cubic array as being 9 square grids stacked on top of each other, where
each layer corresponds to an integer from 1 through 9. The top grid, a square layer of the array, has a
1 wherever the solution or clue has a 1. The second layer has a 1 wherever the solution or clue has a
2. The ninth layer has a 1 wherever the solution or clue has a 9.

This formulation is precisely suited for binary integer programming.

The objective function is not needed here, and might as well be a constant term 0. The problem is
really just to find a feasible solution, meaning one that satisfies all the constraints. However, for tie
breaking in the internals of the integer programming solver, giving increased solution speed, use a
nonconstant objective function.

8 Linear Programming and Mixed-Integer Linear Programming

8-152

https://www.mathworks.com/company/newsletters/articles/solving-sudoku-with-matlab.html

Express the Rules for Sudoku as Constraints

Suppose a solution x is represented in a 9-by-9-by-9 binary array. What properties does x have? First,
each square in the 2-D grid (i,j) has exactly one value, so there is exactly one nonzero element among
the 3-D array entries x(i, j, 1), . . . , x(i, j, 9). In other words, for every i and j,

∑
k = 1

9
x(i, j, k) = 1 .

Similarly, in each row i of the 2-D grid, there is exactly one value out of each of the digits from 1 to 9.
In other words, for each i and k,

∑
j = 1

9
x(i, j, k) = 1 .

And each column j in the 2-D grid has the same property: for each j and k,

∑
i = 1

9
x(i, j, k) = 1 .

The major 3-by-3 grids have a similar constraint. For the grid elements 1 ≤ i ≤ 3 and 1 ≤ j ≤ 3, and
for each 1 ≤ k ≤ 9,

∑
i = 1

3
∑

j = 1

3
x(i, j, k) = 1 .

To represent all nine major grids, just add 3 or 6 to each i and j index:

∑
i = 1

3
∑

j = 1

3
x(i + U, j + V, k) = 1, where U, V ϵ {0, 3, 6} .

Express Clues

Each initial value (clue) can be expressed as a constraint. Suppose that the (i, j) clue is m for some

1 ≤ m ≤ 9. Then x(i, j, m) = 1. The constraint ∑
k = 1

9
x(i, j, k) = 1 ensures that all other x(i, j, k) = 0 for

k ≠ m.

Sudoku in Optimization Problem Form

Create an optimization variable x that is binary and of size 9-by-9-by-9.

x = optimvar('x',9,9,9,'Type','integer','LowerBound',0,'UpperBound',1);

Create an optimization problem with a rather arbitrary objective function. The objective function can
help the solver by destroying the inherent symmetry of the problem.

sudpuzzle = optimproblem;
mul = ones(1,1,9);
mul = cumsum(mul,3);
sudpuzzle.Objective = sum(sum(sum(x,1),2).*mul);

 Solve Sudoku Puzzles Via Integer Programming: Problem-Based

8-153

Represent the constraints that the sums of x in each coordinate direction are one.

sudpuzzle.Constraints.consx = sum(x,1) == 1;
sudpuzzle.Constraints.consy = sum(x,2) == 1;
sudpuzzle.Constraints.consz = sum(x,3) == 1;

Create the constraints that the sums of the major grids sum to one as well.

majorg = optimconstr(3,3,9);

for u = 1:3
 for v = 1:3
 arr = x(3*(u-1)+1:3*(u-1)+3,3*(v-1)+1:3*(v-1)+3,:);
 majorg(u,v,:) = sum(sum(arr,1),2) == ones(1,1,9);
 end
end
sudpuzzle.Constraints.majorg = majorg;

Include the initial clues by setting lower bounds of 1 at the clue entries. This setting fixes the value of
the corresponding entry to be 1, and so sets the solution at each clued value to be the clue entry.

for u = 1:size(B,1)
 x.LowerBound(B(u,1),B(u,2),B(u,3)) = 1;
end

Solve the Sudoku puzzle.

sudsoln = solve(sudpuzzle)

Solving problem using intlinprog.
LP: Optimal objective value is 405.000000.

Optimal solution found.

Intlinprog stopped at the root node because the objective value is within a gap
tolerance of the optimal value, options.AbsoluteGapTolerance = 0 (the default
value). The intcon variables are integer within tolerance,
options.IntegerTolerance = 1e-05 (the default value).

sudsoln = struct with fields:
 x: [9x9x9 double]

Round the solution to ensure that all entries are integers, and display the solution.

sudsoln.x = round(sudsoln.x);

y = ones(size(sudsoln.x));
for k = 2:9
 y(:,:,k) = k; % multiplier for each depth k
end
S = sudsoln.x.*y; % multiply each entry by its depth
S = sum(S,3); % S is 9-by-9 and holds the solved puzzle
drawSudoku(S)

8 Linear Programming and Mixed-Integer Linear Programming

8-154

You can easily check that the solution is correct.

Function to Draw the Sudoku Puzzle
type drawSudoku

function drawSudoku(B)
% Function for drawing the Sudoku board

% Copyright 2014 The MathWorks, Inc.

figure;hold on;axis off;axis equal % prepare to draw
rectangle('Position',[0 0 9 9],'LineWidth',3,'Clipping','off') % outside border
rectangle('Position',[3,0,3,9],'LineWidth',2) % heavy vertical lines
rectangle('Position',[0,3,9,3],'LineWidth',2) % heavy horizontal lines
rectangle('Position',[0,1,9,1],'LineWidth',1) % minor horizontal lines
rectangle('Position',[0,4,9,1],'LineWidth',1)
rectangle('Position',[0,7,9,1],'LineWidth',1)
rectangle('Position',[1,0,1,9],'LineWidth',1) % minor vertical lines
rectangle('Position',[4,0,1,9],'LineWidth',1)
rectangle('Position',[7,0,1,9],'LineWidth',1)

% Fill in the clues
%
% The rows of B are of the form (i,j,k) where i is the row counting from
% the top, j is the column, and k is the clue. To place the entries in the
% boxes, j is the horizontal distance, 10-i is the vertical distance, and

 Solve Sudoku Puzzles Via Integer Programming: Problem-Based

8-155

% we subtract 0.5 to center the clue in the box.
%
% If B is a 9-by-9 matrix, convert it to 3 columns first

if size(B,2) == 9 % 9 columns
 [SM,SN] = meshgrid(1:9); % make i,j entries
 B = [SN(:),SM(:),B(:)]; % i,j,k rows
end

for ii = 1:size(B,1)
 text(B(ii,2)-0.5,9.5-B(ii,1),num2str(B(ii,3)))
end

hold off

end

See Also

More About
• “Solve Sudoku Puzzles Via Integer Programming: Solver-Based” on page 8-89
• “Problem-Based Optimization Workflow” on page 9-2

8 Linear Programming and Mixed-Integer Linear Programming

8-156

Minimize Makespan in Parallel Processing
This example involves a set of tasks to be processed in parallel. Each task has a known processing
time. The makespan is the amount of time to process all of the tasks. This figure shows two
processors; the height of each colored box represents the length of time to process a task. Each task
can have a different run time on each processor.

Your goal is to schedule tasks on processors so as to minimize the makespan.

Problem Setup

This example has 11 processors and 40 tasks. The time for each processor to process each task is
given in the array processingTime. For this example, generate random processing times.

rng default % for reproducibility
numberOfProcessors = 11;
numberOfTasks = 40;
processingTime = [10;7;2;5;3;4;7;6;4;3;1] .* rand(numberOfProcessors,numberOfTasks);

processingTime(i,j) represents the amount of time that processor i takes to process task j.

To solve the problem using binary integer programming, create process as a binary optimization
variable array, where process(i,j) = 1 means processor i processes task j.

process = optimvar('process',size(processingTime),'Type','integer','LowerBound',0,'UpperBound',1);

Each task must be assigned to exactly one processor.

assigneachtask = sum(process,1) == 1;

To represent the objective, define a nonnegative optimization variable named makespan.

makespan = optimvar('makespan','LowerBound',0);

Compute the time that each processor requires to process its tasks.

computetime = sum(process.*processingTime,2);

Relate the compute times to the makespan. The makespan is greater than or equal to each compute
time.

 Minimize Makespan in Parallel Processing

8-157

makespanbound = makespan >= computetime;

Create an optimization problem whose objective is to minimize the makespan, and include the
problem constraints.

scheduleproblem = optimproblem('Objective',makespan);
scheduleproblem.Constraints.assigneachtask = assigneachtask;
scheduleproblem.Constraints.makespanbound = makespanbound;

Solve Problem and View Solution

Solve the problem, suppressing the usual display.

options = optimoptions(scheduleproblem,'Display',"off");
[sol,fval,exitflag] = solve(scheduleproblem,'Options',options)

sol = struct with fields:
 makespan: 1.3634
 process: [11x40 double]

fval = 1.3634

exitflag =
 OptimalSolution

The returned exitflag indicates that the solver found an optimal solution, meaning the returned
solution has minimal makespan.

The returned makespan is 1.3634. Is this an efficient schedule? To find out, view the resulting
schedule as a stacked bar chart. First, create a schedule matrix where row i represents the tasks
done by processor i. Then, find the processing time for each entry in the schedule.

processval = round(sol.process);
maxlen = max(sum(processval,2)); % Required width of the matrix
% Now calculate the schedule matrix
optimalSchedule = zeros(numberOfProcessors,maxlen);
ptime = optimalSchedule;
for i = 1:numberOfProcessors
 schedi = find(processval(i,:));
 optimalSchedule(i,1:length(schedi)) = schedi;
 ptime(i,1:length(schedi)) = processingTime(i,schedi);
end
optimalSchedule

optimalSchedule = 11×10

 25 38 0 0 0 0 0 0 0 0
 4 12 23 32 0 0 0 0 0 0
 7 13 14 18 31 37 0 0 0 0
 35 0 0 0 0 0 0 0 0 0
 6 22 39 0 0 0 0 0 0 0
 10 26 28 30 0 0 0 0 0 0
 20 0 0 0 0 0 0 0 0 0
 21 24 27 0 0 0 0 0 0 0
 8 16 33 0 0 0 0 0 0 0
 3 17 34 0 0 0 0 0 0 0

8 Linear Programming and Mixed-Integer Linear Programming

8-158

 ⋮

Display the schedule matrix as a stacked bar chart. Label the top of each bar with the task number.

figure
bar(ptime,'stacked')
xlabel('Processor Number')
ylabel('Processing Time')
title('Task Assignments to Processors')
for i=1:size(optimalSchedule,1)
 for j=1:size(optimalSchedule,2)
 if optimalSchedule(i,j) > 0
 processText = num2str(optimalSchedule(i,j),"%d");
 hText = text(i,sum(ptime(i,1:j),2),processText);
 set(hText,"VerticalAlignment","top","HorizontalAlignment","center","FontSize",10,"Color","w");
 end
 end
end

Find the minimum height of the stacked bars, which represents the earliest time a processor stops
working. Then, find the processor corresponding to the maximum height.

minlength = min(sum(ptime,2))

minlength = 1.0652

[~,processormaxlength] = max(sum(ptime,2))

 Minimize Makespan in Parallel Processing

8-159

processormaxlength = 7

All processors are busy until time minlength = 1.0652. From the stacked bar chart, you can see that
processor 8 stops working at that time. Processor processormaxlength = 7 is the last processor to
stop working, which occurs at time makespan = 1.3634.

See Also
solve

More About
• “Problem-Based Optimization Workflow” on page 9-2
• “Linear Programming and Mixed-Integer Linear Programming”

8 Linear Programming and Mixed-Integer Linear Programming

8-160

Investigate Linear Infeasibilities
This example shows how to investigate the linear constraints that cause a problem to be infeasible.
For further details about these techniques, see Chinneck [1] on page 8-0 and [2] on page 8-0 .

If linear constraints cause a problem to be infeasible, you might want to find a subset of the
constraints that is infeasible, but removing any member of the subset makes the rest of the subset
feasible. The name for such a subset is Irreducible Infeasible Subset of Constraints, abbreviated IIS.
Conversely, you might want to find a maximum cardinality subset of constraints that is feasible. This
subset is called a Maximum Feasible Subset, abbreviated MaxFS. The two concepts are related, but
not identical. A problem can have many different IISs, some with different cardinality.

This example shows two ways of finding an IIS, and two ways of obtaining a feasible set of
constraints. The example assumes that all given bounds are correct, meaning the lb and ub
arguments have no errors.

Infeasible Example

Create a random matrix A representing linear inequalities of size 150-by-15. Set the corresponding
vector b to a vector with entries of 10, and change 5% of those values to –10.

N = 15;
rng default
A = randn([10*N,N]);
b = 10*ones(size(A,1),1);
Aeq = [];
beq = [];
b(rand(size(b)) <= 0.05) = -10;
f = ones(N,1);
lb = -f;
ub = f;

Check that problem is infeasible.

[x,fval,exitflag,output,lambda] = linprog(f,A,b,Aeq,beq,lb,ub);

No feasible solution found.

Linprog stopped because no point satisfies the constraints.

Deletion Filter

To identify an IIS, perform the following steps. Given a set of linear constraints numbered 1 through
N, where all problem constraints are infeasible:

For each i from 1 to N:

• Temporarily remove constraint i from the problem.
• Test the resulting problem for feasibility.
• If the problem is feasible without constraint i, return constraint i to the problem.
• If the problem is not feasible without constraint i, do not return constraint i to the problem

Continue to the next i (up to value N).

At the end of this procedure, the constraints that remain in the problem form an IIS.

 Investigate Linear Infeasibilities

8-161

For MATLAB® code that implements this procedure, see the deletionfilter helper function at the
end of this example on page 8-0 .

Note: If you use the live script file for this example, the deletionfilter function is already
included at the end of the file. Otherwise, you need to create this function at the end of your .m file or
add it as a file on the MATLAB path. The same is true for the other helper functions used later in this
example.

See the effect of deletionfilter on the example data.

[ineqs,eqs,ncall] = deletionfilter(A,b,Aeq,beq,lb,ub);

The problem has no equality constraints. Find the indices for the inequality constraints and the value
of b(iis).

iis = find(ineqs)

iis = 114

b(iis)

ans = -10

Only one inequality constraint causes the problem to be infeasible, along with the bound constraints.
The constraint is

A(iis,:)*x <= b(iis).

Why is this constraint infeasible together with the bounds? Find the sum of the absolute values of
that row of A.

disp(sum(abs(A(iis,:))))

 8.4864

Due to the bounds, the x vector has values between –1 and 1, and so A(iis,:)*x cannot be less
than b(iis) = –10.

How many linprog calls did deletionfilter perform?

disp(ncall)

 150

The problem has 150 linear constraints, so the function called linprog 150 times.

Elastic Filter

As an alternative to the deletion filter, which examines every constraint, try the elastic filter. This
filter works as follows.

First, allow each constraint i to be violated by a positive amount e(i), where equality constraints
have both additive and subtractive positive elastic values.

Aineqx ≤ bineq + e
Aeqx = beq + e1− e2

Next, solve the associated linear programming problem (LP)

8 Linear Programming and Mixed-Integer Linear Programming

8-162

min
x, e
∑ei

subject to the listed constraints and with ei ≥ 0.

• If the associated LP has a solution, remove all constraints that have a strictly positive associated
ei, and record those constraints in a list of indices (potential IIS members). Return to the previous
step to solve the new, reduced associated LP.

• If the associated LP has no solution (is infeasible) or has no strictly positive associated ei, exit the
filter.

The elastic filter can exit in many fewer iterations than the deletion filter, because it can bring many
indices at once into the IIS, and can halt without going through the entire list of indices. However, the
problem has more variables than the original problem, and its resulting list of indices can be larger
than an IIS. To find an IIS after running an elastic filter, run the deletion filter on the result.

For MATLAB® code that implements this filter, see the elasticfilter helper function at the end of
this example on page 8-0 .

See the effect of elasticfilter on the example data.

[ineqselastic,eqselastic,ncall] = ...
 elasticfilter(A,b,Aeq,beq,lb,ub);

The problem has no equality constraints. Find the indices for the inequality constraints.

iiselastic = find(ineqselastic)

iiselastic = 5×1

 2
 60
 82
 97
 114

The elastic IIS lists five constraints, whereas the deletion filter found only one. Run the deletion filter
on the returned set to find a genuine IIS.

A_1 = A(ineqselastic > 0,:);
b_1 = b(ineqselastic > 0);
[dineq_iis,deq_iis,ncall2] = deletionfilter(A_1,b_1,Aeq,beq,lb,ub);
iiselasticdeletion = find(dineq_iis)

iiselasticdeletion = 5

The fifth constraint in the elastic filter result, inequality 114, is the IIS. This result agrees with the
answer from the deletion filter. The difference between the approaches is that the combined elastic
and deletion filter approach uses many fewer linprog calls. Display the total number of linprog
calls used by the elastic filter followed by the deletion filter.

disp(ncall + ncall2)

 7

 Investigate Linear Infeasibilities

8-163

Remove IIS in a Loop

Generally, obtaining a single IIS does not enable you to find all the reasons that your optimization
problem fails. To correct an infeasible problem, you can repeatedly find an IIS and remove it from the
problem until the problem becomes feasible.

The following code shows how to remove one IIS at a time from a problem until the problem becomes
feasible. The code uses an indexing technique to keep track of constraints in terms of their positions
in the original problem, before the algorithm removes any constraints.

The code keeps track of the original variables in the problem by using a Boolean vector activeA to
represent the current constraints (rows) of the A matrix, and a Boolean vector activeAeq to
represent the current constraints of the Aeq matrix. When adding or removing constraints, the code
indexes into A or Aeq so that the row numbers do not change, even though the number of constraints
changes.

Running this code returns idx2, a vector of the indices of the nonzero elements in activeA:

idx2 = find(activeA)

Suppose that var is a Boolean vector that has the same length as idx2. Then

idx2(find(var))

expresses var as indices into the original problem variables. In this way, the indexing can take a
subset of a subset of constraints, work with only the smaller subset, and still unambiguously refer to
the original problem variables.

opts = optimoptions('linprog','Display',"none");
activeA = true(size(b));
activeAeq = true(size(beq));
[~,~,exitflag] = linprog(f,A,b,Aeq,beq,lb,ub,opts);
ncl = 1;
while exitflag < 0
 [ineqselastic,eqselastic,ncall] = ...
 elasticfilter(A(activeA,:),b(activeA),Aeq(activeAeq,:),beq(activeAeq),lb,ub);
 ncl = ncl + ncall;
 idxaa = find(activeA);
 idxae = find(activeAeq);
 tmpa = idxaa(find(ineqselastic));
 tmpae = idxae(find(eqselastic));
 AA = A(tmpa,:);
 bb = b(tmpa);
 AE = Aeq(tmpae,:);
 be = beq(tmpae);
 [ineqs,eqs,ncall] = ...
 deletionfilter(AA,bb,AE,be,lb,ub);
 ncl = ncl + ncall;
 activeA(tmpa(ineqs)) = false;
 activeAeq(tmpae(eqs)) = false;
 disp(['Removed inequalities ',int2str((tmpa(ineqs))'),' and equalities ',int2str((tmpae(eqs))')])
 [~,~,exitflag] = ...
 linprog(f,A(activeA,:),b(activeA),Aeq(activeAeq,:),beq(activeAeq),lb,ub,opts);
 ncl = ncl + 1;
end

Removed inequalities 114 and equalities
Removed inequalities 97 and equalities

8 Linear Programming and Mixed-Integer Linear Programming

8-164

Removed inequalities 64 82 and equalities
Removed inequalities 60 and equalities

fprintf('Number of linprog calls: %d\n',ncl)

Number of linprog calls: 28

Notice that the loop removes inequalities 64 and 82 simultaneously, which indicates that these two
constraints form an IIS.

Find MaxFS

Another approach for obtaining a feasible set of constraints is to find a MaxFS directly. As Chinneck
[1] explains, finding a MaxFS is an NP-complete problem, meaning the problem does not necessarily
have efficient algorithms for finding a MaxFS. However, Chinneck proposes some algorithms that can
work efficiently.

Use Chinneck's Algorithm 7.3 to find a cover set of constraints that, when removed, gives a feasible
set. The algorithm is implemented in the generatecover helper function at the end of this example
on page 8-0 .

[coversetineq,coverseteq,nlp] = generatecover(A,b,Aeq,beq,lb,ub)

coversetineq = 5×1

 114
 97
 60
 82
 2

coverseteq =

 []

nlp = 40

Remove these constraints and solve the LP.

usemeineq = true(size(b));
usemeineq(coversetineq) = false; % Remove inequality constraints
usemeeq = true(size(beq));
usemeeq(coverseteq) = false; % Remove equality constraints
[xs,fvals,exitflags] = ...
 linprog(f,A(usemeineq,:),b(usemeineq),Aeq(usemeeq),beq(usemeeq),lb,ub);

Optimal solution found.

Notice that the cover set is exactly the same as the iiselastic set from Elastic Filter on page 8-
0 . In general, the elastic filter finds too large a cover set. Chinneck's Algorithm 7.3 starts with the
elastic filter result and then retains only the constraints that are necessary.

Chinneck's Algorithm 7.3 takes 40 calls to linprog to complete the calculation of a MaxFS. This
number is a bit more than 28 calls used earlier in the process of deleting IIS in a loop.

Also, notice that the inequalities removed in the loop are not exactly the same as the inequalities
removed by Algorithm 7.3. The loop removes inequalities 114, 97, 82, 60, and 64, while Algorithm 7.3

 Investigate Linear Infeasibilities

8-165

removes inequalities 114, 97, 82, 60, and 2. Check that inequalities 82 and 64 form an IIS (as
indicated in Remove IIS in a Loop on page 8-0), and that inequalities 82 and 2 also form an IIS.

usemeineq = false(size(b));
usemeineq([82,64]) = true;
ineqs = deletionfilter(A(usemeineq,:),b(usemeineq),Aeq,beq,lb,ub);
disp(ineqs)

 1
 1

usemeineq = false(size(b));
usemeineq([82,2]) = true;
ineqs = deletionfilter(A(usemeineq,:),b(usemeineq),Aeq,beq,lb,ub);
disp(ineqs)

 1
 1

References

[1] Chinneck, J. W. Feasibility and Infeasibility in Optimization: Algorithms and Computational
Methods. Springer, 2008.

[2] Chinneck, J. W. "Feasibility and Infeasibility in Optimization." Tutorial for CP-AI-OR-07, Brussels,
Belgium. Available at https://www.sce.carleton.ca/faculty/chinneck/docs/
CPAIOR07InfeasibilityTutorial.pdf.

Helper Functions

This code creates the deletionfilter helper function.

function [ineq_iis,eq_iis,ncalls] = deletionfilter(Aineq,bineq,Aeq,beq,lb,ub)
ncalls = 0;
[mi,n] = size(Aineq); % Number of variables and linear inequality constraints
f = zeros(1,n);
me = size(Aeq,1); % Number of linear equality constraints
opts = optimoptions("linprog","Algorithm","dual-simplex","Display","none");

ineq_iis = true(mi,1); % Start with all inequalities in the problem
eq_iis = true(me,1); % Start with all equalities in the problem

for i=1:mi
 ineq_iis(i) = 0; % Remove inequality i
 [~,~,exitflag] = linprog(f,Aineq(ineq_iis,:),bineq(ineq_iis),...
 Aeq,beq,lb,ub,[],opts);
 ncalls = ncalls + 1;
 if exitflag == 1 % If now feasible
 ineq_iis(i) = 1; % Return i to the problem
 end
end
for i=1:me
 eq_iis(i) = 0; % Remove equality i
 [~,~,exitflag] = linprog(f,Aineq,bineq,...
 Aeq(eq_iis,:),beq(eq_iis),lb,ub,[],opts);
 ncalls = ncalls + 1;
 if exitflag == 1 % If now feasible
 eq_iis(i) = 1; % Return i to the problem

8 Linear Programming and Mixed-Integer Linear Programming

8-166

https://www.sce.carleton.ca/faculty/chinneck/docs/CPAIOR07InfeasibilityTutorial.pdf
https://www.sce.carleton.ca/faculty/chinneck/docs/CPAIOR07InfeasibilityTutorial.pdf

 end
end
end

This code creates the elasticfilter helper function.

function [ineq_iis,eq_iis,ncalls,fval0] = elasticfilter(Aineq,bineq,Aeq,beq,lb,ub)
ncalls = 0;
[mi,n] = size(Aineq); % Number of variables and linear inequality constraints
me = size(Aeq,1);
Aineq_r = [Aineq -1.0*eye(mi) zeros(mi,2*me)];
Aeq_r = [Aeq zeros(me,mi) eye(me) -1.0*eye(me)]; % Two slacks for each equality constraint
lb_r = [lb(:); zeros(mi+2*me,1)];
ub_r = [ub(:); inf(mi+2*me,1)];
ineq_slack_offset = n;
eq_pos_slack_offset = n + mi;
eq_neg_slack_offset = n + mi + me;
f = [zeros(1,n) ones(1,mi+2*me)];
opts = optimoptions("linprog","Algorithm","dual-simplex","Display","none");
tol = 1e-10;

ineq_iis = false(mi,1);
eq_iis = false(me,1);
[x,fval,exitflag] = linprog(f,Aineq_r,bineq,Aeq_r,beq,lb_r,ub_r,[],opts);
fval0 = fval;
ncalls = ncalls + 1;
while exitflag == 1 && fval > tol % Feasible and some slacks are nonzero
 c = 0;
 for i = 1:mi
 j = ineq_slack_offset+i;
 if x(j) > tol
 ub_r(j) = 0.0;
 ineq_iis(i) = true;
 c = c+1;
 end
 end
 for i = 1:me
 j = eq_pos_slack_offset+i;
 if x(j) > tol
 ub_r(j) = 0.0;
 eq_iis(i) = true;
 c = c+1;
 end
 end
 for i = 1:me
 j = eq_neg_slack_offset+i;
 if x(j) > tol
 ub_r(j) = 0.0;
 eq_iis(i) = true;
 c = c+1;
 end
 end
 [x,fval,exitflag] = linprog(f,Aineq_r,bineq,Aeq_r,beq,lb_r,ub_r,[],opts);
 if fval > 0
 fval0 = fval;
 end
 ncalls = ncalls + 1;

 Investigate Linear Infeasibilities

8-167

end
end

This code creates the generatecover helper function. The code uses the same indexing technique
for keeping track of constraints as the Remove IIS in a Loop on page 8-0 code.

function [coversetineq,coverseteq,nlp] = generatecover(Aineq,bineq,Aeq,beq,lb,ub)
% Returns the cover set of linear inequalities, the cover set of linear
% equalities, and the total number of calls to linprog.
% Adapted from Chinneck [1] Algorithm 7.3. Step numbers are from this book.
coversetineq = [];
coverseteq = [];
activeA = true(size(bineq));
activeAeq = true(size(beq));
% Step 1 of Algorithm 7.3
[ineq_iis,eq_iis,ncalls] = elasticfilter(Aineq,bineq,Aeq,beq,lb,ub);
nlp = ncalls;
ninf = sum(ineq_iis(:)) + sum(eq_iis(:));
if ninf == 1
 coversetineq = ineq_iis;
 coverseteq = eq_iis;
 return
end
holdsetineq = find(ineq_iis);
holdseteq = find(eq_iis);
candidateineq = holdsetineq;
candidateeq = holdseteq;
% Step 2 of Algorithm 7.3
while sum(candidateineq(:)) + sum(candidateeq(:)) > 0
 minsinf = inf;
 ineqflag = 0;
 for i = 1:length(candidateineq(:))
 activeA(candidateineq(i)) = false;
 idx2 = find(activeA);
 idx2eq = find(activeAeq);
 [ineq_iis,eq_iis,ncalls,fval] = elasticfilter(Aineq(activeA,:),bineq(activeA),Aeq(activeAeq,:),beq(activeAeq),lb,ub);
 nlp = nlp + ncalls;
 ineq_iis = idx2(find(ineq_iis));
 eq_iis = idx2eq(find(eq_iis));
 if fval == 0
 coversetineq = [coversetineq;candidateineq(i)];
 return
 end
 if fval < minsinf
 ineqflag = 1;
 winner = candidateineq(i);
 minsinf = fval;
 holdsetineq = ineq_iis;
 if numel(ineq_iis(:)) + numel(eq_iis(:)) == 1
 nextwinner = ineq_iis;
 nextwinner2 = eq_iis;
 nextwinner = [nextwinnner,nextwinner2];
 else
 nextwinner = [];
 end
 end
 activeA(candidateineq(i)) = true;
 end

8 Linear Programming and Mixed-Integer Linear Programming

8-168

 for i = 1:length(candidateeq(:))
 activeAeq(candidateeq(i)) = false;
 idx2 = find(activeA);
 idx2eq = find(activeAeq);
 [ineq_iis,eq_iis,ncalls,fval] = elasticfilter(Aineq(activeA,:),bineq(activeA),Aeq(activeAeq,:),beq(activeAeq),lb,ub);
 nlp = nlp + ncalls;
 ineq_iis = idx2(find(ineq_iis));
 eq_iis = idx2eq(find(eq_iis));
 if fval == 0
 coverseteq = [coverseteq;candidateeq(i)];
 return
 end
 if fval < minsinf
 ineqflag = -1;
 winner = candidateeq(i);
 minsinf = fval;
 holdseteq = eq_iis;
 if numel(ineq_iis(:)) + numel(eq_iis(:)) == 1
 nextwinner = ineq_iis;
 nextwinner2 = eq_iis;
 nextwinner = [nextwinnner,nextwinner2];
 else
 nextwinner = [];
 end
 end
 activeAeq(candidateeq(i)) = true;
 end
% Step 3 of Algorithm 7.3
 if ineqflag == 1
 coversetineq = [coversetineq;winner];
 activeA(winner) = false;
 if nextwinner
 coversetineq = [coversetineq;nextwinner];
 return
 end
 end
 if ineqflag == -1
 coverseteq = [coverseteq;winner];
 activeAeq(winner) = false;
 if nextwinner
 coverseteq = [coverseteq;nextwinner];
 return
 end
 end
 candidateineq = holdsetineq;
 candidateeq = holdseteq;
end
end

See Also
linprog

More About
• “Solve Nonlinear Feasibility Problem, Problem-Based” on page 6-47
• “Converged to an Infeasible Point” on page 4-6

 Investigate Linear Infeasibilities

8-169

• “Solve Feasibility Problem” (Global Optimization Toolbox)

8 Linear Programming and Mixed-Integer Linear Programming

8-170

Integer and Logical Modeling
Integer constraints allow you to create models with these important features:

• Implications, such as "If Condition A holds then Condition B holds."
• Transaction costs or setup costs, such as "The cost of an item is zero if I buy zero of the item, but

the cost is $A transaction cost plus $B per item if I buy more than zero." See “Example: Fixed
Cost” on page 8-174.

• Logical constraints, such as "Airlock door A and door B cannot both be open at the same time."

Many modeling problems are equivalent to logical models that use indicator variables. This topic
describes how to use indicator variables and logical models. These models are based on the Big-M
formulation, where a variable x and a constant M are assumed to satisfy the inequalities –M ≤ x ≤ M.

Recall that constraints in optimization have an implied "and." Constraints c1, c2, and c3 are satisfied
when all three constraints are satisfied: c1 and c2 and c3.

Big-M Formulation
Suppose you have a continuous variable x that is bounded above by a constant M:

x ≤ M.

You want to associate a binary indicator variable z to x so that z = 1 whenever x > 0. To do so, use the
Big-M formulation by including the constraint:

x ≤ M z.

This constraint ensures that whenever x > 0, then z = 1 necessarily. The Big-M formulation has more
applications, as discussed in “Express Logical Constraints Using Real Functions and Binary Indicator
Variables” on page 8-173.

Basic Problem: Reservoir Flows
Suppose that you want to model a reservoir over integer times. At each positive integer time t in a
fixed range, the reservoir can accept water of quantity xin(t), or can discharge an amount of water
xout(t), in continuous amounts up to a maximum M either in or out. Your model should enforce that if
xin(t) > 0 then xout(t) = 0, and if xout(t) > 0 then xin(t) = 0. How do you model this constraint? One
way is to constrain

xin(t) * xout(t) = 0.

However, this constraint causes the problem to become nonlinear, and solvers generally have
difficulty with this type of constraint.

A better way to implement the constraint is to use an indicator binary variable zin(t) that is 1
whenever xin(t) > 0, and a similar binary variable zout(t) that is 1 whenever xout(t) > 0. Assuming
that you have such variables, add the constraint

zin(t) + zout(t) ≤ 1,

which ensures that xin(t) and xout(t) are not both positive.

To ensure that zin(t) = 1 whenever xin(t) > 0, use the Big-M formulation. Assume that xin(t) is
bounded above by M, a positive number, for all t. Include the constraint

xin(t) ≤ M*zin(t).

 Integer and Logical Modeling

8-171

To ensure that zin(t) = 0 whenever xin(t) = 0, include zin(t) in the objective function. In this way,
minimizing the objective function causes zin(t) to be zero whenever possible.

Similarly, to connect zout(t) and xout(t), incorporate the constraint
xout(t) <= M*zout(t).

In summary, to enforce the constraint that xin(t) and xout(t) cannot both be positive, you create two
binary variables zin(t) and zout(t) for each time t, and include these three constraints:

xin(t) <= M*zin(t) % Ensures that zin(t) = 1 whenever xin(t) > 0.
xout(t) <= M*zout(t) % Ensures that zout(t) = 1 whenever xout(t) > 0.
zin(t) + zout(t) <= 1 % Ensures that zin(t) and zout(t) are not both positive.

The MATLAB commands in the problem-based approach are as follows:
T = 50; % Number of times
M = 40; % Maximum size of x variables
xin = optimvar('xin',T,'LowerBound',0,'UpperBound',M);
xout = optimvar('xout',T,'LowerBound',0,'UpperBound',M);
zin = optimvar('zin',T,'Type','integer','LowerBound',0,'UpperBound',1);
zout = optimvar('zout',T,'Type','integer','LowerBound',0,'UpperBound',1);
prob = optimproblem;

xinzin = xin <= M*zin;
xoutzout = xout <= M*zout;
zinzout = zin + zout <= 1;
prob.Constraints.xinzin = xinzin;
prob.Constraints.xoutzout = xoutzout;
prob.Constraints.zinzout = zinzout;

prob.Objective = sum(zin + zout);

Note the following:

• All the constraints are vectors of constraints of length T, as are the optimization variables and
indicator variables.

• All the constraints are defined with single statements, not in a loop, which gives the best
performance.

Express Logical Constraints Using Binary Variables
This section contains logical statements and the corresponding MATLAB commands with binary
variables. The statements assume that the variables z, w, and f are binary optimization variables,
meaning each has type "integer", lower bound 0, and upper bound 1.

Description Logical Statement MATLAB Commands
z and w have opposite values z = not w z = 1 - w;

At least one of z or w is true z or w z + w >= 1;

At most one of z or w is true (not z) or (not w) z + w <= 1;

f is true exactly when z is true
or w is true

f = z or w f >= z;
f >= w;
f <= z + w;

f is true exactly when both z
and w are true

f = z and w f <= z;
f <= w;
f >= z + w - 1;

8 Linear Programming and Mixed-Integer Linear Programming

8-172

Description Logical Statement MATLAB Commands
f is true exactly when one of z
or w is true

f = z xor w f >= z - w;
f >= w - z;
f <= z + w;
f <= 2 - (z + w);

Express Logical Constraints Using Real Functions and Binary Indicator
Variables
This section connects a real function g(x) and a binary variable z. Typically, you introduce z into the
problem as an indicator variable to model some aspect of the problem, such as an indicator of when
g(x) > 0. All of these constraints are based on the Big-M formulation.

Assume that the constant M and the function g(x) satisfy the bounds
–M ≤ g(x) ≤ M.

Condition Constraint Code
If z = 1 then g(x) ≤ 0 g(x) <= M*(1 - z);

If z = 1 then g(x) ≥ 0 g(x) >= -M*(1 - z);

If z = 1 then g(x) = 0 g(x) <= M*(1 - z);
g(x) >= -M*(1 - z);

If g(x) ≤ 0 then z = 1 g(x) >= -M*z;

If g(x) ≥ 0 then z = 1 g(x) <= M*z;

If g(x) > 0 then z = 1

If g(x) < 0 then z = 0

Create a new binary variable z1 to indicate g(x)
< 0.

g(x) <= M*z;

g(x) >= -M*z1;

z + z1 == 1;

This formulation is indeterminate when g(x) = 0.

Combine Logical Constraints to Create New Formulas
Use the previous logical constraints together with binary indicator variables to create code that
implements new formulas.

Condition Constraint Code
For scalar functions g(x) and h(x) satisfying the
bound constraint M, implement the condition:

If g(x) ≥ 0 then h(x) ≥ 0

Introduce a binary indicator variable z indicating
that g(x) ≥ 0. Then introduce the constraint that
if z = 1 then h(x) ≥ 0.

g(x) <= M*z;
h(x) >= -M*(1 - z);

 Integer and Logical Modeling

8-173

Condition Constraint Code
g(x) = z*x where z is a binary variable Represent this condition as two constraints:

If z = 1 then g(x) - x = 0

If z = 0 then g(x) = 0

g(x) <= x + M*(1-z);
g(x) >= x - M*(1-z);
g(x) <= M*z;
g(x) >= -M*z;

Example: Fixed Cost
Suppose that the cost of producing a quantity x of an item is

cost =
a + bx if x > 0
0 if x = 0.

You can model this nonlinear cost using a linear variable x and a binary indicator variable z. Create
constraints so that z = 1 whenever x > 0, and include z in the objective function so that z = 0
whenever x = 0. Assume that the problem includes a bound M so that x ≤ M.

x <= M*z; % Constraint, makes z = 1 when x > 0
cost = a*z + b*x;

If you minimize the cost, when x = 0 then z = 0 also.

Example: OR Constraints
Sometimes you want to model a constraint that is enforced when condition A holds or condition B
holds or condition C holds. To do so, create binary indicator variables zA, zB, and zC that indicate
when the corresponding conditions A, B, and C hold, and include the additional constraint

zA + zB + zC >= 1;

As another example, model the absolute value constraint |x| = 5, which means x = 5 or x = –5. Create
two indicator variables z1 and z2 that indicate when x = 5 and x = –5, respectively. Then include the
constraint

z1 + z2 >= 1;

One way to set z1 = 1 when x = 5 is to introduce three new indicator variables z11, z12, and z13 for
these conditions:

z11 = 1 when x < 5 and z1 = 0,

z12 = 1 when x = 5 and z1 = 1,

z13 = 1 when x > 5 and z1 = 0.

Then introduce the constraint

z11 + z12 + z13 = 1;

8 Linear Programming and Mixed-Integer Linear Programming

8-174

To specify z11, use these three constraints.

-(1 - z11) <= z1;
z1 <= (1 - z11);
x - 5 <= M(1 - z11);

To specify z12, use these four constraints.

-(1 - z12) <= z1 - 1;
z1 - 1 <= (1 - z12);
-M(1 - z12) <= x - 5;
x - 5 <= M(1 - z12);

To specify z13, use these three constraints.

-(1 - z13) <= z1;
z1 <= (1 - z13);
x - 5 >= -M(1 - z13);

To finish the model, specify similar constraints for z21, z22, and z23 that correspond to z2 and the
condition x = –5.

Further Reading
The classic book on modeling for optimization is Williams [1]. For a discussion of why the Big-M
formulation of binary indicator variables is mathematically complete and not extensible, see Hooker
[2]. For further examples of using binary indicator variables in mathematical modeling, see Brown
and Dell [3] and Stevens and Palocsay [4].

References
[1] Williams, H. Paul. Model Building in Mathematical Programming, 5th Edition. Wiley, 2013.

[2] Hooker, John. A Principled Approach to MILP Modeling. Carnegie Mellon University, 2008.
Available at https://coral.ise.lehigh.edu/mip-2008/talks/hooker.pdf.

[3] Brown, Gerald G. and Robert F. Dell. Formulating Integer Linear Programs: A Rogues' Gallery.
INFORMS Transactions on Education 7 (2), 2007, pp. 153–159. Available at https://doi.org/
10.1287/ited.7.2.153.

[4] Stevens, Scott P. and Susan W. Palocsay. Teaching Use of Binary Variables in Integer Linear
Programs: Formulating Logical Conditions. INFORMS Transactions on Education 18 (1),
2017, pp. 28–36. Available at https://doi.org/10.1287/ited.2017.0177.

See Also
intlinprog | ga | gamultiobj | surrogateopt

Related Examples
• “Optimal Dispatch of Power Generators: Solver-Based” on page 8-72
• “Optimal Dispatch of Power Generators: Problem-Based” on page 8-125
• “Mixed-Integer Quadratic Programming Portfolio Optimization: Solver-Based” on page 8-82

 Integer and Logical Modeling

8-175

https://coral.ise.lehigh.edu/mip-2008/talks/hooker.pdf
https://doi.org/10.1287/ited.7.2.153
https://doi.org/10.1287/ited.7.2.153
https://doi.org/10.1287/ited.2017.0177

• “Mixed-Integer Quadratic Programming Portfolio Optimization: Problem-Based” on page 8-139

8 Linear Programming and Mixed-Integer Linear Programming

8-176

Problem-Based Optimization

• “Problem-Based Optimization Workflow” on page 9-2
• “Problem-Based Workflow for Solving Equations” on page 9-4
• “Optimization Expressions” on page 9-6
• “Pass Extra Parameters in Problem-Based Approach” on page 9-11
• “Review or Modify Optimization Problems” on page 9-14
• “Named Index for Optimization Variables” on page 9-20
• “Examine Optimization Solution” on page 9-25
• “Create Efficient Optimization Problems” on page 9-28
• “Separate Optimization Model from Data” on page 9-31
• “Problem-Based Optimization Algorithms” on page 9-33
• “Variables with Duplicate Names Disallowed” on page 9-35
• “Expression Contains Inf or NaN” on page 9-36
• “Automatic Differentiation Background” on page 9-37
• “Supported Operations for Optimization Variables and Expressions” on page 9-43
• “Create Initial Point for Optimization with Named Index Variables” on page 9-47
• “Initialize Optimization Expressions” on page 9-54
• “Use Problem-Based Optimize Live Editor Task Effectively” on page 9-59

9

Problem-Based Optimization Workflow

Note Optimization Toolbox provides two approaches for solving single-objective optimization
problems. This topic describes the problem-based approach. “Solver-Based Optimization Problem
Setup” describes the solver-based approach.

To solve an optimization problem, perform the following steps.

• Create an optimization problem object by using optimproblem. A problem object is a container in
which you define an objective expression and constraints. The optimization problem object defines
the problem and any bounds that exist in the problem variables.

For example, create a maximization problem.

prob = optimproblem('ObjectiveSense','maximize');
• Create named variables by using optimvar. An optimization variable is a symbolic variable that

you use to describe the problem objective and constraints. Include any bounds in the variable
definitions.

For example, create a 15-by-3 array of binary variables named 'x'.

x = optimvar('x',15,3,'Type','integer','LowerBound',0,'UpperBound',1);
• Define the objective function in the problem object as an expression in the named variables.

Note If you have a nonlinear function that is not composed of polynomials, rational expressions,
and elementary functions such as exp, then convert the function to an optimization expression by
using fcn2optimexpr. See “Convert Nonlinear Function to Optimization Expression” on page 6-8
and “Supported Operations for Optimization Variables and Expressions” on page 9-43.

If necessary, include extra parameters in your expression as workspace variables; see “Pass Extra
Parameters in Problem-Based Approach” on page 9-11.

For example, assume that you have a real matrix f of the same size as a matrix of variables x, and
the objective is the sum of the entries in f times the corresponding variables x.

prob.Objective = sum(sum(f.*x));
• Define constraints for optimization problems as either comparisons in the named variables or as

comparisons of expressions.

Note If you have a nonlinear function that is not composed of polynomials, rational expressions,
and elementary functions such as exp, then convert the function to an optimization expression by
using fcn2optimexpr. See “Convert Nonlinear Function to Optimization Expression” on page 6-8
and “Supported Operations for Optimization Variables and Expressions” on page 9-43.

For example, assume that the sum of the variables in each row of x must be one, and the sum of
the variables in each column must be no more than one.

onesum = sum(x,2) == 1;
vertsum = sum(x,1) <= 1;

9 Problem-Based Optimization

9-2

prob.Constraints.onesum = onesum;
prob.Constraints.vertsum = vertsum;

• For nonlinear problems, set an initial point as a structure whose fields are the optimization
variable names. For example:

x0.x = randn(size(x));
x0.y = eye(4); % Assumes y is a 4-by-4 variable

• Solve the problem by using solve.

sol = solve(prob);
% Or, for nonlinear problems,
sol = solve(prob,x0)

In addition to these basic steps, you can review the problem definition before solving the problem by
using show or write. Set options for solve by using optimoptions, as explained in “Change
Default Solver or Options” on page 9-14.

Warning The problem-based approach does not support complex values in an objective function,
nonlinear equalities, or nonlinear inequalities. If a function calculation has a complex value, even as
an intermediate value, the final result can be incorrect.

Note All names in an optimization problem must be unique. Specifically, all variable names, objective
function names, and constraint function names must be different.

For a basic mixed-integer linear programming example, see “Mixed-Integer Linear Programming
Basics: Problem-Based” on page 8-108 or the video version Solve a Mixed-Integer Linear
Programming Problem Using Optimization Modeling. For a nonlinear example, see “Solve a
Constrained Nonlinear Problem, Problem-Based” on page 1-5. For more extensive examples, see
“Problem-Based Nonlinear Optimization”, “Linear Programming and Mixed-Integer Linear
Programming”, or “Quadratic Programming and Cone Programming”.

See Also
fcn2optimexpr | optimproblem | optimvar | solve | optimoptions | show | write

More About
• “Mixed-Integer Linear Programming Basics: Problem-Based” on page 8-108
• Solve a Mixed-Integer Linear Programming Problem Using Optimization Modeling
• “Optimization Expressions” on page 9-6
• “Review or Modify Optimization Problems” on page 9-14
• “Examine Optimization Solution” on page 9-25

 Problem-Based Optimization Workflow

9-3

https://www.mathworks.com/videos/mathematical-modeling-with-optimization-part-3-problem-based-mixed-integer-linear-programming-1500392000631.html
https://www.mathworks.com/videos/mathematical-modeling-with-optimization-part-3-problem-based-mixed-integer-linear-programming-1500392000631.html
https://www.mathworks.com/videos/mathematical-modeling-with-optimization-part-3-problem-based-mixed-integer-linear-programming-1500392000631.html

Problem-Based Workflow for Solving Equations

Note Optimization Toolbox provides two approaches for solving equations. This topic describes the
problem-based approach. “Solver-Based Optimization Problem Setup” describes the solver-based
approach.

To solve a system of equations, perform the following steps.

• Create an equation problem object by using eqnproblem. A problem object is a container in
which you define equations. The equation problem object defines the problem and any bounds that
exist in the problem variables.

For example, create an equation problem.

prob = eqnproblem;

• Create named variables by using optimvar. An optimization variable is a symbolic variable that
you use to describe the equations. Include any bounds in the variable definitions.

For example, create a 15-by-3 array of variables named 'x' with lower bounds of 0 and upper
bounds of 1.

x = optimvar('x',15,3,'LowerBound',0,'UpperBound',1);

• Define equations in the problem variables. For example:

sumeq = sum(x,2) == 1;
prob.Equations.sumeq = sumeq;

Note If you have a nonlinear function that is not composed of polynomials, rational expressions,
and elementary functions such as exp, then convert the function to an optimization expression by
using fcn2optimexpr. See “Convert Nonlinear Function to Optimization Expression” on page 6-8
and “Supported Operations for Optimization Variables and Expressions” on page 9-43.

If necessary, include extra parameters in your equations as workspace variables; see “Pass Extra
Parameters in Problem-Based Approach” on page 9-11.

• For nonlinear problems, set an initial point as a structure whose fields are the optimization
variable names. For example:

x0.x = randn(size(x));
x0.y = eye(4); % Assumes y is a 4-by-4 variable

• Solve the problem by using solve.

sol = solve(prob);
% Or, for nonlinear problems,
sol = solve(prob,x0)

In addition to these basic steps, you can review the problem definition before solving the problem by
using show or write. Set options for solve by using optimoptions, as explained in “Change
Default Solver or Options” on page 9-14.

9 Problem-Based Optimization

9-4

Warning The problem-based approach does not support complex values in an objective function,
nonlinear equalities, or nonlinear inequalities. If a function calculation has a complex value, even as
an intermediate value, the final result can be incorrect.

Note All names in an optimization problem must be unique. Specifically, all variable names, objective
function names, and constraint function names must be different.

For a basic equation-solving example with polynomials, see “Solve Nonlinear System of Polynomials,
Problem-Based” on page 12-23. For a general nonlinear example, see “Solve Nonlinear System of
Equations, Problem-Based” on page 12-21. For more extensive examples, see “Systems of Nonlinear
Equations”.

See Also
fcn2optimexpr | optimvar | solve | optimoptions | eqnproblem | show | write

More About
• “Systems of Nonlinear Equations”
• “Optimization Expressions” on page 9-6
• “Review or Modify Optimization Problems” on page 9-14
• “Examine Optimization Solution” on page 9-25

 Problem-Based Workflow for Solving Equations

9-5

Optimization Expressions
In this section...
“What Are Optimization Expressions?” on page 9-6
“Expressions for Objective Functions” on page 9-6
“Expressions for Constraints and Equations” on page 9-7
“Optimization Variables Have Handle Behavior” on page 9-9

What Are Optimization Expressions?
Optimization expressions are polynomial or rational combinations of optimization variables.

x = optimvar('x',3,3); % a 3-by-3 variable named 'x'
expr1 = sum(x,1) % add the columns of x, get a row vector
expr2 = sum(x,2) % add the rows of x, get a column vector
expr3 = sum(sum(x.*randn(3))) % add the elements of x multiplied by random numbers
expr4 = randn(3)*x % multiply a random matrix times x
expr5 = sum(sum(x*diag(1:3))) % multiply the columns of x by their column number and sum the result
expr6 = sum(sum(x.*x)) % sum of the squares of all the variables

Optimization expressions also result from many MATLAB operations on optimization variables, such
as transpose or concatenation of variables. For the list of supported operations on optimization
expressions, see “Supported Operations for Optimization Variables and Expressions” on page 9-43.

Finally, optimization expressions can be the result of applying fcn2optimexpr to a MATLAB function
acting on optimization variables. For details, see “Convert Nonlinear Function to Optimization
Expression” on page 6-8.

Optimization modeling functions do not allow you to specify complex, Inf, or NaN values. If you
obtain such an expression through operations, the expression cannot be displayed. See “Expression
Contains Inf or NaN” on page 9-36.

Expressions for Objective Functions
An objective function is an expression of size 1-by-1.

y = optimvar('y',5,3);
expr = sum(y,2); % a 5-by-1 vector
expr2 = [1:5]*expr;

The expression expr is not suitable for an objective function because it is a vector. The expression
expr2 is suitable for an objective function.

Note If you have a nonlinear function that is not composed of polynomials, rational expressions, and
elementary functions such as exp, then convert the function to an optimization expression by using
fcn2optimexpr. See “Convert Nonlinear Function to Optimization Expression” on page 6-8 and
“Supported Operations for Optimization Variables and Expressions” on page 9-43.

To include an expression as an objective function in a problem, use dot notation, or include the
objective when you create the problem.

9 Problem-Based Optimization

9-6

prob = optimproblem;
prob.Objective = expr2;
% or equivalently
prob = optimproblem('Objective',expr2);

To create an expression in a loop, start with an empty expression as returned by optimexpr.

x = optimvar('x',3,3,'Type','integer','LowerBound',0,'UpperBound',1);
y = optimvar('y',3,3);
expr = optimexpr;
for i = 1:3
 for j = 1:3
 expr = expr + y(j,i) - x(i,j);
 end
end
show(expr)

 y(1, 1) + y(2, 1) + y(3, 1) + y(1, 2) + y(2, 2) + y(3, 2) + y(1, 3) + y(2, 3) + y(3, 3)
- x(1, 1) - x(2, 1) - x(3, 1) - x(1, 2) - x(2, 2) - x(3, 2) - x(1, 3) - x(2, 3) - x(3, 3)

You can create expr without any loops:

x = optimvar('x',3,3,'Type','integer','LowerBound',0,'UpperBound',1);
y = optimvar('y',3,3);
expr = sum(sum(y' - x));
show(expr)

 y(1, 1) + y(2, 1) + y(3, 1) + y(1, 2) + y(2, 2) + y(3, 2) + y(1, 3) + y(2, 3) + y(3, 3)
- x(1, 1) - x(2, 1) - x(3, 1) - x(1, 2) - x(2, 2) - x(3, 2) - x(1, 3) - x(2, 3) - x(3, 3)

Note If your objective function is a sum of squares, and you want solve to recognize it as such,
write it as sum(expr.^2), and not as expr'*expr. The internal parser recognizes only explicit
sums of squares. For an example, see “Nonnegative Linear Least Squares, Problem-Based” on page
11-41.

Expressions for Constraints and Equations
Constraints are any two comparable expressions that include one of these comparison operators: ==,
<=, or >=. Equations are two comparable expressions that use the comparison operator ==.
Comparable expressions have the same size, or one of the expressions must be scalar, meaning of size
1-by-1.

x = optimvar('x',3,2,'Type','integer','LowerBound',0,'UpperBound',1);
y = optimvar('y',2,4);
z = optimvar('z');

constr1 = sum(x,2) >= z;

x is of size 3-by-2, so sum(x,2) is of size 3-by-1. This expression is comparable to z because z is a
scalar variable.

constr2 = y <= z;

y is of size 2-by-4. Again, y is comparable to z because z is a scalar variable.

constr3 = (sum(x,1))' <= sum(y,2);

 Optimization Expressions

9-7

sum(x,1) is of size 1-by-2, so (sum(x,1))' is of size 2-by-1. sum(y,2) is of size 2-by-1, so the two
expressions are comparable.

Note If you have a nonlinear function that is not composed of polynomials, rational expressions, and
elementary functions such as exp, then convert the function to an optimization expression by using
fcn2optimexpr. See “Convert Nonlinear Function to Optimization Expression” on page 6-8 and
“Supported Operations for Optimization Variables and Expressions” on page 9-43.

To include constraints in a problem, use dot notation and give each constraint a different name.

prob = optimproblem;
prob.Constraints.constr1 = constr1;
prob.Constraints.constr2 = constr2;
prob.Constraints.constr3 = constr3;

Similarly, to include equations in a problem, use dot notation and give each equation a different
name.

prob = eqnproblem;
prob.Equations.eq1 = eq1;
prob.Equations.eq2 = eq12

You can also include constraints or equations when you create a problem. For example, suppose that
you have 10 pairs of positive variables whose sums are no more than one.

x = optimvar('x',10,2,'LowerBound',0);
prob = optimproblem('Constraints',sum(x,2) <= 1);

To create constraint or equation expressions in a loop, start with an empty constraint expression as
returned by optimconstr, optimeq, or optimineq.

x = optimvar('x',3,2,'Type','integer','LowerBound',0,'UpperBound',1);
y = optimvar('y',2,4);
z = optimvar('z');
const1 = optimconstr(2);
for i = 1:2
 const1(i) = x(1,i) - x(3,i) + 2*z >= 4*(y(i,2) + y(i,3) + 2*y(i,4));
end
show(const1)

(1, 1)

 x(1, 1) - x(3, 1) + 2*z - 4*y(1, 2) - 4*y(1, 3) - 8*y(1, 4) >= 0

(2, 1)

 x(1, 2) - x(3, 2) + 2*z - 4*y(2, 2) - 4*y(2, 3) - 8*y(2, 4) >= 0

You can create const1 without any loops.

x = optimvar('x',3,2,'Type','integer','LowerBound',0,'UpperBound',1);
y = optimvar('y',2,4);
z = optimvar('z');
const1 = x(1,:) - x(3,:) + 2*z >= 4*(y(:,1) + y(:,3) + 2*y(:,4))';
show(const1)

9 Problem-Based Optimization

9-8

(1, 1)

 x(1, 1) - x(3, 1) + 2*z - 4*y(1, 1) - 4*y(1, 3) - 8*y(1, 4) >= 0

(1, 2)

 x(1, 2) - x(3, 2) + 2*z - 4*y(2, 1) - 4*y(2, 3) - 8*y(2, 4) >= 0

Tip For best performance, include variable bounds in the variable definitions, not in constraint
expressions. Also, performance generally improves when you create constraints without using loops.
See “Create Efficient Optimization Problems” on page 9-28.

Caution Each constraint expression in a problem must use the same comparison. For example, the
following code leads to an error, because cons1 uses the <= comparison, cons2 uses the >=
comparison, and cons1 and cons2 are in the same expression.

prob = optimproblem;
x = optimvar('x',2,'LowerBound',0);
cons1 = x(1) + x(2) <= 10;
cons2 = 3*x(1) + 4*x(2) >= 2;
prob.Constraints = [cons1;cons2]; % This line throws an error

You can avoid this error by using separate expressions for the constraints.

prob.Constraints.cons1 = cons1;
prob.Constraints.cons2 = cons2;

Optimization Variables Have Handle Behavior
• OptimizationVariable objects have handle copy behavior. See “Handle Object Behavior” and

“Comparison of Handle and Value Classes”. Handle copy behavior means that a copy of an
OptimizationVariable points to the original and does not have an independent existence. For
example, create a variable x, copy it to y, then set a property of y. Note that x takes on the new
property value.

x = optimvar('x','LowerBound',1);
y = x;
y.LowerBound = 0;
showbounds(x)

 0 <= x

See Also
optimvar | show | OptimizationConstraint | OptimizationExpression

More About
• “Mixed-Integer Linear Programming Basics: Problem-Based” on page 8-108
• “Problem-Based Optimization Workflow” on page 9-2
• “Review or Modify Optimization Problems” on page 9-14

 Optimization Expressions

9-9

• “Named Index for Optimization Variables” on page 9-20

9 Problem-Based Optimization

9-10

Pass Extra Parameters in Problem-Based Approach
In an optimization problem, the objective or constraint functions sometimes have parameters in
addition to the independent variable. The extra parameters can be data, or can represent variables
that do not change during the optimization.

To include these parameters in the problem-based approach, simply refer to workspace variables in
your objective or constraint functions.

Least-Squares Problem with Passed Data

For example, suppose that you have matrices C and d in the particle.mat file, and these matrices
represent data for your problem. Load the data into your workspace.

load particle

View the sizes of the matrices.

disp(size(C))

 2000 400

disp(size(d))

 2000 1

Create an optimization variable x of a size that is suitable for forming the vector C*x.

x = optimvar('x',size(C,2));

Create an optimization problem to minimize the sum of squares of the terms in C*x – d subject to
the constraint that x is nonnegative.

x.LowerBound = 0;
prob = optimproblem;
expr = sum((C*x - d).^2);
prob.Objective = expr;

You include the data C and d into the problem simply by referring to them in the objective function
expression. Solve the problem.

[sol,fval,exitflag,output] = solve(prob)

Solving problem using lsqlin.

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

sol = struct with fields:
 x: [400x1 double]

fval = 22.5795

 Pass Extra Parameters in Problem-Based Approach

9-11

exitflag =
 OptimalSolution

output = struct with fields:
 message: 'Minimum found that satisfies the constraints....'
 algorithm: 'interior-point'
 firstorderopt: 9.9673e-07
 constrviolation: 0
 iterations: 9
 linearsolver: 'sparse'
 cgiterations: []
 solver: 'lsqlin'

Nonlinear Problem with Extra Parameters

Use the same approach for nonlinear problems. For example, suppose that you have an objective
function of several variables, some of which are fixed data for the optimization.

type parameterfun

function y = parameterfun(x,a,b,c)
y = (a - b*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) + (-c + c*x(2)^2)*x(2)^2;

For this objective function, x is a 2-element vector, and a, b, and c are scalar parameters. Create the
optimization variable and assign the parameter values in your workspace.

a = 4;
b = 2.1;
c = 4;
x = optimvar('x',2);

Create an optimization problem. Because this objective function is a rational function of x, you can
specify the objective in terms of the optimization variable. Solve the problem starting from the point
x0.x = [1/2;1/2].

prob = optimproblem;
prob.Objective = parameterfun(x,a,b,c);
x0.x = [1/2;1/2];
[sol,fval] = solve(prob,x0)

Solving problem using fminunc.

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

sol = struct with fields:
 x: [2x1 double]

fval = -1.0316

If parameterfun were not composed of supported functions, you would convert parameterfun to
an optimization expression and set the converted expression as the objective. See “Supported
Operations for Optimization Variables and Expressions” on page 9-43 and “Convert Nonlinear
Function to Optimization Expression” on page 6-8.

9 Problem-Based Optimization

9-12

expr = fcn2optimexpr(@parameterfun,x,a,b,c);
prob.Objective = expr;
[sol,fval] = solve(prob,x0)

Solving problem using fminunc.

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

sol = struct with fields:
 x: [2x1 double]

fval = -1.0316

Copyright 2018–2020 The MathWorks, Inc.

See Also
fcn2optimexpr

More About
• “Passing Extra Parameters” on page 2-57

 Pass Extra Parameters in Problem-Based Approach

9-13

Review or Modify Optimization Problems
In this section...
“Review Problem Using show or write” on page 9-14
“Change Default Solver or Options” on page 9-14
“Correct a Misspecified Problem” on page 9-16
“Duplicate Variable Name” on page 9-19

Review Problem Using show or write
After you create an optimization problem, you can review its formulation by using show. For large
problems, use write instead. For example,

prob = optimproblem;
x = optimvar('x',2,'LowerBound',0);
prob.Objective = x(1) - 2*x(2);
prob.Constraints.cons1 = x(1) + 2*x(2) <= 4;
prob.Constraints.cons2 = -x(1) + x(2) <= 1;

show(prob)

 OptimizationProblem :

 Solve for:
 x

 minimize :
 x(1) - 2*x(2)

 subject to cons1:
 x(1) + 2*x(2) <= 4

 subject to cons2:
 -x(1) + x(2) <= 1

 variable bounds:
 0 <= x(1)
 0 <= x(2)

This review shows the basic elements of the problem, such as whether the problem is to minimize or
maximize, and the variable bounds. The review shows the index names, if any, used in the variables.
The review does not show whether the variables are integer valued.

Change Default Solver or Options
To attempt to improve a solution or speed of solution, examine and change the default solver or
options.

To see the default solver and options, use optimoptions(prob). For example,

rng default
x = optimvar('x',3,'LowerBound',0);

9 Problem-Based Optimization

9-14

expr = sum((rand(3,1).*x).^2);
prob = optimproblem('Objective',expr);
prob.Constraints.lincon = sum(sum(randn(size(x)).*x)) <= randn;
options = optimoptions(prob)

options =

 lsqlin options:

 Options used by current Algorithm ('interior-point'):
 (Other available algorithms: 'trust-region-reflective')

 Set properties:
 No options set.

 Default properties:
 Algorithm: 'interior-point'
 ConstraintTolerance: 1.0000e-08
 Display: 'final'
 LinearSolver: 'auto'
 MaxIterations: 200
 OptimalityTolerance: 1.0000e-08
 StepTolerance: 1.0000e-12

 Show options not used by current Algorithm ('interior-point')

The default solver for this problem is lsqlin, and you can see the default options.

To change the solver, set the 'Solver' name-value pair in solve. To see the applicable options for a
different solver, use optimoptions to pass the current options to the different solver. For example,
continuing the problem,

options = optimoptions('quadprog',options)

options =

 quadprog options:

 Options used by current Algorithm ('interior-point-convex'):
 (Other available algorithms: 'trust-region-reflective')

 Set properties:
 ConstraintTolerance: 1.0000e-08
 MaxIterations: 200
 OptimalityTolerance: 1.0000e-08
 StepTolerance: 1.0000e-12

 Default properties:
 Algorithm: 'interior-point-convex'
 Display: 'final'
 LinearSolver: 'auto'

 Show options not used by current Algorithm ('interior-point-convex')

To change the options, use optimoptions or dot notation to set options, and pass the options to
solve in the 'Options' name-value pair. See “Options in Common Use: Tuning and
Troubleshooting” on page 2-61. Continuing the example,

 Review or Modify Optimization Problems

9-15

options.Display = 'iter';
sol = solve(prob,'Options',options,'Solver','quadprog');

 Iter Fval Primal Infeas Dual Infeas Complementarity
 0 1.500359e+00 3.068423e-01 2.275437e+00 2.500000e-01
 1 1.728717e-01 0.000000e+00 7.719860e-03 3.637874e-02
 2 2.604108e-02 0.000000e+00 0.000000e+00 5.245260e-03
 3 7.822161e-03 0.000000e+00 2.775558e-17 1.407915e-03
 4 2.909218e-03 0.000000e+00 6.938894e-18 2.070784e-04
 5 1.931264e-03 0.000000e+00 1.734723e-18 2.907724e-05
 6 1.797508e-03 0.000000e+00 2.602085e-18 4.083167e-06
 7 1.775398e-03 0.000000e+00 4.336809e-19 5.102453e-07
 8 1.772971e-03 0.000000e+00 2.632684e-19 3.064243e-08
 9 1.772848e-03 0.000000e+00 5.228973e-19 4.371356e-11

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

Correct a Misspecified Problem
To check that your problem is correct, review all its aspects. For example, create an optimization
problem to solve a Sudoku problem by running this script.

x = optimvar('x',9,9,9,'LowerBound',0,'UpperBound',1);
cons1 = sum(x,1) == 1;
cons2 = sum(x,2) == 1;
cons3 = sum(x,3) == 1;
prob = optimproblem;
prob.Constraints.cons1 = cons1;
prob.Constraints.cons2 = cons2;
prob.Constraints.cons3 = cons3;
mul = ones(1,1,9);
mul = cumsum(mul,3);
prob.Objective = sum(sum(sum(x,1),2).*mul);
cons4 = optimconstr(3,3,9);

for u = 1:3
 for v = 1:3
 arr = x(3*(u-1)+1:3*(u-1)+3,3*(v-1)+1:3*(v-1)+3,:);
 cons4(u,v,:) = sum(sum(arr,1),2) <= ones(1,1,9);
 end
end
prob.Constraints.cons4 = cons4;

B = [1,2,2;
1,5,3;
1,8,4;
2,1,6;
2,9,3;
3,3,4;
3,7,5;
4,4,8;
4,6,6;
5,1,8;

9 Problem-Based Optimization

9-16

5,5,1;
5,9,6;
6,4,7;
6,6,5;
7,3,7;
7,7,6;
8,1,4;
8,9,8;
9,2,3;
9,5,4;
9,8,2];

for u = 1:size(B,1)
 x.LowerBound(B(u,1),B(u,1),B(u,1)) = 1;
end

This script has some errors that you can find by examining the variables, objective, and constraints.
First, examine the variable x.

x

x =

 9×9×9 OptimizationVariable array with properties:

 Array-wide properties:
 Name: 'x'
 Type: 'continuous'
 IndexNames: {{} {} {}}

 Elementwise properties:
 LowerBound: [9×9×9 double]
 UpperBound: [9×9×9 double]

See variables with show.
See bounds with showbounds.

This display shows that the type of the variable is continuous. The variable should be integer valued.
Change the type.

x.Type = 'integer'

x =

 9×9×9 OptimizationVariable array with properties:

 Array-wide properties:
 Name: 'x'
 Type: 'integer'
 IndexNames: {{} {} {}}

 Elementwise properties:
 LowerBound: [9×9×9 double]
 UpperBound: [9×9×9 double]

See variables with show.
See bounds with showbounds.

 Review or Modify Optimization Problems

9-17

Check the bounds. There should be 21 lower bounds with the value 1, one for each row of B. Because
x is a large array, write the bounds to a file instead of displaying them at the command line.

writebounds(x,'xbounds.txt')

Search the file xbounds.txt for all instances of 1 <=. Only nine lower bounds having the value 1, in
the variables x(1,1,1), x(2,2,2), …, x(9,9,9). To investigate this discrepancy, examine the code
where you set the lower bounds:

for u = 1:size(B,1)
 x.LowerBound(B(u,1),B(u,1),B(u,1)) = 1;
end

The line inside the loop should say x.LowerBound(B(u,1),B(u,2),B(u,3)) = 1;. Reset all
lower bounds to zero, then run the corrected code.

x.LowerBound = 0;
for u = 1:size(B,1)
 x.LowerBound(B(u,1),B(u,2),B(u,3)) = 1;
end
writebounds(x,'xbounds.txt')

xbounds.txt now has the correct number of lower bound entries that are 1.

Examine the objective function. The objective function expression is large, so write the expression to
a file.

write(prob.Objective,'objectivedescription.txt')

 x(1, 1, 1) + x(2, 1, 1) + x(3, 1, 1) + x(4, 1, 1) + x(5, 1, 1) + x(6, 1, 1) + x(7, 1, 1) + x(8,
 1, 1) + x(9, 1, 1) + x(1, 2, 1) + x(2, 2, 1) + x(3, 2, 1) + x(4, 2, 1) + x(5, 2, 1) + x(6, 2,
 ...
 9*x(7, 8, 9) + 9*x(8, 8, 9) + 9*x(9, 8, 9) + 9*x(1, 9, 9) + 9*x(2, 9, 9) + 9*x(3, 9, 9) +
 9*x(4, 9, 9) + 9*x(5, 9, 9) + 9*x(6, 9, 9) + 9*x(7, 9, 9) + 9*x(8, 9, 9) + 9*x(9, 9, 9)

The objective function looks reasonable, because it is a sum of scalar expressions.

Write the constraints to files for examination.

write(prob.Constraints.cons1,'cons1.txt')
write(prob.Constraints.cons2,'cons2.txt')
write(prob.Constraints.cons3,'cons3.txt')
write(prob.Constraints.cons4,'cons4.txt')

Review cons4.txt and you see a mistake. All the constraints are inequalities rather than equalities.
Correct the lines of code that create this constraint and put the corrected constraint in the problem.

cons4 = optimconstr(3,3,9);

for u = 1:3
 for v = 1:3
 arr = x(3*(u-1)+1:3*(u-1)+3,3*(v-1)+1:3*(v-1)+3,:);
 cons4(u,v,:) = sum(sum(arr,1),2) == ones(1,1,9);
 end
end
prob.Constraints.cons4 = cons4;

After these changes, you can successfully solve the problem.

9 Problem-Based Optimization

9-18

sol = solve(prob);
x = round(sol.x);
y = ones(size(x));
for k = 2:9
 y(:,:,k) = k; % multiplier for each depth k
end
S = x.*y; % multiply each entry by its depth
S = sum(S,3); % S is 9-by-9 and holds the solved puzzle

drawSudoku(S)

Duplicate Variable Name
If you recreate a variable, but already have an expression that uses the old variable, then you can get
errors when incorporating the expressions into a single problem. See “Variables with Duplicate
Names Disallowed” on page 9-35.

See Also
show | showbounds | write | writebounds | OptimizationConstraint |
OptimizationVariable | OptimizationProblem | OptimizationExpression

More About
• “Problem-Based Optimization Workflow” on page 9-2
• “Mixed-Integer Linear Programming Basics: Problem-Based” on page 8-108

 Review or Modify Optimization Problems

9-19

Named Index for Optimization Variables
In this section...
“Create Named Indices” on page 9-20
“Use Named Indices” on page 9-21
“View Solution with Index Variables” on page 9-22

Create Named Indices
Optimization variables can use names for indexing elements. You can give the names when you create
a variable or afterward. For example, give the names while creating the variable.

x = optimvar('x',["United","Lufthansa","Virgin Air"])

x =
 1x3 OptimizationVariable array with properties:

 Array-wide properties:
 Name: 'x'
 Type: 'continuous'
 IndexNames: {{} {1x3 cell}}

 Elementwise properties:
 LowerBound: [-Inf -Inf -Inf]
 UpperBound: [Inf Inf Inf]

 See variables with show.
 See bounds with showbounds.

optimvar automatically maps the names you specify to index numbers in the order of your variables.
For example, "United" corresponds to index 1, "Lufthansa" corresponds to index 2, and "Virgin
Air" corresponds to index 3. Display this last variable for confirmation.

show(x(3))

 [x('Virgin Air')]

Index names enable you to address elements of x by the index names. For example:

route = 2*x("United") + 3*x("Virgin Air")

route =
 Linear OptimizationExpression

 2*x('United') + 3*x('Virgin Air')

You can create or change the index names after you create a variable. However, you cannot change
the size of an optimization variable after construction. So you can change index names only by setting
new names that index the same size as the original variable. For example:

x = optimvar('x',3,2);
x.IndexNames = { {'row1','row2','row3'}, {'col1','col2'} };

9 Problem-Based Optimization

9-20

You can set the index names for each dimension individually:

x.IndexNames{1} = {'row1', 'row2', 'row3'};
x.IndexNames{2} = {'col1', 'col2'};

You can also set an index name for a particular element:

x.IndexNames{1}{2} = 'importantRow';

Examine the index names for the variable.

x.IndexNames{1}

ans = 1x3 cell
 {'row1'} {'importantRow'} {'row3'}

x.IndexNames{2}

ans = 1x2 cell
 {'col1'} {'col2'}

Use Named Indices
You can create and debug some problems easily by using named index variables. For example,
consider the variable x that is indexed by the names in vars:

vars = {'P1','P2','I1','I2','C','LE1','LE2','HE1','HE2',...
 'HPS','MPS','LPS','BF1','BF2','EP','PP'};
x = optimvar('x',vars,'LowerBound',0);

Create bounds, an objective function, and linear constraints for x by using the named indices.

x('P1').LowerBound = 2500;
x('I2').UpperBound = 244000;
linprob = optimproblem;
linprob.Objective = 0.002614*x('HPS') + 0.0239*x('PP') + 0.009825*x('EP');
linprob.Constraints.cons1 = x('I1') - x('HE1') <= 132000;

You can use strings (" ") or character vectors (' ') in index variables indiscriminately. For example:

x("P2").LowerBound = 3000;
x('MPS').LowerBound = 271536;
showbounds(x)

 2500 <= x('P1')
 3000 <= x('P2')
 0 <= x('I1')
 0 <= x('I2') <= 244000
 0 <= x('C')
 0 <= x('LE1')
 0 <= x('LE2')
 0 <= x('HE1')
 0 <= x('HE2')
 0 <= x('HPS')
 271536 <= x('MPS')
 0 <= x('LPS')

 Named Index for Optimization Variables

9-21

 0 <= x('BF1')
 0 <= x('BF2')
 0 <= x('EP')
 0 <= x('PP')

There is no distinction between variables you specified with a string, such as x("P2"), and variables
you specified with a character vector, such as x('MPS').

Because named index variables have numeric equivalents, you can use ordinary summation and colon
operators even when you have named index variables. For example, you can have constraints of these
forms:

constr = sum(x) <= 100;
show(constr)

 x('P1') + x('P2') + x('I1') + x('I2') + x('C') + x('LE1') + x('LE2')
+ x('HE1') + x('HE2') + x('HPS') + x('MPS') + x('LPS') + x('BF1') + x('BF2')
+ x('EP') + x('PP') <= 100

y = optimvar('y',{'red','green','blue'},{'plastic','wood','metal'},...
 'Type','integer','LowerBound',0);
constr2 = y("red",:) == [5,7,3];
show(constr2)

(1, 1)

 y('red', 'plastic') == 5

(1, 2)

 y('red', 'wood') == 7

(1, 3)

 y('red', 'metal') == 3

View Solution with Index Variables
Create and solve an optimization problem using named index variables. The problem is to maximize
the profit-weighted flow of fruit to various airports, subject to constraints on the weighted flows.

rng(0) % For reproducibility
p = optimproblem('ObjectiveSense', 'maximize');
flow = optimvar('flow', ...
 {'apples', 'oranges', 'bananas', 'berries'}, {'NYC', 'BOS', 'LAX'}, ...
 'LowerBound',0,'Type','integer');
p.Objective = sum(sum(rand(4,3).*flow));
p.Constraints.NYC = rand(1,4)*flow(:,'NYC') <= 10;
p.Constraints.BOS = rand(1,4)*flow(:,'BOS') <= 12;
p.Constraints.LAX = rand(1,4)*flow(:,'LAX') <= 35;
sol = solve(p);

Solving problem using intlinprog.
LP: Optimal objective value is -1027.472366.

Heuristics: Found 1 solution using ZI round.

9 Problem-Based Optimization

9-22

 Upper bound is -1027.233133.
 Relative gap is 0.00%.

Optimal solution found.

Intlinprog stopped at the root node because the objective value is within a gap
tolerance of the optimal value, options.AbsoluteGapTolerance = 0 (the default
value). The intcon variables are integer within tolerance,
options.IntegerTolerance = 1e-05 (the default value).

Find the optimal flow of oranges and berries to New York and Los Angeles.

[idxFruit,idxAirports] = findindex(flow, {'oranges','berries'}, {'NYC', 'LAX'})

idxFruit = 1×2

 2 4

idxAirports = 1×2

 1 3

orangeBerries = sol.flow(idxFruit, idxAirports)

orangeBerries = 2×2

 0 980.0000
 70.0000 0

This display means that no oranges are going to NYC, 70 berries are going to NYC, 980 oranges are
going to LAX, and no berries are going to LAX.

List the optimal flow of the following:

Fruit Airports

----- --------

Berries NYC

Apples BOS

Oranges LAX

idx = findindex(flow, {'berries', 'apples', 'oranges'}, {'NYC', 'BOS', 'LAX'})

idx = 1×3

 4 5 10

optimalFlow = sol.flow(idx)

optimalFlow = 1×3

 Named Index for Optimization Variables

9-23

 70.0000 28.0000 980.0000

This display means that 70 berries are going to NYC, 28 apples are going to BOS, and 980 oranges are
going to LAX.

See Also
optimvar | findindex

More About
• “Problem-Based Optimization Workflow” on page 9-2
• “Create Initial Point for Optimization with Named Index Variables” on page 9-47

9 Problem-Based Optimization

9-24

Examine Optimization Solution
In this section...
“Obtain Numeric Solution” on page 9-25
“Examine Solution Quality” on page 9-26
“Infeasible Solution” on page 9-26
“Solution Takes Too Long” on page 9-27

Obtain Numeric Solution
The solve function returns a solution as a structure, with each variable in the problem having a field
in the structure. To obtain numerical values of expressions in the problem from this structure easily,
use the evaluate function.

For example, solve a linear programming problem in two variables.

x = optimvar('x');
y = optimvar('y');
prob = optimproblem;
prob.Objective = -x -y/3;
prob.Constraints.cons1 = x + y <= 2;
prob.Constraints.cons2 = x + y/4 <= 1;
prob.Constraints.cons3 = x - y <= 2;
prob.Constraints.cons4 = x/4 + y >= -1;
prob.Constraints.cons5 = x + y >= 1;
prob.Constraints.cons6 = -x + y <= 2;

sol = solve(prob)

Solving problem using linprog.

Optimal solution found.

sol =

 struct with fields:

 x: 0.6667
 y: 1.3333

Suppose that you want the objective function value at the solution. You can rerun the problem, this
time asking for the objective function value and the solution.

[sol,fval] = solve(prob)

Solving problem using linprog.

Optimal solution found.

sol =

 struct with fields:

 x: 0.6667

 Examine Optimization Solution

9-25

 y: 1.3333

fval =

 -1.1111

Alternatively, for a time-consuming problem, save time by evaluating the objective function at the
solution using evaluate.

fval = evaluate(prob.Objective,sol)

fval =

 -1.1111

Examine Solution Quality
To check whether the reported solution is accurate, you can review outputs from solve. Return all
solve outputs

[sol,fval,exitflag,output,lambda] = solve(prob);

• Check the exit flag. exitflag = OptimalSolution generally means that solve converged to
the solution. For an explanation of the other exitflag values, see exitflag.

• Check the exit message at the command line or in the output structure. When the exit message
states that the solver converged to a solution, then generally the solution is reliable. This message
corresponds to exitflag = OptimalSolution.

• When you have integer constraints, check the absolute gap and the relative gap in the exit
message or in the output structure. When these gaps are zero or nearly zero, the solution is
reliable.

Infeasible Solution
If solve reports that your problem is infeasible (the exit flag is NoFeasiblePointFound), examine
the problem infeasibility at a variety of points to see which constraints might be overly restrictive.
Suppose that you have a single continuous optimization variable named x that has finite bounds on all
components, and you have constraints constr1 through constr20.

N = 100; % check 100 points
infeas = zeros(N,20); % allocate
L = x.LowerBound;
U = x.UpperBound;
S = numel(L);
pthist = cell(N);
for k = 1:N
 pt = L + rand(size(L)).*(U-L);
 pthist{k} = pt;
 for j = 1:20
 infeas(k,j) = infeasibility(['constr',num2str(j)],pt);
 end
end

The result infeas(a,b) has nonzero values wherever the associated point pt{a} is infeasible for
constraint b.

9 Problem-Based Optimization

9-26

Solution Takes Too Long
If solve takes a long time, there are a few possible causes and remedies.

• Problem formulation is slow. If you have defined objective or constraint expressions in nested
loops, then solve can take a long time to convert the problem internally to a matrix form. To
speed the solution, try to formulate your expressions in a vectorized fashion. See “Create Efficient
Optimization Problems” on page 9-28.

• Mixed-integer linear programming solution is slow. Sometimes you can speed up an integer
problem by setting options. You can also reformulate the problem to make it faster to solve. See
“Tuning Integer Linear Programming” on page 8-52.

• Nonlinear programming solution is slow. For suggestions, see “Solver Takes Too Long” on page 4-
9. For further suggestions, see “When the Solver Fails” on page 4-3.

• Solver Limit Exceeded. To solve some problems, solve can take more than the default number of
solution steps. For problems with integer constraints, increase the number of allowed steps by
increasing the LPMaxIterations, MaxNodes,MaxTime, or RootLPMaxIterations options to
higher-than-default values. To set these options, use optimoptions('intlinprog',...). For
non-integer problems, increase the MaxIterations option using
optimoptions('linprog','MaxIterations',...). See options.

See Also
evaluate | infeasibility | solve

More About
• “Tuning Integer Linear Programming” on page 8-52
• “Exit Flags and Exit Messages” on page 3-3
• “Output Structures” on page 3-21
• “Lagrange Multiplier Structures” on page 3-22
• “Mixed-Integer Linear Programming Basics: Problem-Based” on page 8-108

 Examine Optimization Solution

9-27

Create Efficient Optimization Problems
When a problem has integer constraints, solve calls intlinprog to obtain the solution. For
suggestions on obtaining a faster solution or more integer-feasible points, see “Tuning Integer Linear
Programming” on page 8-52.

Before you start solving the problem, sometimes you can improve the formulation of your problem
constraints or objective. Usually, the software can create expressions for the objective function or
constraints more quickly in a vectorized fashion rather than in a loop. This speed difference is
especially large when an optimization expression is subject to automatic differentiation; see
“Automatic Differentiation in Optimization Toolbox” on page 9-41.

Suppose that your objective function is

∑
i = 1

30
∑

j = 1

30
∑

k = 1

10
xi, j, kbkci, j,

where x is an optimization variable, and b and c are constants. Two general ways to formulate this
objective function are as follows:

• Use a for loop.

x = optimvar('x',30,30,10);
b = optimvar('b',10);
c = optimvar('c',30,30);
tic
expr = optimexpr;
for i = 1:30
 for j = 1:30
 for k = 1:10
 expr = expr + x(i,j,k)*b(k)*c(i,j);
 end
 end
end
toc

Elapsed time is 307.459465 seconds.

Here, expr contains the objective function expression. Although this method is straightforward, it
can require excessive time to loop through many levels of for loops.

• Use a vectorized statement. Vectorized statements generally run faster than a for loop. You can
create a vectorized statement in several ways.

• Expand b and c. To enable term-wise multiplication, create constants that are the same size as
x.

tic
bigb = reshape(b,1,1,10);
bigb = repmat(bigb,30,30,1);
bigc = repmat(c,1,1,10);
expr = sum(sum(sum(x.*bigb.*bigc)));
toc

Elapsed time is 0.013631 seconds.
• Loop once over b.

9 Problem-Based Optimization

9-28

tic
expr = optimexpr;
for k = 1:10
 expr = expr + sum(sum(x(:,:,k).*c))*b(k);
end
toc

Elapsed time is 0.044985 seconds.

• Create an expression by looping over b and then summing terms after the loop.

tic
expr = optimexpr(30,30,10);
for k = 1:10
 expr(:,:,k) = x(:,:,k).*c*b(k);
end
expr = sum(expr(:));
toc

Elapsed time is 0.039518 seconds.

Observe the speed difference between a vectorized and nonvectorized implementation of the example
“Constrained Electrostatic Nonlinear Optimization, Problem-Based” on page 6-14. This example was
timed using automatic differentiation in R2020b.

N = 30;
x = optimvar('x',N,'LowerBound',-1,'UpperBound',1);
y = optimvar('y',N,'LowerBound',-1,'UpperBound',1);
z = optimvar('z',N,'LowerBound',-2,'UpperBound',0);
elecprob = optimproblem;
elecprob.Constraints.spherec = (x.^2 + y.^2 + (z+1).^2) <= 1;
elecprob.Constraints.plane1 = z <= -x-y;
elecprob.Constraints.plane2 = z <= -x+y;
elecprob.Constraints.plane3 = z <= x-y;
elecprob.Constraints.plane4 = z <= x+y;

rng default % For reproducibility
x0 = randn(N,3);
for ii=1:N
 x0(ii,:) = x0(ii,:)/norm(x0(ii,:))/2;
 x0(ii,3) = x0(ii,3) - 1;
end
init.x = x0(:,1);
init.y = x0(:,2);
init.z = x0(:,3);
opts = optimoptions('fmincon','Display','off');

tic
energy = optimexpr(1);
for ii = 1:(N-1)
 jj = (ii+1):N; % Vectorized
 tempe = (x(ii) - x(jj)).^2 + (y(ii) - y(jj)).^2 + (z(ii) - z(jj)).^2;
 energy = energy + sum(tempe.^(-1/2));
end
elecprob.Objective = energy;
disp('Vectorized computation time:')
[sol,fval,exitflag,output] = solve(elecprob,init,'Options',opts);
toc

 Create Efficient Optimization Problems

9-29

Vectorized computation time:
Elapsed time is 1.838136 seconds.

tic
energy2 = optimexpr(1); % For nonvectorized comparison
for ii = 1:(N-1)
 for jjj = (ii+1):N; % Not vectorized
 energy2 = energy2 + ((x(ii) - x(jjj))^2 + (y(ii) - y(jjj))^2 + (z(ii) - z(jjj))^2)^(-1/2);
 end
end
elecprob.Objective = energy2;
disp('Non-vectorized computation time:')
[sol,fval,exitflag,output] = solve(elecprob,init,'Options',opts);
toc

Non-vectorized computation time:
Elapsed time is 204.615210 seconds.

The vectorized version is about 100 times faster than the nonvectorized version.

See Also

More About
• “Tuning Integer Linear Programming” on page 8-52
• “Separate Optimization Model from Data” on page 9-31

9 Problem-Based Optimization

9-30

Separate Optimization Model from Data
To obtain a scalable, reusable optimization problem, create the problem in a way that separates the
problem data from the model structure.

Suppose that you have a multiperiod scheduling problem with several products. The time periods are
in a vector, periods, and the products are in a string vector, products.

periods = 1:10;
products = ["strawberry","cherry","red grape",...
 "green grape","nectarine","apricot"];

To create variables that represent the number of products used in each period, use statements that
take sizes from the data. For example:

usage = optimvar('usage',length(periods),products,...
 'Type','integer','LowerBound',0);

To later change the time periods or products, you need to change the data only in periods and
products. You can then run the same code to create usage.

In other words, to maintain flexibility and allow for reuse, do not use a statement that has hard-coded
data sizes. For example:

usage = optimvar('usage',10,6,... % DO NOT DO THIS
 'Type','Integer','LowerBound',0);

The same consideration holds for expressions as well as variables. Suppose that the costs for the
products are in a data matrix, costs, of size length(periods)-by-length(products). To
simulate valid data, create a random integer matrix of the appropriate size.

rng default % For reproducibility
costs = randi(8,length(periods),length(products));

The best practice is to create cost expressions that take sizes from the data.

costPerYear = sum(costs.*usage,2);
totalCost = sum(costPerYear);

In this way, if you ever change the data sizes, the statements that create costPerYear and
totalCost do not change. In other words, to maintain flexibility and allow for reuse, do not use a
statement that has hard-coded data sizes. For example:

costPerYear = optimexpr(10,1); % DO NOT DO THIS
totalcost = 0;
for yr = 1:10 % DO NOT DO THIS
 costPerYear(i) = sum(costs(i,:).*usage(i,:));
 totalcost = totalcost + costPerYear(i);
end

See Also

More About
• “Problem-Based Optimization Workflow” on page 9-2

 Separate Optimization Model from Data

9-31

• “Create Efficient Optimization Problems” on page 9-28
• “Traveling Salesman Problem: Problem-Based” on page 8-119
• “Factory, Warehouse, Sales Allocation Model: Problem-Based” on page 8-111
• “Create Multiperiod Inventory Model in Problem-Based Framework” on page 8-36

9 Problem-Based Optimization

9-32

Problem-Based Optimization Algorithms
Internally, the solve function solves optimization problems by calling a solver. For the default solver
for the problem and supported solvers for the problem, see the 'solver' argument.

Before solve can call a solver, the problems must be converted to solver form, either by solve or
some other associated functions or objects. This conversion entails, for example, linear constraints
having a matrix representation rather than an optimization variable expression.

The first step in the algorithm occurs as you place optimization expressions into the problem. An
OptimizationProblem object has an internal list of the variables used in its expressions. Each
variable has a linear index in the expression, and a size. Therefore, the problem variables have an
implied matrix form. The prob2struct function performs the conversion from problem form to
solver form. For an example, see “Convert Problem to Structure” on page 15-428.

For nonlinear optimization problems, solve uses automatic differentiation to compute the gradients
of the objective function and nonlinear constraint functions. These derivatives apply when the
objective and constraint functions are composed of “Supported Operations for Optimization Variables
and Expressions” on page 9-43 and do not use the fcn2optimexpr function. When automatic
differentiation does not apply, solvers estimate derivatives using finite differences. For details of
automatic differentiation, see “Automatic Differentiation Background” on page 9-37.

For the default and allowed solvers that solve calls, depending on the problem objective and
constraints, see 'solver'. You can override the default by using the 'solver' name-value pair
argument when calling solve.

For the algorithm that intlinprog uses to solve MILP problems, see “intlinprog Algorithm” on page
8-43. For the algorithms that linprog uses to solve linear programming problems, see “Linear
Programming Algorithms” on page 8-2. For the algorithms that quadprog uses to solve quadratic
programming problems, see “Quadratic Programming Algorithms” on page 10-2. For linear or
nonlinear least-squares solver algorithms, see “Least-Squares (Model Fitting) Algorithms” on page
11-2. For nonlinear solver algorithms, see “Unconstrained Nonlinear Optimization Algorithms” on
page 5-2 and “Constrained Nonlinear Optimization Algorithms” on page 5-19.

For nonlinear equation solving, solve internally represents each equation as the difference between
the left and right sides. Then solve attempts to minimize the sum of squares of the equation
components. For the algorithms for solving nonlinear systems of equations, see “Equation Solving
Algorithms” on page 12-2. When the problem also has bounds, solve calls lsqnonlin to minimize
the sum of squares of equation components. See “Least-Squares (Model Fitting) Algorithms” on page
11-2.

Note If your objective function is a sum of squares, and you want solve to recognize it as such,
write it as either norm(expr)^2 or sum(expr.^2), and not as expr'*expr or any other form. The
internal parser recognizes a sum of squares only when represented as a square of a norm or an
explicit sums of squares. For details, see “Write Objective Function for Problem-Based Least Squares”
on page 11-96. For an example, see “Nonnegative Linear Least Squares, Problem-Based” on page
11-41.

See Also
linprog | intlinprog | prob2struct

 Problem-Based Optimization Algorithms

9-33

More About
• “intlinprog Algorithm” on page 8-43
• “Linear Programming Algorithms” on page 8-2
• “Automatic Differentiation Background” on page 9-37
• “Create Efficient Optimization Problems” on page 9-28

9 Problem-Based Optimization

9-34

Variables with Duplicate Names Disallowed
If you use two different variables that have the same name, then optimization expressions,
constraints, or problems can throw an error. This error is troublesome when you create a variable,
then create an expression using that variable, then recreate the variable. Suppose that you create the
following variable and constraint expression:

x = optimvar('x',10,2);
cons = sum(x,2) == 1;

At this point, you realize that you intended to create integer variables. So you recreate the variable,
changing its type.

x = optimvar('x',10,2,'Type','integer');

Create an objective and problem.

obj = sum(x*[2;3]);
prob = optimproblem('Objective',obj);

Now try to put the constraint into the problem.

prob.Constraints = cons

At this point, you get an error message stating that OptimizationVariables appearing in the
same problem must have distinct "Name" properties. The issue is that when you recreated the x
variable, it is a new variable, unrelated to the constraint expression.

You can correct this issue in two ways.

• Create a new constraint expression using the current x.

cons = sum(x,2) == 1;
prob.Constraints = cons;

• Retrieve the original x variable by creating a problem using the old expression. Update the
retrieved variable to have the correct Type property. Use the retrieved variable for the problem
and objective.

oprob = optimproblem('Constraints',cons);
x = oprob.Variables.x;
x.Type = 'integer';
oprob.Objective = sum(x*[2;3]);

This method can be useful if you have created more expressions using the old variable than
expressions using the new variable.

See Also

More About
• “Problem-Based Optimization Workflow” on page 9-2

 Variables with Duplicate Names Disallowed

9-35

Expression Contains Inf or NaN
Optimization modeling functions do not allow you to specify complex, Inf, or NaN values. However,
Inf or NaN expressions can arise during ordinary operations. Often, these expressions lead to
erroneous solutions.

Optimization expressions containing Inf or NaN cannot be displayed. For example, the largest real
number in double precision arithmetic is about 1.8e308. So 2e308 overflows to Inf.

x = optimvar('x');
y = 1e308;
expr = 2*x*y

expr =

 OptimizationExpression

 Expression contains Inf or NaN.

Similarly, because Inf - Inf = NaN, the following expression cannot be displayed.

expr = 2*x*y - 3*x*y

expr =

 OptimizationExpression

 Expression contains Inf or NaN.

If any of your optimization expressions contain Inf or NaN, try to eliminate these values before
calling solve. To do so:

• Search for these expressions by using the show or write functions.
• Check whether the expressions came from a division by zero or from the addition or multiplication

of large quantities. If so, eliminate or correct the expressions.
• Usually, these expressions appear as the result of errors. However, sometimes they arise from

poor scaling. If necessary, divide each relevant expression by a large enough scalar so that the
expression no longer overflows, or use another scaling operation.

See Also
show | write

More About
• “Problem-Based Optimization Workflow” on page 9-2
• “Review or Modify Optimization Problems” on page 9-14

9 Problem-Based Optimization

9-36

Automatic Differentiation Background

What Is Automatic Differentiation?
Automatic differentiation (also known as autodiff, AD, or algorithmic differentiation) is a widely used
tool in optimization. The solve function uses automatic differentiation by default in problem-based
optimization for general nonlinear objective functions and constraints; see “Automatic Differentiation
in Optimization Toolbox” on page 9-41.

Automatic differentiation is a set of techniques for evaluating derivatives (gradients) numerically. The
method uses symbolic rules for differentiation, which are more accurate than finite difference
approximations. Unlike a purely symbolic approach, automatic differentiation evaluates expressions
numerically early in the computations, rather than carrying out large symbolic computations. In other
words, automatic differentiation evaluates derivatives at particular numeric values; it does not
construct symbolic expressions for derivatives.

• Forward mode automatic differentiation evaluates a numerical derivative by performing
elementary derivative operations concurrently with the operations of evaluating the function itself.
As detailed in the next section, the software performs these computations on a computational
graph.

• Reverse mode automatic differentiation uses an extension of the forward mode computational
graph to enable the computation of a gradient by a reverse traversal of the graph. As the software
runs the code to compute the function and its derivative, it records operations in a data structure
called a trace.

As many researchers have noted (for example, Baydin, Pearlmutter, Radul, and Siskind [1]), for a
scalar function of many variables, reverse mode calculates the gradient more efficiently than forward
mode. Because an objective function is scalar, solve automatic differentiation uses reverse mode for
scalar optimization. However, for vector-valued functions such as nonlinear least squares and
equation solving, solve uses forward mode for some calculations. See “Automatic Differentiation in
Optimization Toolbox” on page 9-41.

Forward Mode
Consider the problem of evaluating this function and its gradient:

f (x) = x1exp −1
2 x1

2 + x2
2 .

Automatic differentiation works at particular points. In this case, take x1 = 2, x2 = 1/2.

The following computational graph encodes the calculation of the function f(x).

 Automatic Differentiation Background

9-37

To compute the gradient of f(x) using forward mode, you compute the same graph in the same
direction, but modify the computation based on the elementary rules of differentiation. To further
simplify the calculation, you fill in the value of the derivative of each subexpression ui as you go. To
compute the entire gradient, you must traverse the graph twice, once for the partial derivative with
respect to each independent variable. Each subexpression in the chain rule has a numeric value, so
the entire expression has the same sort of evaluation graph as the function itself.

The computation is a repeated application of the chain rule. In this example, the derivative of f with
respect to x1 expands to this expression:

df
dx1

=
du6
dx1

=
∂u6
∂u−1

+
∂u6
∂u5

∂u5
∂x1

=
∂u6
∂u−1

+
∂u6
∂u5

∂u5
∂u4

∂u4
∂x1

=
∂u6
∂u−1

+
∂u6
∂u5

∂u5
∂u4

∂u4
∂u3

∂u3
∂x1

=
∂u6
∂u−1

+
∂u6
∂u5

∂u5
∂u4

∂u4
∂u3

∂u3
∂u1

∂u1
∂x1

.

Let u̇i represent the derivative of the expression ui with respect to x1. Using the evaluated values of
the ui from the function evaluation, you compute the partial derivative of f with respect to x1 as shown

9 Problem-Based Optimization

9-38

in the following figure. Notice that all the values of the u̇i become available as you traverse the graph
from top to bottom.

To compute the partial derivative with respect to x2, you traverse a similar computational graph.
Therefore, when you compute the gradient of the function, the number of graph traversals is the
same as the number of variables. This process can be slow for many applications, when the objective
function or nonlinear constraints depend on many variables.

Reverse Mode
Reverse mode uses one forward traversal of a computational graph to set up the trace. Then it
computes the entire gradient of the function in one traversal of the graph in the opposite direction.
For problems with many variables, this mode is far more efficient.

The theory behind reverse mode is also based on the chain rule, along with associated adjoint
variables denoted with an overbar. The adjoint variable for ui is

ui = ∂ f
∂ui

.

In terms of the computational graph, each outgoing arrow from a variable contributes to the
corresponding adjoint variable by its term in the chain rule. For example, the variable u–1 has
outgoing arrows to two variables, u1 and u6. The graph has the associated equation

 Automatic Differentiation Background

9-39

∂ f
∂u−1

= ∂ f
∂u1

∂u1
∂u−1

+ ∂ f
∂u6

∂u6
∂u−1

= u1
∂u1
∂u−1

+ u6
∂u6
∂u−1

.

In this calculation, recalling that u1 = u−1
2 and u6 = u5u–1, you obtain

u−1 = u12u−1 + u6u5 .

During the forward traversal of the graph, the software calculates the intermediate variables ui.
During the reverse traversal, starting from the seed value u6 = ∂ f

∂ f = 1, the reverse mode
computation obtains the adjoint values for all variables. Therefore, reverse mode computes the
gradient in just one computation, saving a great deal of time compared to forward mode.

The following figure shows the computation of the gradient in reverse mode for the function

f (x) = x1exp −1
2 x1

2 + x2
2 .

Again, the computation takes x1 = 2, x2 = 1/2. The reverse mode computation relies on the ui values
that are obtained during the computation of the function in the original computational graph. In the
right portion of the figure, the computed values of the adjoint variables appear next to the adjoint
variable names, using the formulas from the left portion of the figure.

The final gradient values appear as u0 = ∂ f
∂u0

= ∂ f
∂x2

 and u−1 = ∂ f
∂u−1

= ∂ f
∂x1

.

9 Problem-Based Optimization

9-40

For more details, see Baydin, Pearlmutter, Radul, and Siskind [1] or the Wikipedia article on
automatic differentiation [2].

Automatic Differentiation in Optimization Toolbox
Automatic differentiation (AD) applies to the solve and prob2struct functions under the following
conditions:

• The objective and constraint functions are supported, as described in “Supported Operations for
Optimization Variables and Expressions” on page 9-43. They do not require use of the
fcn2optimexpr function.

• The solver called by solve is fmincon, fminunc, fsolve, or lsqnonlin.
• For optimization problems, the 'ObjectiveDerivative' and 'ConstraintDerivative'

name-value pair arguments for solve or prob2struct are set to 'auto' (default), 'auto-
forward', or 'auto-reverse'.

• For equation problems, the 'EquationDerivative' option is set to 'auto' (default), 'auto-
forward', or 'auto-reverse'.

When AD Applies All Constraint Functions
Supported

One or More Constraints Not
Supported

Objective Function
Supported

AD used for objective and
constraints

AD used for objective only

Objective Function Not
Supported

AD used for constraints only AD not used

When these conditions are not satisfied, solve estimates gradients by finite differences, and
prob2struct does not create gradients in its generated function files.

Solvers choose the following type of AD by default:

• For a general nonlinear objective function, fmincon defaults to reverse AD for the objective
function. fmincon defaults to reverse AD for the nonlinear constraint function when the number
of nonlinear constraints is less than the number of variables. Otherwise, fmincon defaults to
forward AD for the nonlinear constraint function.

• For a general nonlinear objective function, fminunc defaults to reverse AD.
• For a least-squares objective function, fmincon and fminunc default to forward AD for the

objective function. For the definition of a problem-based least-squares objective function, see
“Write Objective Function for Problem-Based Least Squares” on page 11-96.

• lsqnonlin defaults to forward AD when the number of elements in the objective vector is greater
than or equal to the number of variables. Otherwise, lsqnonlin defaults to reverse AD.

• fsolve defaults to forward AD when the number of equations is greater than or equal to the
number of variables. Otherwise, fsolve defaults to reverse AD.

Note To use automatic derivatives in a problem converted by prob2struct, pass options specifying
these derivatives.

options = optimoptions('fmincon','SpecifyObjectiveGradient',true,...
 'SpecifyConstraintGradient',true);
problem.options = options;

 Automatic Differentiation Background

9-41

Currently, AD works only for first derivatives; it does not apply to second or higher derivatives. So, for
example, if you want to use an analytic Hessian to speed your optimization, you cannot use solve
directly, and must instead use the approach described in “Supply Derivatives in Problem-Based
Workflow” on page 6-26.

References
[1] Baydin, Atilim Gunes, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind.

"Automatic Differentiation in Machine Learning: A Survey." The Journal of Machine Learning
Research, 18(153), 2018, pp. 1–43. Available at https://arxiv.org/abs/1502.05767.

[2] Automatic differentiation. Wikipedia. Available at https://en.wikipedia.org/wiki/
Automatic_differentiation.

See Also
solve | prob2struct

More About
• “Problem-Based Optimization Setup”
• “Supported Operations for Optimization Variables and Expressions” on page 9-43
• “Effect of Automatic Differentiation in Problem-Based Optimization” on page 6-23

External Websites
• Books on Automatic Differentiation

9 Problem-Based Optimization

9-42

https://arxiv.org/abs/1502.05767
https://en.wikipedia.org/wiki/Automatic_differentiation
https://en.wikipedia.org/wiki/Automatic_differentiation
http://www.autodiff.org/?module=Introduction&submenu=Books

Supported Operations for Optimization Variables and
Expressions

In this section...
“Notation for Supported Operations” on page 9-43
“Operations Returning Optimization Expressions” on page 9-43
“Operations Returning Optimization Variables” on page 9-45
“Operations on Optimization Expressions” on page 9-45
“Operations Returning Constraint Expressions” on page 9-46
“Some Undocumented Operations Work on Optimization Variables and Expressions” on page 9-46
“Unsupported Functions and Operations Require fcn2optimexpr” on page 9-46

Notation for Supported Operations
Optimization variables and expressions are the basic elements of the “Problem-Based Optimization
Workflow” on page 9-2. For the legal operations on optimization variables and expressions:

• x and y represent optimization arrays of arbitrary size (usually the same size).
• x2D and y2D represent 2-D optimization arrays.
• a is a scalar numeric constant.
• M is a constant numeric matrix.
• c is a numeric array of the same size as x.

Warning The problem-based approach does not support complex values in an objective function,
nonlinear equalities, or nonlinear inequalities. If a function calculation has a complex value, even as
an intermediate value, the final result can be incorrect.

Operations Returning Optimization Expressions
These operations on optimization variables or expressions return an optimization expression.

Category Operation Example
Arithmetic Add constant x+c or c+x

Add variable x+y
Unary plus +x
Subtract a constant x-c
Subtract variables x–y
Unary minus -x
Multiply by a constant scalar a*x or a.*x or x*a or x.*a
Divide by a constant scalar x/a or x./a or a\x or a.\x
Pointwise multiply by an array c.*x or x.*c

 Supported Operations for Optimization Variables and Expressions

9-43

Category Operation Example
Pointwise divide by an array x./c or c.\x
Pointwise multiply variables x.*y
Matrix multiply variables x2D*y2D, or x*y when x or y is scalar
Matrix multiply variable and
matrix

M*x2D or x2D*M

Dot product of variable and
array

dot(x,c) or dot(c,x)

Linear combination of variables sum(x), sum(x,dim), sum(x,'all'),
mean(x), and mean(x,dim)

Product of array elements prod(x), prod(x,dim), and
prod(x,'all')

Trace of matrix trace(x2D)
Cumulative sum or product cumsum(x) or cumprod(x), including

the syntaxes cumsum(x,dim),
cumsum(_,direction),
cumprod(x,dim), and
cumprod(_,direction)

Differences diff(x), including the syntaxes
diff(x,n) and diff(x,n,dim)

Concatenate and
Reshape

Transpose x' or x.'
Concatenate cat, vertcat, and horzcat
Reshape reshape(x,[10 1])
Create diagonal matrix or get
diagonal elements of matrix

diag(x2D), where x2D is a matrix or
vector, including the syntax
diag(x2D,k)

Elementary Functions Power of square matrix x2D^a
Pointwise power x.^a
Square root sqrt(x)
Norm (Euclidean) norm(x) for a scalar or vector x, which

calculates sqrt(sum(x.^2)). For non-
vector x or for other norm types,
norm(x) returns the black-box
expression

fcn2optimexpr(@norm,x,Analysis="off")

Sine sin(x)
Cosine cos(x)
Secant sec(x)
Cosecant csc(x)
Tangent tan(x)
Arcsine asin(x)

9 Problem-Based Optimization

9-44

Category Operation Example
Arccosine acos(x)
Arcsecant asec(x)
Arccosecant acsc(x)
Arctangent atan(x)
Exponential exp(x)
Logarithm log(x)
Hyperbolic sine sinh(x)
Hyperbolic cosine cosh(x)
Hyperbolic secant sech(x)
Hyperbolic cosecant csch(x)
Hyperbolic tangent tanh(x)
Inverse hyperbolic sine asinh(x)
Inverse hyperbolic cosine acosh(x)
Inverse hyperbolic secant asech(x)
Inverse hyperbolic cosecant acsch(x)
Inverse hyperbolic tangent atanh(x)

Note a^x is not supported for an optimization variable x.

However, if you bound a to be strictly positive, you can use the equivalent exp(x*log(a)).

Operations Returning Optimization Variables
These operations on optimization variables return an optimization variable.

Operation Example
N-D numeric indexing (includes colon and end) x(3,5:end)
N-D logical indexing x(ind), where ind is a logical array
N-D string indexing x(str1,str2), where str1 and str2 are

strings
N-D mixed indexing (combination of numeric,
logical, colon, end, and string)

x(ind,str1,:)

Linear numeric indexing (includes colon and end) x(17:end)
Linear logical indexing x(ind)
Linear string indexing x(str1)

Operations on Optimization Expressions
Optimization expressions support all the operations that optimization variables support, and return
optimization expressions. Also, you can index into or assign into an optimization expression using

 Supported Operations for Optimization Variables and Expressions

9-45

numeric, logical, string, or linear indexing, including the colon and end operators for numeric or
linear indexing.

Operations Returning Constraint Expressions
Constraints are any two comparable expressions that include one of these comparison operators: ==,
<=, or >=. Comparable expressions have the same size, or one of the expressions must be scalar,
meaning of size 1-by-1. For examples, see “Expressions for Constraints and Equations” on page 9-7.

Some Undocumented Operations Work on Optimization Variables and
Expressions
Internally, some functions and operations call only the documented supported operations. In these
cases you can obtain sensible results from the functions or operations. For example, currently
squeeze internally calls reshape, which is a documented supported operation. So if you squeeze
an optimization variable then you can obtain a sensible expression.

Unsupported Functions and Operations Require fcn2optimexpr
If your objective function or nonlinear constraint functions are not supported, convert a MATLAB
function to an optimization expression by using fcn2optimexpr. For examples, see “Convert
Nonlinear Function to Optimization Expression” on page 6-8 or the fcn2optimexpr function
reference page.

See Also
OptimizationExpression | OptimizationVariable | fcn2optimexpr

More About
• “Problem-Based Optimization Setup”
• “Problem-Based Optimization Workflow” on page 9-2
• “Optimization Expressions” on page 9-6
• “Convert Nonlinear Function to Optimization Expression” on page 6-8

9 Problem-Based Optimization

9-46

Create Initial Point for Optimization with Named Index
Variables

This example shows how to create an initial point for an optimization problem that has named index
variables. For named index variables, often the easiest way to specify an initial point is to use the
findindex function.

The problem is a multiperiod inventory problem that involves blending raw and refined oils. The
objective is to maximize profit subject to various constraints on production and inventory capacities
and on the "hardness" of oil blends. This problem is taken from Williams [1].

Problem Description

The problem involves two types of raw vegetable oil and three types of raw nonvegetable oil that a
manufacturer can refine into edible oil. The manufacturer can refine up to 200 tons of vegetable oils,
and up to 250 tons of nonvegetable oils per month. The manufacturer can store 1000 tons of each raw
oil, which is beneficial because the cost of purchasing raw oils depends on the month as well as the
type of oil. A quality called "hardness" is associated with each oil. The hardness of blended oil is the
linearly weighted hardness of the constituent oils.

Because of processing limitations, the manufacturer restricts the number of oils refined in any one
month to no more than three. Also, if an oil is refined in a month, at least 20 tons of that oil must be
refined. Finally, if a vegetable oil is refined in a month, then nonvegetable oil 3 must also be refined.

The revenue is a constant for each ton of oil sold. The costs are the cost of purchasing the oils, which
varies by oil and month, and there is a fixed cost per ton of storing each oil for each month. There is
no cost for refining an oil, but the manufacturer cannot store refined oil (it must be sold).

Enter Problem Data

Create named index variables for the planning periods and oils.

months = {'January','February','March','April','May','June'};
oils = {'veg1','veg2','non1','non2','non3'};
vegoils = {'veg1','veg2'};
nonveg = {'non1','non2','non3'};

Create variables with storage and usage parameters.

maxstore = 1000; % Maximum storage of each type of oil
maxuseveg = 200; % Maximum vegetable oil use
maxusenon = 250; % Maximum nonvegetable oil use
minuseraw = 20; % Minimum raw oil use
maxnraw = 3; % Maximum number of raw oils in a blend
saleprice = 150; % Sale price of refined and blended oil
storecost = 5; % Storage cost per period per oil quantity
stockend = 500; % Stock at beginning and end of problem
hmin = 3; % Minimum hardness of refined oil
hmax = 6; % Maximum hardness of refined oil

Specify the hardness of the raw oils as this vector.

h = [8.8,6.1,2,4.2,5.0];

 Create Initial Point for Optimization with Named Index Variables

9-47

Specify the costs of the raw oils as this array. Each row of the array represents the cost of the raw
oils in a month. The first row represents the costs in January, and the last row represents the costs in
June.

costdata = [...
110 120 130 110 115
130 130 110 90 115
110 140 130 100 95
120 110 120 120 125
100 120 150 110 105
 90 100 140 80 135];

Create Variables

Create these problem variables:

• sell, the quantity of each oil sold each month
• store, the quantity of each oil stored at the end of each month
• buy, the quantity of each oil purchased each month

Additionally, to account for constraints on the number of oils refined and sold each month and the
minimum quantity produced, create an auxiliary binary variable induse that is 1 exactly when an oil
is sold in a month.

sell = optimvar('sell', months, oils, 'LowerBound', 0);
buy = optimvar('buy', months, oils, 'LowerBound', 0);
store = optimvar('store', months, oils, 'LowerBound', 0, 'UpperBound', maxstore);

induse = optimvar('induse', months, oils, 'Type', 'integer', ...
 'LowerBound', 0, 'UpperBound', 1);

Name the total quantity of oil sold each month produce.

produce = sum(sell,2);

Create Objective

To create the objective function for the problem, calculate the revenue, and subtract the costs of
purchasing and storing oils.

Create an optimization problem for maximization, and include the objective function as the
Objective property.

prob = optimproblem('ObjectiveSense', 'maximize');
prob.Objective = sum(saleprice*produce) - sum(sum(costdata.*buy)) - sum(sum(storecost*store));

The objective expression is quite long. If you like, you can see it using the
showexpr(prob.Objective) command.

Create Constraints

The problem has several constraints that you need to set.

The quantity of each oil stored in June is 500. Set this constraint by using lower and upper bounds.

store('June', :).LowerBound = 500;
store('June', :).UpperBound = 500;

9 Problem-Based Optimization

9-48

The manufacturer cannot refine more than maxuseveg vegetable oil in any month. Set this and all
subsequent constraints by using “Expressions for Constraints and Equations” on page 9-7.

vegoiluse = sell(:, vegoils);
vegused = sum(vegoiluse, 2) <= maxuseveg;

The manufacturer cannot refine more than maxusenon nonvegetable oil any month.

nonvegoiluse = sell(:,nonveg);
nonvegused = sum(nonvegoiluse,2) <= maxusenon;

The hardness of the blended oil must be from hmin through hmax.

hardmin = sum(repmat(h, 6, 1).*sell, 2) >= hmin*produce;
hardmax = sum(repmat(h, 6, 1).*sell, 2) <= hmax*produce;

The amount of each oil stored at the end of the month is equal to the amount at the beginning of the
month, plus the amount bought, minus the amount sold.

initstockbal = 500 + buy(1, :) == sell(1, :) + store(1, :);
stockbal = store(1:5, :) + buy(2:6, :) == sell(2:6, :) + store(2:6, :);

If an oil is refined at all in a month, at least minuseraw of the oil must be refined and sold.

minuse = sell >= minuseraw*induse;

Ensure that the induse variable is 1 exactly when the corresponding oil is refined.

maxusev = sell(:, vegoils) <= maxuseveg*induse(:, vegoils);
maxusenv = sell(:, nonveg) <= maxusenon*induse(:, nonveg);

The manufacturer can sell no more than maxnraw oils each month.

maxnuse = sum(induse, 2) <= maxnraw;

If a vegetable oil is refined, oil non3 must also be refined and sold.

deflogic1 = sum(induse(:,vegoils), 2) <= induse(:,'non3')*numel(vegoils);

Include the constraint expressions in the problem.

prob.Constraints.vegused = vegused;
prob.Constraints.nonvegused = nonvegused;
prob.Constraints.hardmin = hardmin;
prob.Constraints.hardmax = hardmax;
prob.Constraints.initstockbal = initstockbal;
prob.Constraints.stockbal = stockbal;
prob.Constraints.minuse = minuse;
prob.Constraints.maxusev = maxusev;
prob.Constraints.maxusenv = maxusenv;
prob.Constraints.maxnuse = maxnuse;
prob.Constraints.deflogic1 = deflogic1;

Solve Problem

To show the eventual difference between using an initial point and not using one, set options to use
no heuristics. Then solve the problem.

 Create Initial Point for Optimization with Named Index Variables

9-49

opts = optimoptions('intlinprog','Heuristics','none');
[sol1,fval1,exitstatus1,output1] = solve(prob,'options',opts)

Solving problem using intlinprog.
LP: Optimal objective value is -1.075130e+05.

Cut Generation: Applied 41 Gomory cuts, 2 cover cuts,
 1 mir cut, and 1 clique cut.
 Lower bound is -1.047522e+05.

Branch and Bound:

 nodes total num int integer relative
explored time (s) solution fval gap (%)
 12 0.16 1 -7.635370e+04 3.684085e+01
 30 0.20 2 -9.960370e+04 4.899086e+00
 56 0.22 3 -9.996667e+04 4.518218e+00
 73 0.23 4 -9.998889e+04 4.494990e+00
 74 0.24 5 -9.998889e+04 4.494990e+00
 112 0.25 6 -1.002139e+05 4.260380e+00
 302 0.34 7 -1.002139e+05 2.608414e+00
 366 0.37 8 -1.002787e+05 2.284781e+00
 424 0.40 9 -1.002787e+05 1.590834e+00
 693 0.49 9 -1.002787e+05 2.229029e-03

Optimal solution found.

Intlinprog stopped because the objective value is within a gap tolerance of the
optimal value, options.RelativeGapTolerance = 0.0001 (the default value). The
intcon variables are integer within tolerance, options.IntegerTolerance = 1e-05
(the default value).

sol1 = struct with fields:
 buy: [6x5 double]
 induse: [6x5 double]
 sell: [6x5 double]
 store: [6x5 double]

fval1 = 1.0028e+05

exitstatus1 =
 OptimalSolution

output1 = struct with fields:
 relativegap: 0.0022
 absolutegap: 2
 numfeaspoints: 9
 numnodes: 693
 constrviolation: 1.9753e-11
 message: 'Optimal solution found....'
 solver: 'intlinprog'

Use Initial Point

For this problem, using an initial point can save branch-and-bound iterations. Create an initial point
of the correct dimensions.

9 Problem-Based Optimization

9-50

x0.buy = zeros(size(buy));
x0.induse = zeros(size(induse));
x0.store = zeros(size(store));
x0.sell = zeros(size(sell));

Set the initial point to sell only vegetable oil veg2 and nonvegetable oil non3. To set this initial point
appropriately, use the findindex function.

numMonths = size(induse,1);
[idxMonths,idxOils] = findindex(induse,1:numMonths,{'veg2','non3'});
x0.induse(idxMonths,idxOils) = 1;

Satisfy the maximum vegetable and nonvegetable oil constraints.

x0.sell(:,idxOils) = repmat([200,250],numMonths,1)

x0 = struct with fields:
 buy: [6x5 double]
 induse: [6x5 double]
 store: [6x5 double]
 sell: [6x5 double]

Set the initial point to buy no oil the first month.

x0.buy(1,:) = 0;

Satisfy the initstockbal constraint for the first month based on the initial store of 500 for each oil
type, and no purchase the first month, and constant usage of veg2 and non3.

x0.store(1,:) = [500 300 500 500 250];

Satisfy the remaining stock balance constraints stockbal by using the findindex function.

[idxMonths,idxOils] = findindex(store,2:6,{'veg2'});
x0.store(idxMonths,idxOils) = [100;0;0;0;500];

[idxMonths,idxOils] = findindex(store,2:6,{'veg1','non1','non2'});
x0.store(idxMonths,idxOils) = 500;

[idxMonths,idxOils] = findindex(store,2:6,{'non3'});
x0.store(idxMonths,idxOils) = [0;0;0;0;500];

[idxMonths,idxOils] = findindex(buy,2:6,{'veg2'});
x0.buy(idxMonths,idxOils) = [0;100;200;200;700];

[idxMonths,idxOils] = findindex(buy,2:6,{'non3'});
x0.buy(idxMonths,idxOils) = [0;250;250;250;750];

Check that the initial point is feasible. Because the constraints have different dimensions, set the
cellfun UniformOutput name-value pair to false when checking the infeasibilities.

inf{1} = infeasibility(vegused,x0);
inf{2} = infeasibility(nonvegused,x0);
inf{3} = infeasibility(hardmin,x0);
inf{4} = infeasibility(hardmax,x0);
inf{5} = infeasibility(initstockbal,x0);
inf{6} = infeasibility(stockbal,x0);
inf{7} = infeasibility(minuse,x0);

 Create Initial Point for Optimization with Named Index Variables

9-51

inf{8} = infeasibility(maxusev,x0);
inf{9} = infeasibility(maxusenv,x0);
inf{10} = infeasibility(maxnuse,x0);
inf{11} = infeasibility(deflogic1,x0);
allinfeas = cellfun(@max,inf,'UniformOutput',false);
anyinfeas = cellfun(@max,allinfeas);
disp(anyinfeas)

 0 0 0 0 0 0 0 0 0 0 0

All of the infeasibilities are zero, which shows that the initial point is feasible.

Rerun the problem using the initial point.

[sol2,fval2,exitstatus2,output2] = solve(prob,x0,'options',opts)

Solving problem using intlinprog.
LP: Optimal objective value is -1.075130e+05.

Cut Generation: Applied 41 Gomory cuts, 2 cover cuts,
 1 mir cut, and 1 clique cut.
 Lower bound is -1.047522e+05.
 Relative gap is 166.88%.

Branch and Bound:

 nodes total num int integer relative
explored time (s) solution fval gap (%)
 12 0.12 2 -7.635370e+04 3.684085e+01
 28 0.15 3 -8.836852e+04 1.823582e+01
 32 0.15 4 -9.950185e+04 5.006462e+00
 60 0.17 5 -9.996667e+04 4.518218e+00
 76 0.18 6 -9.996667e+04 4.518218e+00
 118 0.20 7 -1.002139e+05 4.260380e+00
 124 0.20 8 -1.002139e+05 4.260380e+00
 298 0.28 9 -1.002787e+05 1.205718e+00
 593 0.37 9 -1.002787e+05 1.450126e-03

Optimal solution found.

Intlinprog stopped because the objective value is within a gap tolerance of the
optimal value, options.RelativeGapTolerance = 0.0001 (the default value). The
intcon variables are integer within tolerance, options.IntegerTolerance = 1e-05
(the default value).

sol2 = struct with fields:
 buy: [6x5 double]
 induse: [6x5 double]
 sell: [6x5 double]
 store: [6x5 double]

fval2 = 1.0028e+05

exitstatus2 =
 OptimalSolution

output2 = struct with fields:
 relativegap: 0.0014

9 Problem-Based Optimization

9-52

 absolutegap: 1
 numfeaspoints: 9
 numnodes: 593
 constrviolation: 5.6231e-11
 message: 'Optimal solution found....'
 solver: 'intlinprog'

This time, solve took fewer branch-and-bound steps to find the solution.

fprintf(['Using the initial point took %d branch-and-bound steps,\nbut ',...
 'using no initial point took %d steps.'],output2.numnodes,output1.numnodes)

Using the initial point took 593 branch-and-bound steps,
but using no initial point took 693 steps.

Reference

[1] Williams, H. Paul. Model Building in Mathematical Programming. Fourth edition. J. Wiley,
Chichester, England. Problem 12.1, "Food Manufacture1." 1999.

See Also
findindex | solve

More About
• “Named Index for Optimization Variables” on page 9-20
• “Problem-Based Optimization Workflow” on page 9-2

 Create Initial Point for Optimization with Named Index Variables

9-53

Initialize Optimization Expressions

Error in Expression
Sometimes you get this mysterious error from an objective or nonlinear constraint function or
expression:
Unable to perform assignment because value of type 'optim.problemdef.OptimizationExpression' is not convertible
to 'double'.

Often, this error comes from an improper initialization of an optimization expression. Typically, you
initialize an variable F in a standard loop by declaring an array of zeros, such as

F = zeros(N,1);

However, if F is an optimization expression, then you must initialize it using optimexpr:

F = optimexpr(N,1);

The following topics provide examples of initialization techniques. All are based on the same example,
a function that uses an internal loop.

function out = myFun(x)
out = zeros(size(x));
out(1) = x(1);
for i = 2:10
 out(i) = (x(i) - x(i-1))^3;
end
out = mean(out);
end

If you try to use myFun(x) as the objective function for an optimization variable x, you get an error

x = optimvar('x',10,"LowerBound",0,"UpperBound",10);
prob = optimproblem("Objective",myFun(x));

Unable to perform assignment because value of type 'optim.problemdef.OptimizationVariable' is not convertible
to 'double'.

Error in myFun (line 3)
out(1) = x(1);

Caused by:
 Error using double
 Conversion to double from optim.problemdef.OptimizationVariable is not possible.

However, myFun works as the objective in a solver-based problem.

rng default
x0 = 10*rand(10,1);
lb = zeros(10,1);
ub = 10 + lb;
[sol,fval] = fmincon(@myFun,x0,[],[],[],[],lb,ub)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,

9 Problem-Based Optimization

9-54

and constraints are satisfied to within the value of the constraint tolerance.

sol =

 9.4226
 10.0000
 0.0000
 5.0000
 10.0000
 0.0000
 3.3333
 6.6667
 10.0000
 0.0000

fval =

 -262.9274

This problem has several local solutions, so you can get different answers depending on your initial
point.

Modify Function To Accept an Initial Array
Rewrite the function to accept the initial value as an additional argument. You can then pass an
optimization expression or a numeric array as the initial value. myFun2 uses the input variable out as
the output variable, and accepts either a zero array or optimization expression.

This method has the advantages of enabling automatic differentiation, if applicable, and of not
introducing extra code that runs during the solution process. The method has the disadvantage of
requiring a rewrite of the function with a different function signature.

function out = myFun2(out,x)
out(1) = x(1);
for i = 2:10
 out(i) = (x(i) - x(i-1))^3;
end
out = mean(out);
end

Use myFun2 in a problem-based way.

x = optimvar('x',10,"LowerBound",0,"UpperBound",10);
out = optimexpr(size(x));
prob = optimproblem("Objective",myFun2(out,x));
rng default
x0.x = 10*rand(10,1);
[sol,fval] = solve(prob,x0)

Solving problem using fmincon.

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

sol =

 Initialize Optimization Expressions

9-55

 struct with fields:

 x: [10×1 double]

fval =

 -262.9274

Use myFun2 in a solver-based way.

rng default
x0 = 10*rand(10,1);
lb = zeros(10,1);
ub = 10 + lb;
out = zeros(size(x0));
[sol,fval] = fmincon(@(x)myFun2(out,x),x0,[],[],[],[],lb,ub)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

sol =

 9.4226
 10.0000
 0.0000
 5.0000
 10.0000
 0.0000
 3.3333
 6.6667
 10.0000
 0.0000

fval =

 -262.9274

Rewrite Function to Initialize Expressions Appropriately
You can explicitly check for the type of problem variables and initialize an expression appropriately.
This method has the advantages of enabling automatic differentiation, if applicable, and keeping the
same function signature. It has the disadvantages of requiring a rewrite of the function and of having
a small amount of overhead while the solver runs.

function out = myFun3(x)
% Check for the data type of variable x
if isa(x,'double')
 out = zeros(size(x));
else
 out = optimexpr(size(x));
end
% No changes to the rest of the code
out(1) = x(1);
for i = 2:10
 out(i) = (x(i) - x(i-1))^3;
end
out = mean(out);
end

Solve the problem using optimization variables with the objective function myFun3.

9 Problem-Based Optimization

9-56

x = optimvar('x',10,"LowerBound",0,"UpperBound",10);
prob = optimproblem("Objective",myFun3(x));
rng default
x0.x = 10*rand(10,1);
[sol,fval] = solve(prob,x0)

Solving problem using fmincon.

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

sol =

 struct with fields:

 x: [10×1 double]

fval =

 -262.9274

Solve the problem using fmincon with the objective function myFun3.

rng default
x0 = 10*rand(10,1);
lb = zeros(10,1);
ub = 10 + lb;
out = zeros(size(x0));
[sol,fval] = fmincon(@myFun3,x0,[],[],[],[],lb,ub)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

sol =

 9.4226
 10.0000
 0.0000
 5.0000
 10.0000
 0.0000
 3.3333
 6.6667
 10.0000
 0.0000

fval =

 -262.9274

Avoid fcn2optimexpr Conversion
You can convert the objective function to an optimization expression using fcn2optimexpr. The
resulting objective function can use a standard zero array as an initialization. This method has the
advantage of not requiring any rewrite of the objective function. However, the method has the
disadvantages that the resulting function cannot take advantage of automatic differentiation, and the
resulting solver might not be the best. For example, with a black-box objective function, solve can
inappropriately choose to use fmincon instead of quadprog or lsqnonlin.

To determine whether the result is a black box, examine the output of fcn2optimexpr with
Display="on". If so, to improve the solution process, rewrite your problem according to the

 Initialize Optimization Expressions

9-57

techniques in “Modify Function To Accept an Initial Array” on page 9-55 or “Rewrite Function to
Initialize Expressions Appropriately” on page 9-56. This example uses the original function myFun
that fails in the problem-based approach in “Error in Expression” on page 9-54.
x = optimvar('x',10,"LowerBound",0,"UpperBound",10);
obj = fcn2optimexpr(@myFun,x,Display="on");
prob = optimproblem("Objective",obj);
rng default
x0.x = 10*rand(10,1);
[sol,fval] = solve(prob,x0)

The function contains an unsupported operator. The returned expressions are nonlinear black boxes.

Solving problem using fmincon.

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

sol =

 struct with fields:

 x: [10×1 double]

fval =

 -262.9274

While solve returns a solution, fcn2optimexpr reports that the converted function is a nonlinear
black box. For a more efficient solution process, rewrite your problem according to the techniques in
“Modify Function To Accept an Initial Array” on page 9-55 or “Rewrite Function to Initialize
Expressions Appropriately” on page 9-56.

See Also
fcn2optimexpr | optimexpr

Related Examples
• “Problem-Based Optimization Workflow” on page 9-2

9 Problem-Based Optimization

9-58

Use Problem-Based Optimize Live Editor Task Effectively

How the Problem-Based Optimize Live Editor Task Works
The Optimize Live Editor task looks in many ways like a Graphical User Interface for optimization.
However, it runs differently than you might expect.

• Optimize creates MATLAB code.
• Optimize runs the created code when the Live Editor executes the section containing the task.
• The section executes either automatically (when autorun is on, see “Leave Autorun On in Define

Problem Mode” on page 9-59) or when you run the section by Ctrl + Enter or by clicking the
blue bar to the left of the section.

• To run an optimization, set up the problem in Define problem mode, then switch to Solve
problem mode and run the section.

What Does Select task mode Do?
The Select task mode section appears at the bottom of the Live Editor task. The two modes are:

• Define problem — Optimize creates MATLAB code representing the problem, but does not
include a call to solve. Therefore, in Define problem mode, the task does not solve the problem.

• Solve problem — Optimize includes a call to solve after the problem creation code. Therefore,
when the task runs in Solve problem mode, MATLAB solves the problem.

Note If autorun is off, switching the task to Solve problem mode does not run the task, and
therefore does not solve the problem.

Leave Autorun On in Define Problem Mode
At the top right section of the task you can find three buttons, as pictured.

To have the task operate most reliably, leave autorun enabled (green) while in Define problem
mode. Doing so enables the following behavior:

• The list of available solvers stays synchronized with the problem as you change it.
• The list of available options stays synchronized with the problem.

With autorun off, the task can be in an internally inconsistent state. In this state, the task creates

warning labels: .

When autorun is off, switching the task to Solve problem mode does not run the task, and therefore
does not solve the problem. In Solve problem mode, to keep the task from solving the problem every
time you change something, set autorun to off. In this case, to solve a problem, run the task by
pressing Ctrl + Enter or by clicking the blue bar to the left of the section.

 Use Problem-Based Optimize Live Editor Task Effectively

9-59

See Also
Optimize

Related Examples
• “Get Started with Problem-Based Optimize Live Editor Task” on page 1-38
• “Problem-Based Optimization Setup”

9 Problem-Based Optimization

9-60

Quadratic Programming

• “Quadratic Programming Algorithms” on page 10-2
• “Second-Order Cone Programming Algorithm” on page 10-16
• “Quadratic Minimization with Bound Constraints” on page 10-23
• “Quadratic Minimization with Dense, Structured Hessian” on page 10-26
• “Large Sparse Quadratic Program with Interior Point Algorithm” on page 10-30
• “Bound-Constrained Quadratic Programming, Solver-Based” on page 10-33
• “Quadratic Programming for Portfolio Optimization Problems, Solver-Based” on page 10-37
• “Quadratic Programming with Bound Constraints: Problem-Based” on page 10-43
• “Large Sparse Quadratic Program, Problem-Based” on page 10-46
• “Bound-Constrained Quadratic Programming, Problem-Based” on page 10-49
• “Quadratic Programming for Portfolio Optimization, Problem-Based” on page 10-53
• “Code Generation for quadprog Background” on page 10-60
• “Generate Code for quadprog” on page 10-62
• “Quadratic Programming with Many Linear Constraints” on page 10-66
• “Warm Start quadprog” on page 10-68
• “Warm Start Best Practices” on page 10-71
• “Convert Quadratic Constraints to Second-Order Cone Constraints” on page 10-73
• “Convert Quadratic Programming Problem to Second-Order Cone Program” on page 10-75
• “Write Constraints for Problem-Based Cone Programming” on page 10-79
• “Minimize Energy of Piecewise Linear Mass-Spring System Using Cone Programming, Solver-

Based” on page 10-81
• “Minimize Energy of Piecewise Linear Mass-Spring System Using Cone Programming, Problem-

Based” on page 10-86
• “Compare Speeds of coneprog Algorithms” on page 10-90
• “Discretized Optimal Trajectory, Problem-Based” on page 10-94

10

Quadratic Programming Algorithms
In this section...
“Quadratic Programming Definition” on page 10-2
“interior-point-convex quadprog Algorithm” on page 10-2
“trust-region-reflective quadprog Algorithm” on page 10-7
“active-set quadprog Algorithm” on page 10-11

Quadratic Programming Definition
Quadratic programming is the problem of finding a vector x that minimizes a quadratic function,
possibly subject to linear constraints:

min
x

1
2xTHx + cTx (10-1)

such that A·x ≤ b, Aeq·x = beq, l ≤ x ≤ u.

interior-point-convex quadprog Algorithm
The interior-point-convex algorithm performs the following steps:

1. “Presolve/Postsolve” on page 10-2
2. “Generate Initial Point” on page 10-3
3. “Predictor-Corrector” on page 10-3
4. “Stopping Conditions” on page 10-6
5. “Infeasibility Detection” on page 10-7

Note The algorithm has two code paths. It takes one when the Hessian matrix H is an ordinary (full)
matrix of doubles, and it takes the other when H is a sparse matrix. For details of the sparse data
type, see “Sparse Matrices”. Generally, the algorithm is faster for large problems that have relatively
few nonzero terms when you specify H as sparse. Similarly, the algorithm is faster for small or
relatively dense problems when you specify H as full.

Presolve/Postsolve

The algorithm first tries to simplify the problem by removing redundancies and simplifying
constraints. The tasks performed during the presolve step can include the following:

• Check if any variables have equal upper and lower bounds. If so, check for feasibility, and then fix
and remove the variables.

• Check if any linear inequality constraint involves only one variable. If so, check for feasibility, and
then change the linear constraint to a bound.

• Check if any linear equality constraint involves only one variable. If so, check for feasibility, and
then fix and remove the variable.

• Check if any linear constraint matrix has zero rows. If so, check for feasibility, and then delete the
rows.

10 Quadratic Programming

10-2

• Determine if the bounds and linear constraints are consistent.
• Check if any variables appear only as linear terms in the objective function and do not appear in

any linear constraint. If so, check for feasibility and boundedness, and then fix the variables at
their appropriate bounds.

• Change any linear inequality constraints to linear equality constraints by adding slack variables.

If the algorithm detects an infeasible or unbounded problem, it halts and issues an appropriate exit
message.

The algorithm might arrive at a single feasible point, which represents the solution.

If the algorithm does not detect an infeasible or unbounded problem in the presolve step, and if the
presolve has not produced the solution, the algorithm continues to its next steps. After reaching a
stopping criterion, the algorithm reconstructs the original problem, undoing any presolve
transformations. This final step is the postsolve step.

For details, see Gould and Toint [63].

Generate Initial Point

The initial point x0 for the algorithm is:

1 Initialize x0 to ones(n,1), where n is the number of rows in H.
2 For components that have both an upper bound ub and a lower bound lb, if a component of x0 is

not strictly inside the bounds, the component is set to (ub + lb)/2.
3 For components that have only one bound, modify the component if necessary to lie strictly

inside the bound.
4 Take a predictor step (see “Predictor-Corrector” on page 10-3), with minor corrections for

feasibility, not a full predictor-corrector step. This places the initial point closer to the central
path without entailing the overhead of a full predictor-corrector step. For details of the central
path, see Nocedal and Wright [7], page 397.

Predictor-Corrector

The sparse and full interior-point-convex algorithms differ mainly in the predictor-corrector phase.
The algorithms are similar, but differ in some details. For the basic algorithm description, see
Mehrotra [47].

The algorithms begin by turning the linear inequalities Ax <= b into inequalities of the form Ax >= b
by multiplying A and b by -1. This has no bearing on the solution, but makes the problem of the same
form found in some literature.

• “Sparse Predictor-Corrector” on page 10-3
• “Full Predictor-Corrector” on page 10-5

Sparse Predictor-Corrector

Similar to the fmincon interior-point algorithm on page 5-30, the sparse interior-point-convex
algorithm tries to find a point where the Karush-Kuhn-Tucker (KKT) on page 3-12 conditions hold. For
the quadratic programming problem described in “Quadratic Programming Definition” on page 10-2,
these conditions are:

 Quadratic Programming Algorithms

10-3

Hx + c− Aeq
T y − ATz = 0

Ax− b − s = 0
Aeqx− beq = 0

sizi = 0, i = 1, 2, ..., m
s ≥ 0
z ≥ 0.

Here

• A is the extended linear inequality matrix that includes bounds written as linear inequalities. b is
the corresponding linear inequality vector, including bounds.

• s is the vector of slacks that convert inequality constraints to equalities. s has length m, the
number of linear inequalities and bounds.

• z is the vector of Lagrange multipliers corresponding to s.
• y is the vector of Lagrange multipliers associated with the equality constraints.

The algorithm first predicts a step from the Newton-Raphson formula, then computes a corrector
step. The corrector attempts to better enforce the nonlinear constraint sizi = 0.

Definitions for the predictor step:

• rd, the dual residual:

rd = Hx + c− Aeq
T y − ATz .

• req, the primal equality constraint residual:

req = Aeqx− beq .
• rineq, the primal inequality constraint residual, which includes bounds and slacks:

rineq = Ax− b − s .
• rsz, the complementarity residual:

rsz = Sz.

S is the diagonal matrix of slack terms, z is the column matrix of Lagrange multipliers.
• rc, the average complementarity:

rc = sTz
m .

In a Newton step, the changes in x, s, y, and z, are given by:

H 0 −Aeq
T −AT

Aeq 0 0 0

A −I 0 0
0 Z 0 S

Δx
Δs
Δy
Δz

= −

rd
req

rineq
rsz

. (10-2)

10 Quadratic Programming

10-4

However, a full Newton step might be infeasible, because of the positivity constraints on s and z.
Therefore, quadprog shortens the step, if necessary, to maintain positivity.

Additionally, to maintain a “centered” position in the interior, instead of trying to solve sizi = 0, the
algorithm takes a positive parameter σ, and tries to solve

sizi = σrc.

quadprog replaces rsz in the Newton step equation with rsz + ΔsΔz – σrc1, where 1 is the vector of
ones. Also, quadprog reorders the Newton equations to obtain a symmetric, more numerically stable
system for the predictor step calculation.

After calculating the corrected Newton step, the algorithm performs more calculations to get both a
longer current step, and to prepare for better subsequent steps. These multiple correction
calculations can improve both performance and robustness. For details, see Gondzio [4].

Full Predictor-Corrector

The full predictor-corrector algorithm does not combine bounds into linear constraints, so it has
another set of slack variables corresponding to the bounds. The algorithm shifts lower bounds to
zero. And, if there is only one bound on a variable, the algorithm turns it into a lower bound of zero,
by negating the inequality of an upper bound.

A is the extended linear matrix that includes both linear inequalities and linear equalities. b is the
corresponding linear equality vector. A also includes terms for extending the vector x with slack
variables s that turn inequality constraints to equality constraints:

Ax =
Aeq 0
A I

x0
s

,

where x0 means the original x vector.

The KKT conditions are

Hx + c− ATy − v + w = 0
Ax = b

x + t = u
vixi = 0, i = 1, 2, ..., m
witi = 0, i = 1, 2, ..., n

x, v, w, t ≥ 0.

 (10-3)

To find the solution x, slack variables and dual variables to “Equation 10-3”, the algorithm basically
considers a Newton-Raphson step:

H −AT 0 −I I
A 0 0 0 0
−I 0 −I 0 0
V 0 0 X 0
0 0 W 0 T

Δx
Δy
Δt
Δv
Δw

= −

Hx + c− ATy − v + w
Ax− b

u− x− t
VX
WT

= −

rd
rp
rub
rvx
rwt

, (10-4)

 Quadratic Programming Algorithms

10-5

where X, V, W, and T are diagonal matrices corresponding to the vectors x, v, w, and t respectively.
The residual vectors on the far right side of the equation are:

• rd, the dual residual
• rp, the primal residual
• rub, the upper bound residual
• rvx, the lower bound complementarity residual
• rwt, the upper bound complementarity residual

The algorithm solves “Equation 10-4” by first converting it to the symmetric matrix form

−D AT

A 0

Δx
Δy

= −
R
rp

, (10-5)

where

D = H + X−1V + T−1W

R = − rd− X−1rvx + T−1rwt + T−1Wrub .

All the matrix inverses in the definitions of D and R are simple to compute because the matrices are
diagonal.

To derive “Equation 10-5” from “Equation 10-4”, notice that the second row of “Equation 10-5” is the
same as the second matrix row of “Equation 10-4”. The first row of “Equation 10-5” comes from
solving the last two rows of “Equation 10-4” for Δv and Δw, and then solving for Δt.

To solve “Equation 10-5”, the algorithm follows the essential elements of Altman and Gondzio [1]. The
algorithm solves the symmetric system by an LDL decomposition. As pointed out by authors such as
Vanderbei and Carpenter [2], this decomposition is numerically stable without any pivoting, so can be
fast.

After calculating the corrected Newton step, the algorithm performs more calculations to get both a
longer current step, and to prepare for better subsequent steps. These multiple correction
calculations can improve both performance and robustness. For details, see Gondzio [4].

The full quadprog predictor-corrector algorithm is largely the same as that in the linprog
'interior-point' algorithm, but includes quadratic terms as well. See “Predictor-Corrector” on
page 8-3.

References
[1] Altman, Anna and J. Gondzio. Regularized symmetric indefinite systems in interior point methods

for linear and quadratic optimization. Optimization Methods and Software, 1999. Available for
download here.

[2] Vanderbei, R. J. and T. J. Carpenter. Symmetric indefinite systems for interior point methods.
Mathematical Programming 58, 1993. pp. 1–32. Available for download here.

Stopping Conditions

The predictor-corrector algorithm iterates until it reaches a point that is feasible (satisfies the
constraints to within tolerances) and where the relative step sizes are small. Specifically, define

10 Quadratic Programming

10-6

https://www.researchgate.net/profile/Jacek_Gondzio/publication/5063380_Regularized_Symmetric_Indefinite_Systems_in_Interior_Point_Methods_for_Linear_and_Quadratic_Optimization/links/0912f513460e6ec76b000000.pdf
https://www.researchgate.net/profile/Jacek_Gondzio/publication/5063380_Regularized_Symmetric_Indefinite_Systems_in_Interior_Point_Methods_for_Linear_and_Quadratic_Optimization/links/0912f513460e6ec76b000000.pdf
https://vanderbei.princeton.edu/tex/myPapers/VanderbeiCarpenter.pdf

ρ = max 1, H , A , Aeq , c , b , beq

The algorithm stops when all of these conditions are satisfied:

rp 1 + rub 1 ≤ ρTolCon

rd ∞ ≤ ρTolFun

rc ≤ TolFun,

where

rc = max
i

min xivi , xi , vi , min tiwi , ti , wi .

rc essentially measures the size of the complementarity residuals xv and tw, which are each vectors of
zeros at a solution.

Infeasibility Detection

quadprog calculates a merit function φ at every iteration. The merit function is a measure of
feasibility. quadprog stops if the merit function grows too large. In this case, quadprog declares the
problem to be infeasible.

The merit function is related to the KKT conditions for the problem—see “Predictor-Corrector” on
page 10-3. Use the following definitions:

ρ = max 1, H , A , Aeq , c , b , beq

req = Aeqx− beq

rineq = Ax− b − s

rd = Hx + c + Aeq
T λeq + ATλineq

g = 1
2xTHx + cTx− bTλineq− beq

T λeq .

The notation A and b means the linear inequality coefficients, augmented with terms to represent
bounds for the sparse algorithm. The notation λineq similarly represents Lagrange multipliers for the
linear inequality constraints, including bound constraints. This was called z in “Predictor-Corrector”
on page 10-3, and λeq was called y.

The merit function φ is

1
ρ max req ∞, rineq ∞, rd ∞ + g .

If this merit function becomes too large, quadprog declares the problem to be infeasible and halts
with exit flag -2.

trust-region-reflective quadprog Algorithm
Many of the methods used in Optimization Toolbox solvers are based on trust regions, a simple yet
powerful concept in optimization.

 Quadratic Programming Algorithms

10-7

To understand the trust-region approach to optimization, consider the unconstrained minimization
problem, minimize f(x), where the function takes vector arguments and returns scalars. Suppose you
are at a point x in n-space and you want to improve, i.e., move to a point with a lower function value.
The basic idea is to approximate f with a simpler function q, which reasonably reflects the behavior of
function f in a neighborhood N around the point x. This neighborhood is the trust region. A trial step s
is computed by minimizing (or approximately minimizing) over N. This is the trust-region subproblem,

min
s

q(s), s ∈ N . (10-6)

The current point is updated to be x + s if f(x + s) < f(x); otherwise, the current point remains
unchanged and N, the region of trust, is shrunk and the trial step computation is repeated.

The key questions in defining a specific trust-region approach to minimizing f(x) are how to choose
and compute the approximation q (defined at the current point x), how to choose and modify the trust
region N, and how accurately to solve the trust-region subproblem. This section focuses on the
unconstrained problem. Later sections discuss additional complications due to the presence of
constraints on the variables.

In the standard trust-region method ([48]), the quadratic approximation q is defined by the first two
terms of the Taylor approximation to F at x; the neighborhood N is usually spherical or ellipsoidal in
shape. Mathematically the trust-region subproblem is typically stated

min 1
2sTHs + sTg such that Ds ≤ Δ , (10-7)

where g is the gradient of f at the current point x, H is the Hessian matrix (the symmetric matrix of
second derivatives), D is a diagonal scaling matrix, Δ is a positive scalar, and ‖ . ‖ is the 2-norm. Good
algorithms exist for solving “Equation 10-7” (see [48]); such algorithms typically involve the
computation of all eigenvalues of H and a Newton process applied to the secular equation

1
Δ −

1
s = 0.

Such algorithms provide an accurate solution to “Equation 10-7”. However, they require time
proportional to several factorizations of H. Therefore, for large-scale problems a different approach is
needed. Several approximation and heuristic strategies, based on “Equation 10-7”, have been
proposed in the literature ([42] and [50]). The approximation approach followed in Optimization
Toolbox solvers is to restrict the trust-region subproblem to a two-dimensional subspace S ([39] and
[42]). Once the subspace S has been computed, the work to solve “Equation 10-7” is trivial even if full
eigenvalue/eigenvector information is needed (since in the subspace, the problem is only two-
dimensional). The dominant work has now shifted to the determination of the subspace.

The two-dimensional subspace S is determined with the aid of a preconditioned conjugate gradient
process described below. The solver defines S as the linear space spanned by s1 and s2, where s1 is in
the direction of the gradient g, and s2 is either an approximate Newton direction, i.e., a solution to

H ⋅ s2 = − g, (10-8)

or a direction of negative curvature,

s2
T ⋅ H ⋅ s2 < 0. (10-9)

10 Quadratic Programming

10-8

The philosophy behind this choice of S is to force global convergence (via the steepest descent
direction or negative curvature direction) and achieve fast local convergence (via the Newton step,
when it exists).

A sketch of unconstrained minimization using trust-region ideas is now easy to give:

1 Formulate the two-dimensional trust-region subproblem.
2 Solve “Equation 10-7” to determine the trial step s.
3 If f(x + s) < f(x), then x = x + s.
4 Adjust Δ.

These four steps are repeated until convergence. The trust-region dimension Δ is adjusted according
to standard rules. In particular, it is decreased if the trial step is not accepted, i.e., f(x + s) ≥ f(x). See
[46] and [49] for a discussion of this aspect.

Optimization Toolbox solvers treat a few important special cases of f with specialized functions:
nonlinear least-squares, quadratic functions, and linear least-squares. However, the underlying
algorithmic ideas are the same as for the general case. These special cases are discussed in later
sections.

The subspace trust-region method is used to determine a search direction. However, instead of
restricting the step to (possibly) one reflection step, as in the nonlinear minimization case, a
piecewise reflective line search is conducted at each iteration. See [45] for details of the line search.

Preconditioned Conjugate Gradient Method

A popular way to solve large, symmetric, positive definite systems of linear equations Hp = –g is the
method of Preconditioned Conjugate Gradients (PCG). This iterative approach requires the ability to
calculate matrix-vector products of the form H·v where v is an arbitrary vector. The symmetric
positive definite matrix M is a preconditioner for H. That is, M = C2, where C–1HC–1 is a well-
conditioned matrix or a matrix with clustered eigenvalues.

In a minimization context, you can assume that the Hessian matrix H is symmetric. However, H is
guaranteed to be positive definite only in the neighborhood of a strong minimizer. Algorithm PCG
exits when it encounters a direction of negative (or zero) curvature, that is, dTHd ≤ 0. The PCG
output direction p is either a direction of negative curvature or an approximate solution to the
Newton system Hp = –g. In either case, p helps to define the two-dimensional subspace used in the
trust-region approach discussed in “Trust-Region Methods for Nonlinear Minimization” on page 5-2.

Linear Equality Constraints

Linear constraints complicate the situation described for unconstrained minimization. However, the
underlying ideas described previously can be carried through in a clean and efficient way. The trust-
region methods in Optimization Toolbox solvers generate strictly feasible iterates.

The general linear equality constrained minimization problem can be written

min f (x) such that Ax = b , (10-10)

where A is an m-by-n matrix (m ≤ n). Some Optimization Toolbox solvers preprocess A to remove
strict linear dependencies using a technique based on the LU factorization of AT [46]. Here A is
assumed to be of rank m.

 Quadratic Programming Algorithms

10-9

The method used to solve “Equation 10-10” differs from the unconstrained approach in two
significant ways. First, an initial feasible point x0 is computed, using a sparse least-squares step, so
that Ax0 = b. Second, Algorithm PCG is replaced with Reduced Preconditioned Conjugate Gradients
(RPCG), see [46], in order to compute an approximate reduced Newton step (or a direction of
negative curvature in the null space of A). The key linear algebra step involves solving systems of the
form

C AT

A 0

s
t

=
r
0

, (10-11)

where A approximates A (small nonzeros of A are set to zero provided rank is not lost) and C is a
sparse symmetric positive-definite approximation to H, i.e., C = H. See [46] for more details.

Box Constraints

The box constrained problem is of the form

min f (x) such that l ≤ x ≤ u , (10-12)

where l is a vector of lower bounds, and u is a vector of upper bounds. Some (or all) of the
components of l can be equal to –∞ and some (or all) of the components of u can be equal to ∞. The
method generates a sequence of strictly feasible points. Two techniques are used to maintain
feasibility while achieving robust convergence behavior. First, a scaled modified Newton step
replaces the unconstrained Newton step (to define the two-dimensional subspace S). Second,
reflections are used to increase the step size.

The scaled modified Newton step arises from examining the Kuhn-Tucker necessary conditions for
“Equation 10-12”,

D(x) −2g = 0, (10-13)

where

D(x) = diag vk
−1/2 ,

and the vector v(x) is defined below, for each 1 ≤ i ≤ n:

• If gi < 0 and ui < ∞ then vi = xi – ui

• If gi ≥ 0 and li > –∞ then vi = xi – li
• If gi < 0 and ui = ∞ then vi = –1
• If gi ≥ 0 and li = –∞ then vi = 1

The nonlinear system “Equation 10-13” is not differentiable everywhere. Nondifferentiability occurs
when vi = 0. You can avoid such points by maintaining strict feasibility, i.e., restricting l < x < u.

The scaled modified Newton step sk for the nonlinear system of equations given by “Equation 10-13”
is defined as the solution to the linear system

MDsN = − g (10-14)

at the kth iteration, where

10 Quadratic Programming

10-10

g = D−1g = diag v 1/2 g, (10-15)

and

M = D−1HD−1 + diag(g) Jv . (10-16)

Here Jv plays the role of the Jacobian of |v|. Each diagonal component of the diagonal matrix Jv equals
0, –1, or 1. If all the components of l and u are finite, Jv = diag(sign(g)). At a point where gi = 0, vi

might not be differentiable. Jii
v = 0 is defined at such a point. Nondifferentiability of this type is not a

cause for concern because, for such a component, it is not significant which value vi takes. Further, |
vi| will still be discontinuous at this point, but the function |vi|·gi is continuous.

Second, reflections are used to increase the step size. A (single) reflection step is defined as follows.
Given a step p that intersects a bound constraint, consider the first bound constraint crossed by p;
assume it is the ith bound constraint (either the ith upper or ith lower bound). Then the reflection
step pR = p except in the ith component, where pR

i = –pi.

active-set quadprog Algorithm
After completing a presolve step, the active-set algorithm proceeds in two phases.

• Phase 1 — Obtain a feasible point with respect to all constraints.
• Phase 2 — Iteratively lower the objective function while maintaining a list of the active constraints

and maintaining feasibility in each iteration.

The active-set strategy (also known as a projection method) is similar to the strategy of Gill et al.,
described in [18] and [17].

Presolve Step

The algorithm first tries to simplify the problem by removing redundancies and simplifying
constraints. The tasks performed during the presolve step can include the following:

• Check if any variables have equal upper and lower bounds. If so, check for feasibility, and then fix
and remove the variables.

• Check if any linear inequality constraint involves only one variable. If so, check for feasibility, and
then change the linear constraint to a bound.

• Check if any linear equality constraint involves only one variable. If so, check for feasibility, and
then fix and remove the variable.

• Check if any linear constraint matrix has zero rows. If so, check for feasibility, and then delete the
rows.

• Determine if the bounds and linear constraints are consistent.
• Check if any variables appear only as linear terms in the objective function and do not appear in

any linear constraint. If so, check for feasibility and boundedness, and then fix the variables at
their appropriate bounds.

• Change any linear inequality constraints to linear equality constraints by adding slack variables.

If the algorithm detects an infeasible or unbounded problem, it halts and issues an appropriate exit
message.

The algorithm might arrive at a single feasible point, which represents the solution.

 Quadratic Programming Algorithms

10-11

If the algorithm does not detect an infeasible or unbounded problem in the presolve step, and if the
presolve has not produced the solution, the algorithm continues to its next steps. After reaching a
stopping criterion, the algorithm reconstructs the original problem, undoing any presolve
transformations. This final step is the postsolve step.

For details, see Gould and Toint [63].

Phase 1 Algorithm

In Phase 1, the algorithm attempts to find a point x that satisfies all constraints, with no
consideration of the objective function. quadprog runs the Phase 1 algorithm only if the supplied
initial point x0 is infeasible.

To begin, the algorithm tries to find a point that is feasible with respect to all equality constraints,
such as X = Aeq\beq. If there is no solution x to the equations Aeq*x = beq, then the algorithm
halts. If there is a solution X, the next step is to satisfy the bounds and linear inequalities. In the case
of no equality constraints set X = x0, the initial point.

Starting from X, the algorithm calculates M = max(A*X – b, X - ub, lb – X). If M <=
options.ConstraintTolerance, then the point X is feasible and the Phase 1 algorithm halts.

If M > options.ConstraintTolerance, the algorithm introduces a nonnegative slack variable γ
for the auxiliary linear programming problem

min
x, γ

γ

such that

Ax− γ ≤ b
Aeq x = beq

lb−γ ≤ x ≤ ub + γ
γ ≥ − ρ .

Here, ρ is the ConstraintTolerance option multiplied by the absolute value of the largest element
in A and Aeq. If the algorithm finds γ = 0 and a point x that satisfies the equations and inequalities,
then x is a feasible Phase 1 point. If there is no solution to the auxiliary linear programming problem
x with γ = 0, then the Phase 1 problem is infeasible.

To solve the auxiliary linear programming problem, the algorithm sets γ0 = M + 1, sets x0 = X, and
initializes the active set as the fixed variables (if any) and all the equality constraints. The algorithm
reformulates the linear programming variables p to be the offset of x from the current point x0,
namely x = x0 + p. The algorithm solves the linear programming problem by the same iterations as it
takes in Phase 2 to solve the quadratic programming problem, with an appropriately modified
Hessian.

Phase 2 Algorithm

In terms of a variable d, the problem is

min
d ∈ ℜn

q(d) = 1
2dTHd + cTd,

Aid = bi, i = 1, ..., me
Aid ≤ bi, i = me + 1, ..., m .

 (10-17)

10 Quadratic Programming

10-12

Here, Ai refers to the ith row of the m-by-n matrix A.

During Phase 2, an active set Ak, which is an estimate of the active constraints (those on the
constraint boundaries) at the solution point.

The algorithm updates Ak at each iteration k, forming the basis for a search direction dk. Equality
constraints always remain in the active set Ak. The search direction dk is calculated and minimizes
the objective function while remaining on any active constraint boundaries. The algorithm forms the
feasible subspace for dk from a basis Zk whose columns are orthogonal to the estimate of the active
set Ak (that is, AkZk = 0). Therefore, a search direction, which is formed from a linear summation of
any combination of the columns of Zk, is guaranteed to remain on the boundaries of the active
constraints.

The algorithm forms the matrix Zk from the last n – l columns of the QR decomposition of the matrix
Ak

T, where l is the number of active constraints and l < n. That is, Zk is given by

Zk = Q : , l + 1:n , (10-18)

where

QTAk
T =

R
0

.

After finding Zk, the algorithm looks for a new search direction dk that minimizes q(d), where dk is in
the null space of the active constraints. That is, dk is a linear combination of the columns of Zk:
d k = Zkp for some vector p.

Viewing the quadratic as a function of p by substituting for dk, gives

q(p) = 1
2pTZk

THZkp + cTZkp . (10-19)

Differentiating this equation with respect to p yields

∇q(p) = Zk
THZkp + Zk

Tc . (10-20)

∇q(p) is referred to as the projected gradient of the quadratic function because it is the gradient
projected in the subspace defined by Zk. The term Zk

THZk is called the projected Hessian. Assuming
the projected Hessian matrix Zk

THZk is positive semidefinite, the minimum of the function q(p) in the
subspace defined by Zk occurs when ∇q(p) = 0, which is the solution of the system of linear equations

Zk
THZkp = − Zk

Tc . (10-21)

The algorithm then takes a step of the form

xk + 1 = xk + αdk,

where

dk = Zkp .

 Quadratic Programming Algorithms

10-13

Due to the quadratic nature of the objective function, only two choices of step length α exist at each
iteration. A step of unity along dk is the exact step to the minimum of the function restricted to the
null space of Ak. If the algorithm can take such a step without violating the constraints, then this step
is the solution to the quadratic program (“Equation 5-33”). Otherwise, the step along dk to the
nearest constraint is less than unity, and the algorithm includes a new constraint in the active set at
the next iteration. The distance to the constraint boundaries in any direction dk is given by

α = min
i ∈ 1, ..., m

− Aixk− bi
Aidk

,

which is defined for constraints not in the active set, and where the direction dk is towards the
constraint boundary, that is, Aidk > 0, i = 1, ..., m.

When the active set includes n independent constraints, without location of the minimum, the
algorithm calculates the Lagrange multipliers λk, which satisfy the nonsingular set of linear equations

Ak
Tλk = c + Hxk . (10-22)

If all elements of λk are nonnegative, xk is the optimal solution of the quadratic programming problem
“Equation 10-1”. However, if any component of λk is negative, and the component does not
correspond to an equality constraint, then the minimization is not complete. The algorithm deletes
the element corresponding to the most negative multiplier and starts a new iteration.

Sometimes, when the solver finishes with all nonnegative Lagrange multipliers, the first-order
optimality measure is above the tolerance, or the constraint tolerance is not met. In these cases, the
solver attempts to reach a better solution by following the restart procedure described in [1]. In this
procedure, the solver discards the current set of active constraints, relaxes the constraints a bit, and
constructs a new set of active constraints while attempting to solve the problem in a manner that
avoids cycling (repeatedly returning to the same state). If necessary, the solver can perform the
restart procedure several times.

Note Do not try to stop the algorithm early by setting large values of the ConstraintTolerance
and OptimalityTolerance options. Generally, the solver iterates without checking these values
until it reaches a potential stopping point, and only then checks to see whether the tolerances are
satisfied.

Occasionally, the active-set algorithm can have difficulty detecting when a problem is unbounded.
This issue can occur if the direction of unboundedness v is a direction where the quadratic term v'Hv
= 0. For numerical stability and to enable a Cholesky factorization, the active-set algorithm adds a
small, strictly convex term to the quadratic objective. This small term causes the objective function to
be bounded away from –Inf. In this case, the active-set algorithm reaches an iteration limit
instead of reporting that the solution is unbounded. In other words, the algorithm halts with exit flag
0 instead of –3.

References
[1] Gill, P. E., W. Murray, M. A. Saunders, and M. H. Wright. A practical anti-cycling procedure for

linearly constrained optimization. Math. Programming 45 (1), August 1989, pp. 437–474.

10 Quadratic Programming

10-14

Warm Start

When you run the quadprog or lsqlin 'active-set' algorithm with a warm start object as the
start point, the solver attempts to skip many of the Phase 1 and Phase 2 steps. The warm start object
contains the active set of constraints, and this set can be correct or close to correct for the new
problem. Therefore, the solver can avoid iterations to add constraints to the active set. Also, the
initial point might be close to the solution for the new problem. For more information, see
optimwarmstart.

 Quadratic Programming Algorithms

10-15

Second-Order Cone Programming Algorithm

Definition of Second-Order Cone Programming
A second-order cone programming problem has the form

min
x

f Tx

subject to the constraints

Asc(i) ⋅ x− bsc(i) ≤ dsc
T (i) ⋅ x− γ(i)

A ⋅ x ≤ b
Aeq ⋅ x = beq
lb ≤ x ≤ ub .

f, x, b, beq, lb, and ub are vectors, and A and Aeq are matrices. For each i, the matrix Asc(i), the
vectors bsc(i) and dsc(i), and the scalar γ(i) are in a second-order cone constraint that you create using
secondordercone.

In other words, the problem has a linear objective function and linear constraints, as well as a set of
second-order cone constraints of the form Asc(i) ⋅ x− bsc(i) ≤ dsc

T (i) ⋅ x− γ(i).

coneprog Algorithm
The coneprog solver uses the algorithm described in Andersen, Roos, and Terlaky [1]. This method is
an interior-point algorithm similar to the “Interior-Point linprog Algorithm” on page 8-2.

Standard Form

The algorithm starts by placing the problem in standard form. The algorithm adds nonnegative slack
variables so that the problem has the form

min
x

f Tx

subject to the constraints

A ⋅ x = b
x ∈ K .

The solver expands the sizes of the linear coefficient vector f and linear constraint matrix A to
account for the slack variables.

The region K is the cross product of Lorentz cones “Equation 10-23” and the nonnegative orthant. To
convert each convex cone

Asc(i) ⋅ x− bsc(i) ≤ dsc
T (i) ⋅ x− γ(i)

to a Lorentz cone “Equation 10-23”, create a column vector of variables t1, t2, …, tn+1:

10 Quadratic Programming

10-16

t1 = dTx− γ
t2:(n + 1) = Ascx− bsc .

Here, the number of variables n for each cone i is the number of rows in Asc(i). By its definition, the
variable vector t satisfies the inequality

t2:(n + 1) ≤ t1 . (10-23)

“Equation 10-23” is the definition of a Lorentz cone in (n+1) variables. The variables t appear in the
problem in place of the variables x in the convex region K.

Internally, the algorithm also uses a rotated Lorentz cone in the reformulation of cone constraints,
but this topic does not address that case. For details, see Andersen, Roos, and Terlaky [1].

When adding slack variables, the algorithm negates variables, as needed, and adds appropriate
constants so that:

• Variables with only one bound have a lower bound of zero.
• Variables with two bounds have a lower bound of zero and, using a slack variable, have no upper

bound.
• Variables without bounds are placed in a Lorentz cone with a slack variable as the constrained

variable. This slack variable is not part of any other expression, objective or constraint.

Dual Problem

The dual cone is

K* = s : sTx ≥ 0 ∀x ∈ K .

The dual problem is

max
y

bTy

such that

ATy + s = f

for some

s ∈ K* .

A dual optimal solution is a point (y,s) that satisfies the dual constraints and maximizes the dual
objective.

Homogeneous Self-Dual Formulation

To handle potentially infeasible or unbounded problems, the algorithm adds two more variables τ and
κ and formulates the problem as homogeneous (equal to zero) and self-dual.

Ax− bτ = 0

ATy + s− f τ = 0

− f Tx + bTy − κ = 0

 (10-24)

 Second-Order Cone Programming Algorithm

10-17

along with the constraints

(x; τ) ∈ K, (s; κ) ∈ K* . (10-25)

Here, K is the cone K adjoined with the nonnegative real line, which is the space for (x;τ). Similarly
K* is the cone K* adjoined with the nonnegative real line, which is the space for (s;κ). In this
formulation, the following lemma shows that τ is the scaling for feasible solutions, and κ is the
indicator of an infeasible problem.

Lemma ([1] Lemma 2.1)

Let (x, τ, y, s, κ) be a feasible solution of “Equation 10-24” along with the constraints in
“Equation 10-25”.

• xTs + τκ = 0.
• If τ > 0, then (x, y, s)/τ is a primal-dual optimal solution of the standard form second-order cone

problem.
• If κ > 0, then at least one of these strict inequalities holds:

bTy > 0
fTx < 0.

If the first inequality holds, then the standard form, primal second-order cone problem is
infeasible. If the second inequality holds, then the standard form, dual second-order cone problem
is infeasible.

In summary, for feasible problems, the variable τ scales the solution between the original standard
form problem and the homogeneous self-dual problem. For infeasible problems, the final iterate (x, y,
s, τ, κ) provides a certificate of infeasibility for the original standard form problem.

Start Point

The start point for the iterations is the feasible point:

• x = 1 for each nonnegative variable, 1 for the first variable in each Lorentz cone, and 0 otherwise.
• y = 0.
• s = (1,0,…,0) for each cone, 1 for each nonnegative variable.
• τ = 1.
• κ = 1.

Central Path

The algorithm attempts to follow the central path, which is the parameterized solution to the
following equations for γ decreasing from 1 toward 0.

Ax− bτ = γ Ax0− bτ0

ATy + s− cτ = γ ATy0 + s0− f τ0

− f Tx + bTy − κ = γ − f Tx0 + bTy0− κ0

XSe = γμ0e
τκ = γμ0 .

 (10-26)

10 Quadratic Programming

10-18

• Each variable with a 0 subscript indicates the start point of the variable.
• The variables X and S are arrow head matrices formed from the x and s vectors, respectively. For a

vector x = [x1,x2,…,xn], the arrow head matrix X has the definition

X = mat(x) =
x1 x2:n

T

x2:n x1I
.

By its definition, X is symmetric.
• The variable e is the vector with a 1 in each cone coordinate corresponding to the x1 Lorentz cone

coordinate.
• The variable μ0 has the definition

μ0 =
x0

Ts0 + τ0κ0
k + 1 ,

where k is the number of nonzero elements in x0.

The central path begins at the start point and ends at an optimal solution to the homogeneous self-
dual problem.

Andersen, Roos, and Terlaky [1] show in Lemma 3.1 that the complementarity condition xTs = 0,
where x and s are in a product of Lorentz cones L, is equivalent to the condition

XiSiei = SiXiei = 0

for every cone i. Here Xi = mat(xi), xi is the variable associated with the Lorentz cone i, Si = mat(si),
and ei is the unit vector [1,0,0,…,0] of the appropriate dimension. This discussion shows that the
central path satisfies the complementarity condition at its end point.

Search Direction

To obtain points near the central path as the parameter γ decreases from 1 toward 0, the algorithm
uses Newton's method. The variables to find are labeled (x, τ, y, s, κ). Let dx represent the search
direction for the x variables, and so on. Then the Newton step solves the following linear system,
derived from “Equation 10-26”.

Adx− bdτ = (γ− 1) Ax0− bτ0

ATdy + ds− fdτ = (γ− 1) ATy0 + s0− f τ0

− f Tdx + bTdy − dκ = (γ− 1) − f Tx0 + bTy0− κ

X0ds + S0dx = − X0S0e + γμ0e
τ0dκ + κ0dtau = − τ0κ0 + γμ0 .

The algorithm obtains its next point by taking a step in the d direction.

x1
τ1
y1
s1
κ1

=

x0
τ0
y0
s0
κ0

+ α

dx
dτ
dy
ds
dκ

 Second-Order Cone Programming Algorithm

10-19

for some step α ∈ [0, 1].

For both numerical stability and accelerated convergence, the algorithm scales the step according to
a suggestion in Nesterov and Todd [8]. Also, the algorithm corrects the step according to a variant of
Mehrotra's predictor-corrector [7]. (For further details, see Andersen, Roos, and Terlaky [1].)

Step Solver Variations

The preceding discussion relates to the LinearSolver option with the value 'augmented'
specified. The solver has other values that change the step calculation to suit different types of
problems.

• 'auto' (default) — coneprog chooses the step solver:

• If the problem is sparse, the step solver is 'prodchol'.
• Otherwise, the step solver is 'augmented'.

• 'normal' — The solver uses a variant of the 'augmented' step that is suitable when the
problem is sparse. See Andersen, Roos, and Terlaky [1].

• 'schur' — The solver uses a modified Schur complement method for handling a sparse problem
with a few dense columns. This method is also suitable for large cones. See Andersen [2].

• 'prodchol' — The solver uses the methods described in Goldfarb and Scheinberg ([4] and [5])
for handling a sparse problem with a few dense columns. This method is also suitable for large
cones.

Iterative Display and Stopping Conditions

At each iteration k, the algorithm computes three relative convergence measures:

• Primal infeasibility

InfeasPrimal
k =

Axk− bτk
max 1, Ax0− bτ0

.

• Dual infeasibility

InfeasDual
k =

ATyk + sk− f τk

max 1, ATy0 + s0− f τ0
.

• Gap infeasibility

InfeasGap
k =

− f Txk + bTyk− κk

max 1, − f Tx0 + bTy0− κ0
.

You can view these three statistics at the command line by specifying iterative display.

options = optimoptions('coneprog','Display','iter');

All three should approach zero when the problem is feasible and the solver converges. For a feasible
problem, the variable κk approaches zero, and the variable τk approaches a positive constant.

One stopping condition is somewhat related to the gap infeasibility. The stopping condition is when
the following optimality measure decreases below the optimality tolerance.

10 Quadratic Programming

10-20

Optimalityk =
f Txk− bTyk

τk + bTyk
=

f Txk/τk− bTyk/τk

1 + bTyk/τk
.

This statistic measures the precision of the objective value.

The solver also stops and declares the problem to be infeasible under the following conditions. The
three relative infeasibility measures are less than c = ConstraintTolerance, and

τk ≤ c max 1, κk .

If bTyk > 0, then the solver declares that the primal problem is infeasible. If fTxk < 0, then the solver
declares that the dual problem is infeasible.

The algorithm also stops when

μk ≤ cμ0

and

τk ≤ c max 1, κk .

In this case, coneprog reports that the problem is numerically unstable (exit flag -10).

The remaining stopping condition occurs when at least one infeasibility measure is greater than
ConstraintTolerance and the computed step size is too small. In this case, coneprog reports that
the search direction became too small and no further progress could be made (exit flag -7).

References
[1] Andersen, E. D., C. Roos, and T. Terlaky. On implementing a primal-dual interior-point method for

conic quadratic optimization. Math. Program., Ser. B 95, pp. 249–277 (2003). https://doi.org/
10.1007/s10107-002-0349-3

[2] Andersen, K. D. A modified schur-complement method for handling dense columns in interior-
point methods for linear programming. ACM Transactions on Mathematical Software (TOMS),
22(3):348–356, 1996.

[3] Ben-Tal, Aharon, and Arkadi Nemirovski. Convex Optimization in Engineering: Modeling, Analysis,
Algorithms. (1998). Available at https://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.455.2733&rep=rep1&type=pdf.

[4] Goldfarb, D. and K. Scheinberg. A product-form cholesky factorization method for handling dense
columns in interior point methods for linear programming. Mathematical Programming,
99(1):1–34, 2004.

[5] Goldfarb, D. and K. Scheinberg. Product-form cholesky factorization in interior point methods for
second-order cone programming. Mathematical Programming, 103(1):153–179, 2005.

[6] Luo, Zhi-Quan, Jos F. Sturm, and Shuzhong Zhang. Duality and Self-Duality for Conic Convex
Programming. (1996). Available at https://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.48.6432

[7] Mehrotra, Sanjay. “On the Implementation of a Primal-Dual Interior Point Method.” SIAM Journal
on Optimization 2, no. 4 (November 1992): 575–601. https://doi.org/10.1137/0802028.

 Second-Order Cone Programming Algorithm

10-21

https://doi.org/10.1007/s10107-002-0349-3
https://doi.org/10.1007/s10107-002-0349-3
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.455.2733&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.455.2733&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.6432
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.6432
https://doi.org/10.1137/0802028

[8] Nesterov, Yu. E., and M. J. Todd. “Self-Scaled Barriers and Interior-Point Methods for Convex
Programming.” Mathematics of Operations Research 22, no. 1 (February 1997): 1–42. https://
doi.org/10.1287/moor.22.1.1.

See Also
coneprog | secondordercone

More About
• “Quadratic Programming and Cone Programming”

10 Quadratic Programming

10-22

https://doi.org/10.1287/moor.22.1.1
https://doi.org/10.1287/moor.22.1.1

Quadratic Minimization with Bound Constraints
This example shows the effects of some option settings on a sparse, bound-constrained, positive
definite quadratic problem.

Create the quadratic matrix H as a tridiagonal symmetric matrix of size 400-by-400 with entries +4 on
the main diagonal and –2 on the off-diagonals.

Bin = -2*ones(399,1);
H = spdiags(Bin,-1,400,400);
H = H + H';
H = H + 4*speye(400);

Set bounds of [0,0.9] in each component except the 400th. Allow the 400th component to be
unbounded.

lb = zeros(400,1);
lb(400) = -inf;
ub = 0.9*ones(400,1);
ub(400) = inf;

Set the linear vector f to zeros, except set f(400) = –2.

f = zeros(400,1);
f(400) = -2;

Trust-Region-Reflective Solution

Solve the quadratic program using the 'trust-region-reflective' algorithm.

options = optimoptions('quadprog','Algorithm',"trust-region-reflective");
tic
[x1,fval1,exitflag1,output1] = ...
 quadprog(H,f,[],[],[],[],lb,ub,[],options);

Local minimum possible.

quadprog stopped because the relative change in function value is less than the function tolerance.

time1 = toc

time1 = 0.1044

Examine the solution.

fval1,exitflag1,output1.iterations,output1.cgiterations

fval1 = -0.9930

exitflag1 = 3

ans = 18

ans = 1682

The algorithm converges in relatively few iterations, but takes over 1000 CG (conjugate gradient)
iterations. To avoid the CG iterations, set options to use a direct solver instead.

options = optimoptions(options,'SubproblemAlgorithm','factorization');
tic

 Quadratic Minimization with Bound Constraints

10-23

[x2,fval2,exitflag2,output2] = ...
 quadprog(H,f,[],[],[],[],lb,ub,[],options);

Local minimum possible.

quadprog stopped because the relative change in function value is less than the function tolerance.

time2 = toc

time2 = 0.0185

fval2,exitflag2,output2.iterations,output2.cgiterations

fval2 = -0.9930

exitflag2 = 3

ans = 10

ans = 0

This time, the algorithm takes fewer iterations and no CG iterations. The solution time decreases
substantially, despite the relatively time-consuming direct factorization steps, because the solver
avoids taking many CG steps.

Interior-Point Solution

The default 'interior-point-convex' algorithm can solve this problem.

tic
[x3,fval3,exitflag3,output3] = ...
 quadprog(H,f,[],[],[],[],lb,ub); % No options means use the default algorithm

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>

time3 = toc

time3 = 0.0402

fval3,exitflag3,output3.iterations

fval3 = -0.9930

exitflag3 = 1

ans = 8

Compare Results

All algorithms give the same objective function value to display precision, –0.9930.

The 'interior-point-convex' algorithm takes the fewest iterations. However, the 'trust-
region-reflective' algorithm with the direct subproblem solver reaches the solution fastest.

10 Quadratic Programming

10-24

tt = table([time1;time2;time3],[output1.iterations;output2.iterations;output3.iterations],...
 'VariableNames',["Time" "Iterations"],'RowNames',["TRR" "TRR Direct" "IP"])

tt=3×2 table
 Time Iterations
 ________ __________

 TRR 0.10443 18
 TRR Direct 0.018544 10
 IP 0.040204 8

 Quadratic Minimization with Bound Constraints

10-25

Quadratic Minimization with Dense, Structured Hessian
In this section...
“Take advantage of a structured Hessian” on page 10-26
“Step 1: Decide what part of H to pass to quadprog as the first argument.” on page 10-26
“Step 2: Write a function to compute Hessian-matrix products for H.” on page 10-26
“Step 3: Call a quadratic minimization routine with a starting point.” on page 10-27
“Preconditioning” on page 10-28

Take advantage of a structured Hessian
The quadprog trust-region-reflective method can solve large problems where the Hessian is dense
but structured. For these problems, quadprog does not compute H*Y with the Hessian H directly, as
it does for trust-region-reflective problems with sparse H, because forming H would be memory-
intensive. Instead, you must provide quadprog with a function that, given a matrix Y and information
about H, computes W = H*Y.

In this example, the Hessian matrix H has the structure H = B + A*A' where B is a sparse 512-
by-512 symmetric matrix, and A is a 512-by-10 sparse matrix composed of a number of dense
columns. To avoid excessive memory usage that could happen by working with H directly because H is
dense, the example provides a Hessian multiply function, qpbox4mult. This function, when passed a
matrix Y, uses sparse matrices A and B to compute the Hessian matrix product
W = H*Y = (B + A*A')*Y.

In the first part of this example, the matrices A and B need to be provided to the Hessian multiply
function qpbox4mult. You can pass one matrix as the first argument to quadprog, which is passed
to the Hessian multiply function. You can use a nested function to provide the value of the second
matrix.

The second part of the example shows how to tighten the TolPCG tolerance to compensate for an
approximate preconditioner instead of an exact H matrix.

Step 1: Decide what part of H to pass to quadprog as the first
argument.
Either A or B can be passed as the first argument to quadprog. The example chooses to pass B as the
first argument because this results in a better preconditioner (see “Preconditioning” on page 10-28).

quadprog(B,f,[],[],[],[],l,u,xstart,options)

Step 2: Write a function to compute Hessian-matrix products for H.
Now, define a function runqpbox4 that

• Contains a nested function qpbox4mult that uses A and B to compute the Hessian matrix product
W, where W = H*Y = (B + A*A')*Y. The nested function must have the form

W = qpbox4mult(Hinfo,Y,...)

The first two arguments Hinfo and Y are required.

10 Quadratic Programming

10-26

• Loads the problem parameters from qpbox4.mat.
• Uses optimoptions to set the HessianMultiplyFcn option to a function handle that points to

qpbox4mult.
• Calls quadprog with B as the first argument.

The first argument to the nested function qpbox4mult must be the same as the first argument
passed to quadprog, which in this case is the matrix B.

The second argument to qpbox4mult is the matrix Y (of W = H*Y). Because quadprog expects Y to
be used to form the Hessian matrix product, Y is always a matrix with n rows, where n is the number
of dimensions in the problem. The number of columns in Y can vary. The function qpbox4mult is
nested so that the value of the matrix A comes from the outer function. Optimization Toolbox software
includes the runqpbox4.m file.

function [fval, exitflag, output, x] = runqpbox4
%RUNQPBOX4 demonstrates 'HessianMultiplyFcn' option for QUADPROG with bounds.

problem = load('qpbox4'); % Get xstart, u, l, B, A, f
xstart = problem.xstart; u = problem.u; l = problem.l;
B = problem.B; A = problem.A; f = problem.f;
mtxmpy = @qpbox4mult; % function handle to qpbox4mult nested function

% Choose algorithm and the HessianMultiplyFcn option
options = optimoptions(@quadprog,'Algorithm','trust-region-reflective','HessianMultiplyFcn',mtxmpy);

% Pass B to qpbox4mult via the H argument. Also, B will be used in
% computing a preconditioner for PCG.
[x, fval, exitflag, output] = quadprog(B,f,[],[],[],[],l,u,xstart,options);

 function W = qpbox4mult(B,Y)
 %QPBOX4MULT Hessian matrix product with dense structured Hessian.
 % W = qpbox4mult(B,Y) computes W = (B + A*A')*Y where
 % INPUT:
 % B - sparse square matrix (512 by 512)
 % Y - vector (or matrix) to be multiplied by B + A'*A.
 % VARIABLES from outer function runqpbox4:
 % A - sparse matrix with 512 rows and 10 columns.
 %
 % OUTPUT:
 % W - The product (B + A*A')*Y.
 %

 % Order multiplies to avoid forming A*A',
 % which is large and dense
 W = B*Y + A*(A'*Y);
 end

end

Step 3: Call a quadratic minimization routine with a starting point.
To call the quadratic minimizing routine contained in runqpbox4, enter

[fval,exitflag,output] = runqpbox4;

 Quadratic Minimization with Dense, Structured Hessian

10-27

to run the preceding code. Then display the values for fval, exitflag, output.iterations, and
output.cgiterations.

fval,exitflag,output.iterations, output.cgiterations

fval =

 -1.0538e+03

exitflag =

 3

ans =

 18

ans =

 30

After 18 iterations with a total of 30 PCG iterations, the function value is reduced to

fval
fval =
 -1.0538e+003

and the first-order optimality is

output.firstorderopt
ans =
 0.0043

Preconditioning
Sometimes quadprog cannot use H to compute a preconditioner because H only exists implicitly.
Instead, quadprog uses B, the argument passed in instead of H, to compute a preconditioner. B is a
good choice because it is the same size as H and approximates H to some degree. If B were not the
same size as H, quadprog would compute a preconditioner based on some diagonal scaling matrices
determined from the algorithm. Typically, this would not perform as well.

Because the preconditioner is more approximate than when H is available explicitly, adjusting the
TolPCG parameter to a somewhat smaller value might be required. This example is the same as the
previous one, but reduces TolPCG from the default 0.1 to 0.01.

function [fval, exitflag, output, x] = runqpbox4prec
%RUNQPBOX4PREC demonstrates 'HessianMultiplyFcn' option for QUADPROG with bounds.

problem = load('qpbox4'); % Get xstart, u, l, B, A, f
xstart = problem.xstart; u = problem.u; l = problem.l;
B = problem.B; A = problem.A; f = problem.f;
mtxmpy = @qpbox4mult; % function handle to qpbox4mult nested function

% Choose algorithm, the HessianMultiplyFcn option, and override the TolPCG option

10 Quadratic Programming

10-28

options = optimoptions(@quadprog,'Algorithm','trust-region-reflective',...
 'HessianMultiplyFcn',mtxmpy,'TolPCG',0.01);

% Pass B to qpbox4mult via the H argument. Also, B will be used in
% computing a preconditioner for PCG.
% A is passed as an additional argument after 'options'
[x, fval, exitflag, output] = quadprog(B,f,[],[],[],[],l,u,xstart,options);

 function W = qpbox4mult(B,Y)
 %QPBOX4MULT Hessian matrix product with dense structured Hessian.
 % W = qpbox4mult(B,Y) computes W = (B + A*A')*Y where
 % INPUT:
 % B - sparse square matrix (512 by 512)
 % Y - vector (or matrix) to be multiplied by B + A'*A.
 % VARIABLES from outer function runqpbox4prec:
 % A - sparse matrix with 512 rows and 10 columns.
 %
 % OUTPUT:
 % W - The product (B + A*A')*Y.
 %

 % Order multiplies to avoid forming A*A',
 % which is large and dense
 W = B*Y + A*(A'*Y);
 end

end

Now, enter

[fval,exitflag,output] = runqpbox4prec;

to run the preceding code. After 18 iterations and 50 PCG iterations, the function value has the same
value to five significant digits

fval
fval =
-1.0538e+003

and the first-order optimality is essentially the same.

output.firstorderopt
ans =
 0.0043

Note Decreasing TolPCG too much can substantially increase the number of PCG iterations.

See Also

More About
• “Jacobian Multiply Function with Linear Least Squares” on page 11-31

 Quadratic Minimization with Dense, Structured Hessian

10-29

Large Sparse Quadratic Program with Interior Point Algorithm
This example shows the value of using sparse arithmetic when you have a sparse problem. The matrix
has n rows, where you choose n to be a large value, and a few nonzero diagonal bands. A full matrix
of size n-by-n can use up all available memory, but a sparse matrix presents no problem.

The problem is to minimize x'*H*x/2 + f'*x subject to

x(1) + x(2) + ... + x(n) <= 0,

where f = [-1;-2;-3;...;-n]. H is a sparse symmetric banded matrix.

Create Sparse Quadratic Matrix

Create a symmetric circulant matrix based on shifts of the vector [3,6,2,14,2,6,3], with 14 being
on the main diagonal. Have the matrix be n-by-n, where n = 30,000.

n = 3e4;
H2 = speye(n);
H = 3*circshift(H2,-3,2) + 6*circshift(H2,-2,2) + 2*circshift(H2,-1,2)...
 + 14*H2 + 2*circshift(H2,1,2) + 6*circshift(H2,2,2) + 3*circshift(H2,3,2);

View the matrix structure.

spy(H)

10 Quadratic Programming

10-30

Create Linear Constraint and Objective

The linear constraint is that the sum of the solution elements is nonpositive. The objective function
contains a linear term expressed in the vector f.

A = ones(1,n);
b = 0;
f = 1:n;
f = -f;

Solve Problem

Solve the quadratic programming problem using the 'interior-point-convex' algorithm. To keep
the solver from stopping prematurely, set the StepTolerance option to 0.

options = optimoptions(@quadprog,'Algorithm','interior-point-convex','StepTolerance',0);
[x,fval,exitflag,output,lambda] = ...
 quadprog(H,f,A,b,[],[],[],[],[],options);

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>

On many computers you cannot create a full n-by-n matrix when n = 30,000. So you can run this
problem only by using sparse matrices.

Examine Solution

View the objective function value, number of iterations, and Lagrange multiplier associated with
linear inequality.

fprintf('The objective function value is %d.\nThe number of iterations is %d.\nThe Lagrange multiplier is %d.\n',...
 fval,output.iterations,lambda.ineqlin)

The objective function value is -3.133073e+10.
The number of iterations is 7.
The Lagrange multiplier is 1.500050e+04.

Because there are no lower bounds, upper bounds, or linear equality constraints, the only meaningful
Lagrange multiplier is lambda.ineqlin. Because lambda.ineqlin is nonzero, you can tell that the
inequality constraint is active. Evaluate the constraint to see that the solution is on the boundary.

fprintf('The linear inequality constraint A*x has value %d.\n',A*x)

The linear inequality constraint A*x has value 9.150244e-08.

The sum of the solution components is zero to within tolerances.

The solution x has three regions: an initial portion, a final portion, and an approximately linear
portion over most of the solution. Plot the three regions.

subplot(3,1,1)
plot(x(1:60))
title('x(1) Through x(60)')

 Large Sparse Quadratic Program with Interior Point Algorithm

10-31

subplot(3,1,2)
plot(x(61:n-60))
title('x(61) Through x(n-60)')
subplot(3,1,3)
plot(x(n-59:n))
title('x(n-59) Through x(n)')

See Also
quadprog | circshift

More About
• “Sparse Matrices”

10 Quadratic Programming

10-32

Bound-Constrained Quadratic Programming, Solver-Based
This example shows how to determine the shape of a circus tent by solving a quadratic optimization
problem. The tent is formed from heavy, elastic material, and settles into a shape that has minimum
potential energy subject to constraints. A discretization of the problem leads to a bound-constrained
quadratic programming problem.

For a problem-based version of this example, see “Bound-Constrained Quadratic Programming,
Problem-Based” on page 10-49.

Problem Definition

Consider building a circus tent to cover a square lot. The tent has five poles covered with a heavy,
elastic material. The problem is to find the natural shape of the tent. Model the shape as the height
x(p) of the tent at position p.

The potential energy of heavy material lifted to height x is cx, for a constant c that is proportional to
the weight of the material. For this problem, choose c = 1/3000.

The elastic potential energy of a piece of the material Estretch is approximately proportional to the
second derivative of the material height, times the height. You can approximate the second derivative
by the 5-point finite difference approximation (assume that the finite difference steps are of size 1).
Let Δx represent a shift of 1 in the first coordinate direction, and Δy represent a shift by 1 in the
second coordinate direction.

Estretch(p) = − 1 x(p + Δx) + x(p− Δx) + x(p + Δy) + x(p− Δy) + 4x(p) x(p) .

The natural shape of the tent minimizes the total potential energy. By discretizing the problem, you
find that the total potential energy to minimize is the sum over all positions p of Estretch(p) + cx(p).

This potential energy is a quadratic expression in the variable x.

Specify the boundary condition that the height of the tent at the edges is zero. The tent poles have a
cross section of 1-by-1 unit, and the tent has a total size of 33-by-33 units. Specify the height and
location of each pole. Plot the square lot region and tent poles.

height = zeros(33);
height(6:7,6:7) = 0.3;
height(26:27,26:27) = 0.3;
height(6:7,26:27) = 0.3;
height(26:27,6:7) = 0.3;
height(16:17,16:17) = 0.5;
colormap(gray);
surfl(height)
axis tight
view([-20,30]);
title('Tent Poles and Region to Cover')

 Bound-Constrained Quadratic Programming, Solver-Based

10-33

Create Boundary Conditions

The height matrix defines the lower bounds on the solution x. To restrict the solution to be zero at
the boundary, set the upper bound ub to be zero on the boundary.

boundary = false(size(height));
boundary([1,33],:) = true;
boundary(:,[1,33]) = true;
ub = inf(size(boundary)); % No upper bound on most of the region
ub(boundary) = 0;

Create Objective Function Matrices

The quadprog problem formulation is to minimize

1
2xTHx + f Tx.

In this case, the linear term f Tx corresponds to the potential energy of the material height. Therefore,
specify f = 1/3000 for each component of x.

f = ones(size(height))/3000;

Create the finite difference matrix representing Estretch by using the delsq function. The delsq
function returns a sparse matrix with entries of 4 and -1 corresponding to the entries of 4 and -1 in
the formula for Estretch(p). Multiply the returned matrix by 2 to have quadprog solve the quadratic
program with the energy function as given by Estretch.

10 Quadratic Programming

10-34

H = delsq(numgrid('S',33+2))*2;

View the structure of the matrix H. The matrix operates on x(:), which means the matrix x is
converted to a vector by linear indexing.

spy(H);
title('Sparsity Structure of Hessian Matrix');

Run Optimization Solver

Solve the problem by calling quadprog.

x = quadprog(H,f,[],[],[],[],height,ub);

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

Plot Solution

Reshape the solution x to a matrix S. Then plot the solution.

S = reshape(x,size(height));
surfl(S);
axis tight;
view([-20,30]);

 Bound-Constrained Quadratic Programming, Solver-Based

10-35

See Also

More About
• “Bound-Constrained Quadratic Programming, Problem-Based” on page 10-49

10 Quadratic Programming

10-36

Quadratic Programming for Portfolio Optimization Problems,
Solver-Based

This example shows how to solve portfolio optimization problems using the interior-point quadratic
programming algorithm in quadprog. The function quadprog belongs to Optimization Toolbox™.

The matrices that define the problems in this example are dense; however, the interior-point
algorithm in quadprog can also exploit sparsity in the problem matrices for increased speed. For a
sparse example, see “Large Sparse Quadratic Program with Interior Point Algorithm” on page 10-30.

The Quadratic Model

Suppose that there are different assets. The rate of return of asset is a random variable with
expected value . The problem is to find what fraction to invest in each asset in order to
minimize risk, subject to a specified minimum expected rate of return.

Let denote the covariance matrix of rates of asset returns.

The classical mean-variance model consists of minimizing portfolio risk, as measured by

subject to a set of constraints.

The expected return should be no less than a minimal rate of portfolio return that the investor
desires,

the sum of the investment fractions 's should add up to a total of one,

and, being fractions (or percentages), they should be numbers between zero and one,

Since the objective to minimize portfolio risk is quadratic, and the constraints are linear, the resulting
optimization problem is a quadratic program, or QP.

225-Asset Problem

Let us now solve the QP with 225 assets. The dataset is from the OR-Library [Chang, T.-J., Meade, N.,
Beasley, J.E. and Sharaiha, Y.M., "Heuristics for cardinality constrained portfolio optimisation"
Computers & Operations Research 27 (2000) 1271-1302].

We load the dataset and then set up the constraints in a format expected by quadprog. In this
dataset the rates of return range between -0.008489 and 0.003971; we pick a desired return in
between, e.g., 0.002 (0.2 percent).

 Quadratic Programming for Portfolio Optimization Problems, Solver-Based

10-37

Load dataset stored in a MAT-file.

load('port5.mat','Correlation','stdDev_return','mean_return')

Calculate covariance matrix from correlation matrix.

Covariance = Correlation .* (stdDev_return * stdDev_return');
nAssets = numel(mean_return); r = 0.002; % number of assets and desired return
Aeq = ones(1,nAssets); beq = 1; % equality Aeq*x = beq
Aineq = -mean_return'; bineq = -r; % inequality Aineq*x <= bineq
lb = zeros(nAssets,1); ub = ones(nAssets,1); % bounds lb <= x <= ub
c = zeros(nAssets,1); % objective has no linear term; set it to zero

Select the Interior Point Algorithm in Quadprog

In order solve the QP using the interior-point algorithm, we set the option Algorithm to 'interior-
point-convex'.

options = optimoptions('quadprog','Algorithm','interior-point-convex');

Solve 225-Asset Problem

We now set some additional options, and call the solver quadprog.

Set additional options: turn on iterative display, and set a tighter optimality termination tolerance.

options = optimoptions(options,'Display','iter','TolFun',1e-10);

Call solver and measure wall-clock time.

tic
[x1,fval1] = quadprog(Covariance,c,Aineq,bineq,Aeq,beq,lb,ub,[],options);
toc

 Iter Fval Primal Infeas Dual Infeas Complementarity
 0 2.384401e+01 2.253410e+02 1.337381e+00 1.000000e+00
 1 1.338822e-03 7.394864e-01 4.388791e-03 1.038098e-02
 2 1.186079e-03 6.443975e-01 3.824446e-03 8.727381e-03
 3 5.923977e-04 2.730703e-01 1.620650e-03 1.174211e-02
 4 5.354880e-04 5.303581e-02 3.147632e-04 1.549549e-02
 5 5.181994e-04 2.651791e-05 1.573816e-07 2.848171e-04
 6 5.066191e-04 9.285375e-06 5.510794e-08 1.041224e-04
 7 3.923090e-04 7.619855e-06 4.522322e-08 5.536006e-04
 8 3.791545e-04 1.770065e-06 1.050519e-08 1.382075e-04
 9 2.923749e-04 8.850332e-10 5.252599e-12 3.858983e-05
 10 2.277722e-04 4.422799e-13 2.626104e-15 6.204101e-06
 11 1.992243e-04 1.140581e-16 2.161231e-18 4.391483e-07
 12 1.950468e-04 0.000000e+00 1.387779e-17 1.429441e-08
 13 1.949141e-04 1.114560e-16 1.206517e-18 9.731942e-10
 14 1.949121e-04 6.670012e-16 2.483738e-18 2.209702e-12

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

Elapsed time is 0.212331 seconds.

10 Quadratic Programming

10-38

Plot results.

plotPortfDemoStandardModel(x1)

225-Asset Problem with Group Constraints

We now add to the model group constraints that require that 30% of the investor's money has to be
invested in assets 1 to 75, 30% in assets 76 to 150, and 30% in assets 151 to 225. Each of these
groups of assets could be, for instance, different industries such as technology, automotive, and
pharmaceutical. The constraints that capture this new requirement are

Add group constraints to existing equalities.

Groups = blkdiag(ones(1,nAssets/3),ones(1,nAssets/3),ones(1,nAssets/3));
Aineq = [Aineq; -Groups]; % convert to <= constraint
bineq = [bineq; -0.3*ones(3,1)]; % by changing signs

Call solver and measure wall-clock time.

tic
[x2,fval2] = quadprog(Covariance,c,Aineq,bineq,Aeq,beq,lb,ub,[],options);
toc

 Quadratic Programming for Portfolio Optimization Problems, Solver-Based

10-39

 Iter Fval Primal Infeas Dual Infeas Complementarity
 0 2.384401e+01 4.464410e+02 1.337324e+00 1.000000e+00
 1 1.346872e-03 1.474737e+00 4.417606e-03 3.414918e-02
 2 1.190113e-03 1.280566e+00 3.835962e-03 2.934585e-02
 3 5.990845e-04 5.560762e-01 1.665738e-03 1.320038e-02
 4 3.890097e-04 2.780381e-04 8.328691e-07 7.287370e-03
 5 3.887354e-04 1.480950e-06 4.436214e-09 4.641988e-05
 6 3.387787e-04 8.425389e-07 2.523842e-09 2.578178e-05
 7 3.089240e-04 2.707587e-07 8.110631e-10 9.217509e-06
 8 2.639458e-04 6.586818e-08 1.973094e-10 6.509001e-06
 9 2.252657e-04 2.225507e-08 6.666550e-11 6.783212e-06
 10 2.105838e-04 5.811527e-09 1.740855e-11 1.967570e-06
 11 2.024362e-04 4.129608e-12 1.237090e-14 5.924109e-08
 12 2.009703e-04 4.289971e-15 1.369512e-17 6.353270e-10
 13 2.009650e-04 5.555452e-16 6.938894e-18 1.596041e-13

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

Elapsed time is 0.070886 seconds.

Plot results, superimposed on results from previous problem.

plotPortfDemoGroupModel(x1,x2);

10 Quadratic Programming

10-40

Summary of Results So Far

We see from the second bar plot that, as a result of the additional group constraints, the portfolio is
now more evenly distributed across the three asset groups than the first portfolio. This imposed
diversification also resulted in a slight increase in the risk, as measured by the objective function (see
column labeled "f(x)" for the last iteration in the iterative display for both runs).

1000-Asset Problem Using Random Data

In order to show how quadprog's interior-point algorithm behaves on a larger problem, we'll use a
1000-asset randomly generated dataset. We generate a random correlation matrix (symmetric,
positive-semidefinite, with ones on the diagonal) using the gallery function in MATLAB®.

Reset random stream for reproducibility.

rng(0,'twister');
nAssets = 1000; % desired number of assets

Generate means of returns between -0.1 and 0.4.

a = -0.1; b = 0.4;
mean_return = a + (b-a).*rand(nAssets,1);

Generate standard deviations of returns between 0.08 and 0.6.

a = 0.08; b = 0.6;
stdDev_return = a + (b-a).*rand(nAssets,1);
% Correlation matrix, generated using Correlation = gallery('randcorr',nAssets).
% (Generating a correlation matrix of this size takes a while, so we load
% a pre-generated one instead.)
load('correlationMatrixDemo.mat','Correlation');
% Calculate covariance matrix from correlation matrix.
Covariance = Correlation .* (stdDev_return * stdDev_return');

Define and Solve Randomly Generated 1000-Asset Problem

We now define the standard QP problem (no group constraints here) and solve.

r = 0.15; % desired return
Aeq = ones(1,nAssets); beq = 1; % equality Aeq*x = beq
Aineq = -mean_return'; bineq = -r; % inequality Aineq*x <= bineq
lb = zeros(nAssets,1); ub = ones(nAssets,1); % bounds lb <= x <= ub
c = zeros(nAssets,1); % objective has no linear term; set it to zero

Call solver and measure wall-clock time.

tic
x3 = quadprog(Covariance,c,Aineq,bineq,Aeq,beq,lb,ub,[],options);
toc

 Iter Fval Primal Infeas Dual Infeas Complementarity
 0 7.083800e+01 1.142266e+03 1.610094e+00 1.000000e+00
 1 5.603619e-03 7.133717e+00 1.005541e-02 9.857295e-02
 2 1.076070e-04 3.566858e-03 5.027704e-06 9.761758e-03
 3 1.068230e-04 2.513041e-06 3.542286e-09 8.148386e-06
 4 7.257177e-05 1.230928e-06 1.735068e-09 3.979480e-06
 5 3.610589e-05 2.634706e-07 3.713780e-10 1.175001e-06

 Quadratic Programming for Portfolio Optimization Problems, Solver-Based

10-41

 6 2.077811e-05 2.562892e-08 3.612554e-11 5.617206e-07
 7 1.611590e-05 4.711765e-10 6.641535e-13 5.652911e-08
 8 1.491953e-05 4.924477e-12 6.940646e-15 2.427880e-09
 9 1.477930e-05 1.308120e-13 1.850666e-16 2.454705e-10
 10 1.476910e-05 1.165734e-15 7.679047e-19 2.786060e-11

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

Elapsed time is 0.413592 seconds.

Summary

This example illustrates how to use the interior-point algorithm in quadprog on a portfolio
optimization problem, and shows the algorithm running times on quadratic problems of different
sizes.

More elaborate analyses are possible by using features specifically designed for portfolio optimization
in Financial Toolbox™.

See Also
“Mixed-Integer Quadratic Programming Portfolio Optimization: Solver-Based” on page 8-82

10 Quadratic Programming

10-42

Quadratic Programming with Bound Constraints: Problem-
Based

This example shows how to formulate and solve a scalable bound-constrained problem with a
quadratic objective function. The example shows the solution behavior using several algorithms. The
problem can have any number of variables; the number of variables is the scale. For the solver-based
version of this example, see “Quadratic Minimization with Bound Constraints” on page 10-23.

The objective function, as a function of the number of problem variables n, is

2 ∑
i = 1

n
xi

2− 2 ∑
i = 1

n− 1
xixi + 1− 2x1− 2xn .

Create Problem

Create a problem variable named x that has 400 components. Also, create an expression named
objec for the objective function. Bound each variable below by 0 and above by 0.9, except allow xn to
be unbounded.

n = 400;
x = optimvar('x',n,'LowerBound',0,'UpperBound',0.9);
x(n).LowerBound = -Inf;
x(n).UpperBound = Inf;
prevtime = 1:n-1;
nexttime = 2:n;
objec = 2*sum(x.^2) - 2*sum(x(nexttime).*x(prevtime)) - 2*x(1) - 2*x(end);

Create an optimization problem named qprob. Include the objective function in the problem.

qprob = optimproblem('Objective',objec);

Create options that specify the quadprog 'trust-region-reflective' algorithm and no display.
Create an initial point approximately centered between the bounds.

opts = optimoptions('quadprog','Algorithm','trust-region-reflective','Display','off');
x0 = 0.5*ones(n,1);
x00 = struct('x',x0);

Solve Problem and Examine Solution

Solve the problem.

[sol,qfval,qexitflag,qoutput] = solve(qprob,x00,'options',opts);

Plot the solution.

plot(sol.x,'b-')
xlabel('Index')
ylabel('x(index)')

 Quadratic Programming with Bound Constraints: Problem-Based

10-43

Report the exit flag, the number of iterations, and the number of conjugate gradient iterations.

fprintf('Exit flag = %d, iterations = %d, cg iterations = %d\n',...
 double(qexitflag),qoutput.iterations,qoutput.cgiterations)

Exit flag = 3, iterations = 19, cg iterations = 1668

There were a lot of conjugate gradient iterations.

Adjust Options for Increased Efficiency

Reduce the number of conjugate gradient iterations by setting the SubproblemAlgorithm option to
'factorization'. This option causes the solver to use a more expensive internal solution
technique that eliminates conjugate gradient steps, for a net overall savings of time in this case.

opts.SubproblemAlgorithm = 'factorization';
[sol2,qfval2,qexitflag2,qoutput2] = solve(qprob,x00,'options',opts);
fprintf('Exit flag = %d, iterations = %d, cg iterations = %d\n',...
 double(qexitflag2),qoutput2.iterations,qoutput2.cgiterations)

Exit flag = 3, iterations = 10, cg iterations = 0

The number of iterations and of conjugate gradient iterations decreased.

Compare Solutions With 'interior-point' Solution

Compare these solutions with that obtained using the default 'interior-point' algorithm. The
'interior-point' algorithm does not use an initial point, so do not pass x00 to solve.

10 Quadratic Programming

10-44

opts = optimoptions('quadprog','Algorithm','interior-point-convex','Display','off');
[sol3,qfval3,qexitflag3,qoutput3] = solve(qprob,'options',opts);
fprintf('Exit flag = %d, iterations = %d, cg iterations = %d\n',...
 double(qexitflag3),qoutput3.iterations,0)

Exit flag = 1, iterations = 8, cg iterations = 0

middle = floor(n/2);
fprintf('The three solutions are slightly different.\nThe middle component is %f, %f, or %f.\n',...
 sol.x(middle),sol2.x(middle),sol3.x(middle))

The three solutions are slightly different.
The middle component is 0.896446, 0.897823, or 0.857389.

fprintf('The relative norm of sol - sol2 is %f.\n',norm(sol.x-sol2.x)/norm(sol.x))

The relative norm of sol - sol2 is 0.001369.

fprintf('The relative norm of sol2 - sol3 is %f.\n',norm(sol2.x-sol3.x)/norm(sol2.x))

The relative norm of sol2 - sol3 is 0.035100.

fprintf(['The three objective function values are %f, %f, and %f.\n' ...
 'The ''interior-point'' algorithm is slightly less accurate.'],qfval,qfval2,qfval3)

The three objective function values are -1.985000, -1.985000, and -1.984963.
The 'interior-point' algorithm is slightly less accurate.

See Also

More About
• “Quadratic Minimization with Bound Constraints” on page 10-23
• “Problem-Based Optimization Workflow” on page 9-2

 Quadratic Programming with Bound Constraints: Problem-Based

10-45

Large Sparse Quadratic Program, Problem-Based
This example shows the value of using sparse arithmetic when you have a sparse problem. The matrix
has n rows, where you choose n to be a large value, and a few nonzero diagonal bands. A full matrix
of size n-by-n can use up all available memory, but a sparse matrix presents no problem.

The problem is to minimize x'*H*x/2 + f'*x subject to

x(1) + x(2) + ... + x(n) <= 0,

where f = [-1;-2;-3;...;-n]. H is a sparse symmetric banded matrix.

Create Sparse Quadratic Matrix

Create a symmetric circulant matrix H based on shifts of the vector [3,6,2,14,2,6,3], with 14
being on the main diagonal. Have the matrix be n-by-n, where n = 30,000.

n = 3e4;
H2 = speye(n);
H = 3*circshift(H2,-3,2) + 6*circshift(H2,-2,2) + 2*circshift(H2,-1,2)...
 + 14*H2 + 2*circshift(H2,1,2) + 6*circshift(H2,2,2) + 3*circshift(H2,3,2);

View the sparse matrix structure.

spy(H)

10 Quadratic Programming

10-46

Create Optimization Variables and Problem

Create an optimization variable x and problem qprob.

x = optimvar('x',n);
qprob = optimproblem;

Create the objective function and constraints. Place the objective and constraints into qprob.

f = 1:n;
obj = 1/2*x'*H*x - f*x;
qprob.Objective = obj;
cons = sum(x) <= 0;
qprob.Constraints = cons;

Solve Problem

Solve the quadratic programming problem using the default 'interior-point-convex' algorithm
and sparse linear algebra. To keep the solver from stopping prematurely, set the StepTolerance
option to 0.

options = optimoptions('quadprog','Algorithm','interior-point-convex',...
 'LinearSolver','sparse','StepTolerance',0);
[sol,fval,exitflag,output,lambda] = solve(qprob,'Options',options);

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>

Examine Solution

View the objective function value, number of iterations, and Lagrange multiplier associated with the
linear inequality constraint.

fprintf('The objective function value is %d.\nThe number of iterations is %d.\nThe Lagrange multiplier is %d.\n',...
 fval,output.iterations,lambda.Constraints)

The objective function value is -3.133073e+10.
The number of iterations is 7.
The Lagrange multiplier is 1.500050e+04.

Evaluate the constraint to see that the solution is on the boundary.

fprintf('The linear inequality constraint sum(x) has value %d.\n',sum(sol.x))

The linear inequality constraint sum(x) has value 7.599738e-09.

The sum of the solution components is zero to within tolerances.

The solution x has three regions: an initial portion, a final portion, and an approximately linear
portion over most of the solution. Plot the three regions.

subplot(3,1,1)
plot(sol.x(1:60))
title('x(1) Through x(60)')

 Large Sparse Quadratic Program, Problem-Based

10-47

subplot(3,1,2)
plot(sol.x(61:n-60))
title('x(61) Through x(n-60)')
subplot(3,1,3)
plot(sol.x(n-59:n))
title('x(n-59) Through x(n)')

See Also

More About
• “Large Sparse Quadratic Program with Interior Point Algorithm” on page 10-30
• “Problem-Based Optimization Workflow” on page 9-2

10 Quadratic Programming

10-48

Bound-Constrained Quadratic Programming, Problem-Based
This example shows how to determine the shape of a circus tent by solving a quadratic optimization
problem. The tent is formed from heavy, elastic material, and settles into a shape that has minimum
potential energy subject to constraints. A discretization of the problem leads to a bound-constrained
quadratic programming problem.

For a solver-based version of this example, see “Bound-Constrained Quadratic Programming, Solver-
Based” on page 10-33.

Problem Definition

Consider building a circus tent to cover a square lot. The tent has five poles covered with a heavy,
elastic material. The problem is to find the natural shape of the tent. Model the shape as the height
x(p) of the tent at position p.

The potential energy of heavy material lifted to height x is cx, for a constant c that is proportional to
the weight of the material. For this problem, choose c = 1/3000.

The elastic potential energy of a piece of the material Estretch is approximately proportional to the
second derivative of the material height, times the height. You can approximate the second derivative
by the five-point finite difference approximation (assume that the finite difference steps are of size 1).
Let Δx represent a shift of 1 in the first coordinate direction, and Δy represent a shift of 1 in the
second coordinate direction.

Estretch(p) = − 1 x(p + Δx) + x(p− Δx) + x(p + Δy) + x(p− Δy) + 4x(p) x(p) .

The natural shape of the tent minimizes the total potential energy. By discretizing the problem, you
find that the total potential energy to minimize is the sum over all positions p of Estretch(p) + cx(p).

This potential energy is a quadratic expression in the variable x.

Specify the boundary condition that the height of the tent at the edges is zero. The tent poles have a
cross section of 1-by-1 unit, and the tent has a total size of 33-by-33 units. Specify the height and
location of each pole. Plot the square lot region and tent poles.

height = zeros(33);
height(6:7,6:7) = 0.3;
height(26:27,26:27) = 0.3;
height(6:7,26:27) = 0.3;
height(26:27,6:7) = 0.3;
height(16:17,16:17) = 0.5;
colormap(gray);
surfl(height)
axis tight
view([-20,30]);
title('Tent Poles and Region to Cover')

 Bound-Constrained Quadratic Programming, Problem-Based

10-49

Formulate Optimization Problem

Create an optimization variable x representing the height of the material.

x = optimvar('x',size(height));

Set x to zero on the boundaries of the square domain.

boundary = false(size(height));
boundary([1,33],:) = true;
boundary(:,[1,33]) = true;
x.LowerBound(boundary) = 0;
x.UpperBound(boundary) = 0;

Calculate the elastic potential energy at each point. First, calculate the potential energy in the
interior of the region, where the finite differences do not overstep the region containing the solution.

L = size(height,1);
peStretch = optimexpr(L,L); % This initializes peStretch to zeros(L,L)
interior = 2:(L-1);
peStretch(interior,interior) = (-1*(x(interior - 1,interior) + x(interior + 1,interior) ...
 + x(interior,interior - 1) + x(interior,interior + 1)) + 4*x(interior,interior))...
 .*x(interior, interior);

Because the solution is constrained to be 0 at the edges of the region, you do not need to include the
remainder of the terms. All terms have a multiple of x, and x at the edge is zero. For reference in
case you want to use a different boundary condition, the following is a commented-out version of the
potential energy .

10 Quadratic Programming

10-50

% peStretch(1,interior) = (-1*(x(1,interior - 1) + x(1,interior + 1) + x(2,interior))...
% + 4*x(1,interior)).*x(1,interior);
% peStretch(L,interior) = (-1*(x(L,interior - 1) + x(L,interior + 1) + x(L-1,interior))...
% + 4*x(L,interior)).*x(L,interior);
% peStretch(interior,1) = (-1*(x(interior - 1,1) + x(interior + 1,1) + x(interior,2))...
% + 4*x(interior,1)).*x(interior,1);
% peStretch(interior,L) = (-1*(x(interior - 1,L) + x(interior + 1,L) + x(interior,L-1))...
% + 4*x(interior,L)).*x(interior,L);
% peStretch(1,1) = (-1*(x(2,1) + x(1,2)) + 4*x(1,1)).*x(1,1);
% peStretch(1,L) = (-1*(x(2,L) + x(1,L-1)) + 4*x(1,L)).*x(1,L);
% peStretch(L,1) = (-1*(x(L,2) + x(L-1,1)) + 4*x(L,1)).*x(L,1);
% peStretch(L,L) = (-1*(x(L-1,L) + x(L,L-1)) + 4*x(L,L)).*x(L,L);

Define the potential energy due to material height, which is x/3000.

peHeight = x/3000;

Create an optimization problem named tentproblem. Include the expression for the objective
function, which is the sum of the two potential energies over all locations.

tentproblem = optimproblem('Objective',sum(sum(peStretch + peHeight)));

Set Constraint

Set the constraint that the solution must lie above the values of the height matrix. This matrix is
zero at most locations, representing the ground, and includes the height of each tent pole at its
location.

htcons = x >= height;
tentproblem.Constraints.htcons = htcons;

Run Optimization Solver

Solve the problem. Ignore the resulting statement "Your Hessian is not symmetric." solve issues this
statement because the internal conversion from problem form to a quadratic matrix does not ensure
that the matrix is symmetric.

sol = solve(tentproblem);

Solving problem using quadprog.
Your Hessian is not symmetric. Resetting H=(H+H')/2.

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

Plot Solution

Plot the solution found by the optimization solver.

surfl(sol.x);
axis tight;
view([-20,30]);

 Bound-Constrained Quadratic Programming, Problem-Based

10-51

See Also

More About
• “Bound-Constrained Quadratic Programming, Solver-Based” on page 10-33
• “Problem-Based Optimization Workflow” on page 9-2

10 Quadratic Programming

10-52

Quadratic Programming for Portfolio Optimization, Problem-
Based

This example shows how to solve portfolio optimization problems using the problem-based approach.
For the solver-based approach, see “Quadratic Programming for Portfolio Optimization Problems,
Solver-Based” on page 10-37.

The Quadratic Model

Suppose that a portfolio contains different assets. The rate of return of asset is a random variable
with expected value . The problem is to find what fraction to invest in each asset in order to
minimize risk, subject to a specified minimum expected rate of return.

Let denote the covariance matrix of rates of asset returns.

The classical mean-variance model consists of minimizing portfolio risk, as measured by

subject to a set of constraints.

The expected return should be no less than a minimal rate of portfolio return that the investor
desires,

the sum of the investment fractions 's should add up to a total of one,

and, being fractions (or percentages), they should be numbers between zero and one,

Since the objective to minimize portfolio risk is quadratic, and the constraints are linear, the resulting
optimization problem is a quadratic program, or QP.

225-Asset Problem

Let us now solve the QP with 225 assets. The dataset is from the OR-Library [Chang, T.-J., Meade, N.,
Beasley, J.E. and Sharaiha, Y.M., "Heuristics for cardinality constrained portfolio optimisation"
Computers & Operations Research 27 (2000) 1271-1302].

We load the dataset and then set up the constraints for the problem-based approach. In this dataset
the rates of return range between -0.008489 and 0.003971; we pick a desired return in between,
e.g., 0.002 (0.2 percent).

Load dataset stored in a MAT-file.

load('port5.mat','Correlation','stdDev_return','mean_return')

 Quadratic Programming for Portfolio Optimization, Problem-Based

10-53

Calculate the covariance matrix from correlation matrix.

Covariance = Correlation .* (stdDev_return * stdDev_return');
nAssets = numel(mean_return); r = 0.002; % number of assets and desired return

Create Optimization Problem, Objective, and Constraints

Create an optimization problem for minimization.

portprob = optimproblem;

Create an optimization vector variable 'x' with nAssets elements. This variable represents the
fraction of wealth invested in each asset, so should lie between 0 and 1.

x = optimvar('x',nAssets,'LowerBound',0,'UpperBound',1);

The objective function is 1/2*x'*Covariance*x. Include this objective into the problem.

objective = 1/2*x'*Covariance*x;
portprob.Objective = objective;

The sum of the variables is 1, meaning the entire portfolio is invested. Express this as a constraint
and place it in the problem.

sumcons = sum(x) == 1;
portprob.Constraints.sumcons = sumcons;

The average return must be greater than r. Express this as a constraint and place it in the problem.

averagereturn = dot(mean_return,x) >= r;
portprob.Constraints.averagereturn = averagereturn;

Solve 225-Asset Problem

Set some options, and call the solver.

Set options to turn on iterative display, and set a tighter optimality termination tolerance.

options = optimoptions('quadprog','Display','iter','TolFun',1e-10);

Call solver and measure wall-clock time.

tic
[x1,fval1] = solve(portprob,'Options',options);
toc

 Iter Fval Primal Infeas Dual Infeas Complementarity
 0 7.212813e+00 1.227500e+02 1.195948e+00 2.217295e-03
 1 8.160874e-04 3.615084e-01 3.522160e-03 2.250524e-05
 2 7.220766e-04 3.592574e-01 3.500229e-03 3.378157e-05
 3 4.309434e-04 9.991108e-02 9.734292e-04 2.790551e-05
 4 4.734300e-04 5.551115e-16 7.771561e-16 4.242216e-06
 5 4.719034e-04 6.661338e-16 3.122502e-16 8.002618e-07
 6 3.587475e-04 4.440892e-16 3.035766e-18 3.677066e-07
 7 3.131814e-04 8.881784e-16 3.686287e-18 9.586695e-08
 8 2.760174e-04 7.771561e-16 1.463673e-18 1.521063e-08
 9 2.345751e-04 1.110223e-15 1.138412e-18 4.109608e-09
 10 2.042487e-04 1.221245e-15 1.084202e-18 6.423267e-09

10 Quadratic Programming

10-54

 11 1.961775e-04 1.110223e-16 9.757820e-19 6.068329e-10
 12 1.949281e-04 4.440892e-16 9.215718e-19 4.279951e-12

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

Elapsed time is 0.292806 seconds.

Plot results.

plotPortfDemoStandardModel(x1.x)

225-Asset Problem with Group Constraints

We now add to the model group constraints that require that 30% of the investor's money has to be
invested in assets 1 to 75, 30% in assets 76 to 150, and 30% in assets 151 to 225. Each of these
groups of assets could be, for instance, different industries such as technology, automotive, and
pharmaceutical. The constraints that capture this new requirement are

Add group constraints to existing equalities.

 Quadratic Programming for Portfolio Optimization, Problem-Based

10-55

grp1 = sum(x(1:75)) >= 0.3;
grp2 = sum(x(76:150)) >= 0.3;
grp3 = sum(x(151:225)) >= 0.3;
portprob.Constraints.grp1 = grp1;
portprob.Constraints.grp2 = grp2;
portprob.Constraints.grp3 = grp3;

Call solver and measure wall-clock time.

tic
[x2,fval2] = solve(portprob,'Options',options);
toc

 Iter Fval Primal Infeas Dual Infeas Complementarity
 0 7.212813e+00 1.227500e+02 3.539920e-01 5.253824e-03
 1 7.004556e-03 2.901399e+00 8.367185e-03 2.207460e-03
 2 9.181962e-04 4.095630e-01 1.181116e-03 3.749424e-04
 3 7.515047e-04 3.567918e-01 1.028932e-03 3.486333e-04
 4 4.238346e-04 9.005778e-02 2.597127e-04 1.607718e-04
 5 3.695008e-04 1.909891e-04 5.507829e-07 1.341881e-05
 6 3.691407e-04 6.146337e-07 1.772508e-09 6.817457e-08
 7 3.010636e-04 7.691892e-08 2.218223e-10 1.837302e-08
 8 2.669065e-04 1.088252e-08 3.138350e-11 5.474712e-09
 9 2.195767e-04 8.122574e-10 2.342425e-12 2.814320e-08
 10 2.102910e-04 2.839773e-10 8.189470e-13 1.037476e-08
 11 2.060985e-04 6.713696e-11 1.936133e-13 2.876950e-09
 12 2.015107e-04 0.000000e+00 8.131516e-19 1.522226e-10
 13 2.009670e-04 4.440892e-16 8.673617e-19 5.264375e-13

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

Elapsed time is 0.162406 seconds.

Plot results, superimposed on results from previous problem.

plotPortfDemoGroupModel(x1.x,x2.x);

10 Quadratic Programming

10-56

Summary of Results So Far

We see from the second bar plot that, as a result of the additional group constraints, the portfolio is
now more evenly distributed across the three asset groups than the first portfolio. This imposed
diversification also resulted in a slight increase in the risk, as measured by the objective function (see
column labeled "f(x)" for the last iteration in the iterative display for both runs).

1000-Asset Problem Using Random Data

In order to show how the solver behaves on a larger problem, we'll use a 1000-asset randomly
generated dataset. We generate a random correlation matrix (symmetric, positive-semidefinite, with
ones on the diagonal) using the gallery function in MATLAB®.

Reset random stream for reproducibility.

rng(0,'twister');
nAssets = 1000; % desired number of assets

Create Random Data

Generate means of returns between -0.1 and 0.4.

a = -0.1; b = 0.4;
mean_return = a + (b-a).*rand(nAssets,1);
r = 0.15; % desired return

Generate standard deviations of returns between 0.08 and 0.6.

 Quadratic Programming for Portfolio Optimization, Problem-Based

10-57

a = 0.08; b = 0.6;
stdDev_return = a + (b-a).*rand(nAssets,1);

Load the correlation matrix, which was generated using Correlation =
gallery('randcorr',nAssets). (Generating a correlation matrix of this size takes a while, so
load the pre-generated one instead.)

load('correlationMatrixDemo.mat','Correlation');

Calculate the covariance matrix from correlation matrix.

Covariance = Correlation .* (stdDev_return * stdDev_return');

Create Optimization Problem, Objective, and Constraints

Create an optimization problem for minimization.

portprob2 = optimproblem;

Create the optimization vector variable 'x' with nAssets elements.

x = optimvar('x',nAssets,'LowerBound',0,'UpperBound',1);

Include the objective function into the problem.

objective = 1/2*x'*Covariance*x;
portprob2.Objective = objective;

Include the constraints that the sum of the variables is 1 and the average return is greater than r.

sumcons = sum(x) == 1;
portprob2.Constraints.sumcons = sumcons;
averagereturn = dot(mean_return,x) >= r;
portprob2.Constraints.averagereturn = averagereturn;

Solve 1000-Asset Problem

Call solver and measure wall-clock time.

tic
x3 = solve(portprob2,'Options',options);
toc

 Iter Fval Primal Infeas Dual Infeas Complementarity
 0 2.142849e+01 5.490000e+02 3.031839e+00 5.210929e-03
 1 9.378552e-03 6.439102e+00 3.555978e-02 6.331676e-04
 2 1.128129e-04 3.705915e-03 2.046582e-05 1.802721e-05
 3 1.118804e-04 1.852958e-06 1.023291e-08 1.170562e-07
 4 8.490176e-05 7.650016e-08 4.224702e-10 7.048637e-09
 5 3.364597e-05 4.440892e-16 3.062871e-18 1.037370e-09
 6 1.980189e-05 2.220446e-16 8.876905e-19 8.465558e-11

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

10 Quadratic Programming

10-58

Elapsed time is 0.913357 seconds.

Summary

This example illustrates how to use problem-based approach on a portfolio optimization problem, and
shows the algorithm running times on quadratic problems of different sizes.

More elaborate analyses are possible by using features specifically designed for portfolio optimization
in Financial Toolbox™.

See Also

More About
• “Quadratic Programming for Portfolio Optimization Problems, Solver-Based” on page 10-37
• “Problem-Based Optimization Workflow” on page 9-2

 Quadratic Programming for Portfolio Optimization, Problem-Based

10-59

Code Generation for quadprog Background
In this section...
“What Is Code Generation?” on page 10-60
“Code Generation Requirements” on page 10-60
“Generated Code Not Multithreaded” on page 10-61

What Is Code Generation?
Code generation is the conversion of MATLAB code to C/C++ code using MATLAB Coder. Code
generation requires a MATLAB Coder license.

Typically, you use code generation to deploy code on hardware that is not running MATLAB.

For an example, see “Generate Code for quadprog” on page 10-62. For code generation in other
optimization solvers, see “Generate Code for fmincon” on page 5-138, “Generate Code for fsolve” on
page 12-38, or “Generate Code for lsqcurvefit or lsqnonlin” on page 11-105.

Code Generation Requirements
• quadprog supports code generation using either the codegen function or the MATLAB Coder

app. You must have a MATLAB Coder license to generate code.
• The target hardware must support standard double-precision floating-point computations. You

cannot generate code for single-precision or fixed-point computations.
• Code generation targets do not use the same math kernel libraries as MATLAB solvers. Therefore,

code generation solutions can vary from solver solutions, especially for poorly conditioned
problems.

• quadprog does not support the problem argument for code generation.

[x,fval] = quadprog(problem) % Not supported
• All quadprog input matrices such as A, Aeq, lb, and ub must be full, not sparse. You can convert

sparse matrices to full by using the full function.
• The lb and ub arguments must have the same number of entries as the number of columns in H or

must be empty [].
• For advanced code optimization involving embedded processors, you also need an Embedded

Coder license.
• You must include options for quadprog and specify them using optimoptions. The options must

include the Algorithm option, set to 'active-set'.

options = optimoptions('quadprog','Algorithm','active-set');
[x,fval,exitflag] = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options);

• Code generation supports these options:

• Algorithm — Must be 'active-set'
• ConstraintTolerance
• MaxIterations
• ObjectiveLimit

10 Quadratic Programming

10-60

• OptimalityTolerance
• StepTolerance

• Generated code has limited error checking for options. The recommended way to update an option
is to use optimoptions, not dot notation.

opts = optimoptions('quadprog','Algorithm','active-set');
opts = optimoptions(opts,'MaxIterations',1e4); % Recommended
opts.MaxIterations = 1e4; % Not recommended

• Do not load options from a file. Doing so can cause code generation to fail. Instead, create options
in your code.

• If you specify an option that is not supported, the option is typically ignored during code
generation. For reliable results, specify only supported options.

Generated Code Not Multithreaded
By default, generated code for use outside the MATLAB environment uses linear algebra libraries that
are not multithreaded. Therefore, this code can run significantly slower than code in the MATLAB
environment.

If your target hardware has multiple cores, you can achieve better performance by using custom
multithreaded LAPACK and BLAS libraries. To incorporate these libraries in your generated code, see
“Speed Up Linear Algebra in Generated Standalone Code by Using LAPACK Calls” (MATLAB Coder).

See Also
quadprog | codegen | optimoptions

More About
• “Generate Code for quadprog” on page 10-62
• “Static Memory Allocation for fmincon Code Generation” on page 5-142
• “Optimization Code Generation for Real-Time Applications” on page 5-144

 Code Generation for quadprog Background

10-61

Generate Code for quadprog
First Steps in quadprog Code Generation
This example shows how to generate code for the quadprog optimization solver. Code generation
requires a MATLAB Coder license. For details about code generation requirements, see “Code
Generation for quadprog Background” on page 10-60.

The problem is to minimize the quadratic expression

1
2xTHx + f Tx

where

H =
1 −1 1
−1 2 −2
1 −2 4

and

f =
2
−3
1

subject to the constraints 0 ≤ x ≤ 1, ∑x = 1/2.

Create a file named test_quadp.m containing the following code.

function [x,fval] = test_quadp
H = [1,-1,1
 -1,2,-2
 1,-2,4];
f = [2;-3;1];
lb = zeros(3,1);
ub = ones(size(lb));
Aeq = ones(1,3);
beq = 1/2;
x0 = zeros(3,1);
opts = optimoptions('quadprog','Algorithm','active-set');
[x,fval] = quadprog(H,f,[],[],Aeq,beq,lb,ub,x0,opts)

Generate code for the test_quadp file.

codegen -config:mex test_quadp

After some time, codegen creates a MEX file named test_quadp_mex.mexw64 (the file extension
varies, depending on your system). Run the resulting C code.

[x,fval] = test_quadp_mex

x =

 0
 0.5000

10 Quadratic Programming

10-62

 0

fval =

 -1.2500

Modify Example for Efficiency
Following some of the suggestions in the topic “Optimization Code Generation for Real-Time
Applications” on page 5-144, configure the generated code to have fewer checks and to use static
memory allocation.

cfg = coder.config('mex');
cfg.IntegrityChecks = false;
cfg.SaturateOnIntegerOverflow = false;
cfg.DynamicMemoryAllocation = 'Off';

Create a file named test_quadp2.m containing the following code. This code sets a looser optimality
tolerance than the default 1e-8.

function [x,fval,eflag,output] = test_quadp2
H = [1,-1,1
 -1,2,-2
 1,-2,4];
f = [2;-3;1];
lb = zeros(3,1);
ub = ones(size(lb));
Aeq = ones(1,3);
beq = 1/2;
x0 = zeros(3,1);
opts = optimoptions('quadprog','Algorithm','active-set',...
 'OptimalityTolerance',1e-5);
[x,fval,eflag,output] = quadprog(H,f,[],[],Aeq,beq,lb,ub,x0,opts)

Generate code for the test_quadp2 file.

codegen -config cfg test_quadp2

Run the resulting code.

[x,fval,eflag,output] = test_quadp2_mex

x =

 0
 0.5000
 0

fval =

 -1.2500

eflag =

 Generate Code for quadprog

10-63

 1

output =

 struct with fields:

 algorithm: 'active-set'
 firstorderopt: 8.8818e-16
 constrviolation: 0
 iterations: 3

Changing the optimality tolerance does not affect the optimization process, because the 'active-
set' algorithm does not check this tolerance until it reaches a point where it stops.

Create a third file that limits the number of allowed iterations to 2 to see the effect on the
optimization process.

function [x,fval,exitflag,output] = test_quadp3
H = [1,-1,1
 -1,2,-2
 1,-2,4];
f = [2;-3;1];
lb = zeros(3,1);
ub = ones(size(lb));
Aeq = ones(1,3);
beq = 1/2;
x0 = zeros(3,1);
opts = optimoptions('quadprog','Algorithm','active-set','MaxIterations',2);
[x,fval,exitflag,output] = quadprog(H,f,[],[],Aeq,beq,lb,ub,x0,opts)

To see the effect of these settings on the solver, run test_quadp3 in MATLAB without generating
code.

[x,fval,exitflag,output] = test_quadp3

Solver stopped prematurely.

quadprog stopped because it exceeded the iteration limit,
options.MaxIterations = 2.000000e+00.

x =

 -0.0000
 0.5000
 0

fval =

 -1.2500

exitflag =

 0

10 Quadratic Programming

10-64

output =

 struct with fields:

 algorithm: 'active-set'
 iterations: 2
 constrviolation: 1.6441e-18
 firstorderopt: 2
 message: '↵Solver stopped prematurely.↵↵quadprog stopped because it exceeded the iteration limit,↵options.MaxIterations = 2.000000e+00.↵↵'
 linearsolver: []
 cgiterations: []

In this case, the solver reached the solution in fewer steps than the default. Usually, though, limiting
the number of iterations does not allow the solver to reach a correct solution.

See Also
quadprog | codegen | optimoptions

More About
• “Code Generation for quadprog Background” on page 10-60
• “Static Memory Allocation for fmincon Code Generation” on page 5-142
• “Optimization Code Generation for Real-Time Applications” on page 5-144

 Generate Code for quadprog

10-65

Quadratic Programming with Many Linear Constraints
This example shows how well the quadprog 'active-set' algorithm performs in the presence of
many linear constraints, as compared to the default 'interior-point-convex' algorithm.
Furthermore, the Lagrange multipliers from the 'active-set' algorithm are exactly zero at
inactive constraints, which can be helpful when you are looking for active constraints.

Problem Description

Create a pseudorandom quadratic problem with N variables and 10*N linear inequality constraints.
Specify N = 150.

rng default % For reproducibility
N = 150;
rng default
A = randn([10*N,N]);
b = 10*ones(size(A,1),1);
f = sqrt(N)*rand(N,1);
H = 18*eye(N) + randn(N);
H = H + H';

Check that the resulting quadratic matrix is convex.

ee = min(eig(H))

ee = 3.6976

All of the eigenvalues are positive, so the quadratic form x'*H*x is convex.

Include no linear equality constraints or bounds.

Aeq = [];
beq = [];
lb = [];
ub = [];

Solve Problem Using Two Algorithms

Set options to use the quadprog 'active-set' algorithm. This algorithm requires an initial point.
Set the initial point x0 to be a zero vector of length N.

opts = optimoptions('quadprog','Algorithm','active-set');
x0 = zeros(N,1);

Time the solution.

tic
[xa,fvala,eflaga,outputa,lambdaa] = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,opts);

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>

toc

10 Quadratic Programming

10-66

Elapsed time is 0.042058 seconds.

Compare the solution time to the time of the default 'interior-point-convex' algorithm.

tic
[xi,fvali,eflagi,outputi,lambdai] = quadprog(H,f,A,b);

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>

toc

Elapsed time is 2.305694 seconds.

The 'active-set' algorithm is much faster on problems with many linear constraints.

Examine Lagrange Multipliers

The 'active-set' algorithm reports only a few nonzero entries in the Lagrange multiplier
structure associated with the linear constraint matrix.

nnz(lambdaa.ineqlin)

ans = 14

In contrast, the 'interior-point-convex' algorithm returns a Lagrange multiplier structure with
all nonzero elements.

nnz(lambdai.ineqlin)

ans = 1500

Nearly all of these Lagrange multipliers are smaller than N*eps in size.

nnz(abs(lambdai.ineqlin) > N*eps)

ans = 20

In other words, the 'active-set' algorithm gives clear indications of active constraints in the
Lagrange multiplier structure, whereas the 'interior-point-convex' algorithm does not.

See Also
quadprog | lsqlin

More About
• “Potential Inaccuracy with Interior-Point Algorithms” on page 2-10

 Quadratic Programming with Many Linear Constraints

10-67

Warm Start quadprog
This example shows how a warm start object increases the speed of the solution in a large, dense
quadratic problem. Create a scaled problem with N variables and 10N linear inequality constraints.
Set N to 1000.

rng default % For reproducibility
N = 1000;
rng default
A = randn([10*N,N]);
b = 5*ones(size(A,1),1);
f = sqrt(N)*rand(N,1);
H = (4+N/10)*eye(N) + randn(N);
H = H + H';
Aeq = [];
beq = [];
lb = -ones(N,1);
ub = -lb;

Create a warm start object for quadprog, starting from zero.

opts = optimoptions('quadprog','Algorithm','active-set');
x0 = zeros(N,1);
ws = optimwarmstart(x0,opts);

Solve the problem, and time the result.

tic
[ws1,fval1,eflag1,output1,lambda1] = quadprog(H,f,A,b,Aeq,beq,lb,ub,ws);

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>

toc

Elapsed time is 9.221035 seconds.

The solution has several active linear inequality constraints, and no active bounds.

nnz(lambda1.ineqlin)

ans = 211

nnz(lambda1.lower)

ans = 0

nnz(lambda1.upper)

ans = 0

The solver takes a few hundred iterations to converge.

output1.iterations

10 Quadratic Programming

10-68

ans = 216

Change one random objective to twice its original value.

idx = randi(N);
f(idx) = 2*f(idx);

Solve the problem with the new objective, starting from the previous warm start solution.

tic
[ws2,fval2,eflag2,output2,lambda2] = quadprog(H,f,A,b,Aeq,beq,lb,ub,ws1);

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>

toc

Elapsed time is 1.490214 seconds.

The solver takes much less time to solve the new problem.

The new solution has about the same number of active constraints.

nnz(lambda2.ineqlin)

ans = 214

nnz(lambda2.lower)

ans = 0

nnz(lambda2.upper)

ans = 0

The new solution is near the previous solution.

norm(ws2.X - ws1.X)

ans = 0.0987

norm(ws2.X)

ans = 2.4229

The difference in speed is largely due to the solver taking many fewer iterations.

output2.iterations

ans = 29

See Also
quadprog | optimwarmstart

 Warm Start quadprog

10-69

Related Examples
• “Warm Start Best Practices” on page 10-71

10 Quadratic Programming

10-70

Warm Start Best Practices
In this section...
“Use Warm Start in MATLAB” on page 10-71
“Use Warm Start in Code Generation with Static Memory Management” on page 10-71

Use Warm Start in MATLAB
The lsqlin and quadprog solvers support the use of a warm start object as an enhanced initial
point. Warm start objects store algorithm-specific data from a previous solution to help avoid costly
initialization between solves. Using a warm start can significantly increase performance between
multiple solver calls. To use a warm start with a solver, you first create a warm start object using
optimwarmstart. Specify an initial point x0 and options created with optimoptions, including
setting the Algorithm option to 'active-set'. For basic examples, see the quadprog “Return
Warm Start Object” on page 15-450 and the lsqlin “Return Warm Start Object” on page 15-271. For
a more extensive example, see “Warm Start quadprog” on page 10-68.

Use a warm start object when you solve a sequence of similar problems. For best performance, follow
these guidelines.

• Keep the same number of variables. You must have the same number of variables from one
problem to the next. If the number of variables changes, solvers issue an error.

• Do not change the equality constraints. If you change the equality constraint matrices Aeq or
beq, the solver cannot use a warm start.

• Modify a few rows of the A matrix. A warm start works most efficiently when the problem
modifies only a few rows of the A matrix and corresponding b vector, representing the constraint
A*x <= b. This modification includes adding or removing one or more constraints.

• Modify a few elements of the b vector. A warm start works most efficiently when the problem
modifies only a few elements of the b vector.

• Change a few bound constraint. A warm start works most efficiently when the problem
modifies only a few bounds by adding, removing, or changing entries in the upper bounds or lower
bounds. This modification includes setting bounds to Inf or –Inf.

• Change the objective function. A warm start can be efficient when you change a matrix or
vector representing the objective function—the H and f arrays for quadprog, or the C and d
arrays for lsqlin. However, large modifications to these arrays can result in a loss of efficiency,
because the previous solution can be far away from the new solution.

The performance improvement of a warm start ultimately depends on problem geometry. For many
problems, performance benefits improve as fewer changes are made between problems.

Use Warm Start in Code Generation with Static Memory Management
In addition to the guidelines for a MATLAB warm start, follow these guidelines for code generation
with static memory management:

• Set the 'MaxLinearEqualities' and 'MaxLinearInequalities' name-value arguments in
optimwarmstart.

• Use coder.varsize macros on all solver inputs that are matrices (lb, Aeq, and so on).

 Warm Start Best Practices

10-71

See Also
lsqlin | quadprog | optimwarmstart | coder.varsize

More About
• “Warm Start quadprog” on page 10-68

10 Quadratic Programming

10-72

Convert Quadratic Constraints to Second-Order Cone
Constraints

This example shows how to convert a quadratic constraint to the second-order cone constraint form.
A quadratic constraint has the form

xTQx + 2qTx + c ≤ 0 .

Second-order cone programming has constraints of the form

Asc(i) ⋅ x− bsc(i) ≤ dsc(i) ⋅ x− γ(i).

The matrix Q must be symmetric and positive semidefinite for you to convert quadratic constraints.
Let S be the square root of Q, meaning Q = S * S = ST * S. You can compute S using sqrtm. Suppose
that there is a solution b to the equation STb = – q, which is always true when Q is positive definite.
Compute b using b = -S\q.

xTQx + 2qTx + c = xTSTSx− 2 STb Tx + c

= Sx− b T Sx− b − bTb + c

= Sx− b 2 + c− bTb .

Therefore, if bTb > c, then the quadratic constraint is equivalent to the second-order cone constraint
with

• Asc = S
• bsc = b
• dsc = 0
• γ = − bTb− c

Numeric Example

Specify a five-element vector f representing the objective function f Tx.

f = [1;-2;3;-4;5];

Set the quadratic constraint matrix Q as a 5-by-5 random positive definite matrix. Set q as a random
5-element vector, and take the additive constant c = − 1.

rng default % For reproducibility
Q = randn(5) + 3*eye(5);
Q = (Q + Q')/2; % Make Q symmetric
q = randn(5,1);
c = -1;

To create the inputs for coneprog, create the matrix S as the square root of Q.

S = sqrtm(Q);

Create the remaining inputs for the second-order cone constraint as specified in the first part of this
example.

 Convert Quadratic Constraints to Second-Order Cone Constraints

10-73

b = -S\q;
d = zeros(size(b));
gamma = -sqrt(b'*b-c);
sc = secondordercone(S,b,d,gamma);

Call coneprog to solve the problem.

[x,fval] = coneprog(f,sc)

Optimal solution found.

x = 5×1

 -0.7194
 0.2669
 -0.6309
 0.2543
 -0.0904

fval = -4.6148

Compare this result to the result returned by solving this same problem using fmincon. Write the
quadratic constraint as described in “Anonymous Nonlinear Constraint Functions” on page 2-38.

x0 = randn(5,1); % Initial point for fmincon
nlc = @(x)x'*Q*x + 2*q'*x + c;
nlcon = @(x)deal(nlc(x),[]);
[xfmc,fvalfmc] = fmincon(@(x)f'*x,x0,[],[],[],[],[],[],nlcon)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

xfmc = 5×1

 -0.7196
 0.2672
 -0.6312
 0.2541
 -0.0902

fvalfmc = -4.6148

The two solutions are nearly identical.

See Also
coneprog | quadprog | secondordercone

More About
• “Convert Quadratic Programming Problem to Second-Order Cone Program” on page 10-75
• “Minimize Energy of Piecewise Linear Mass-Spring System Using Cone Programming, Solver-

Based” on page 10-81

10 Quadratic Programming

10-74

Convert Quadratic Programming Problem to Second-Order
Cone Program

This example show how to convert a positive semidefinite quadratic programming problem to the
second-order cone form used by the coneprog solver. A quadratic programming problem has the
form

min
x

1
2xTHx + f Tx,

possibly subject to bounds and linear constraints. coneprog solves problems in the form

min
x

fsc
T x

such that

‖Ascx− bsc‖ ≤ dsc
T x− γ,

possibly subject to bounds and linear constraints.

To convert a quadratic program to coneprog form, first calculate the matrix square root of the
matrix H. Assuming that H is a symmetric positive semidefinite matrix, the command

A = sqrtm(H);

returns a positive semidefinite matrix A such that A'*A = A*A = H. Therefore,

xTHx = xTATAx = (Ax)TAx = ‖Ax‖2.

Modify the form of the quadratic program as follows:

min
x

1
2xTHx + f Tx = − 1

2 + min
x, t

(t + 1/2) + f Tx

where t satisfies the constraint

t + 1/2 ≥ 1
2xTHx.

Extend the control variable x to u, which includes t as its last element:

u =
x
t

.

Extend the second-order cone constraint matrices and vectors as follows:

Asc =
A 0
0 1

bsc =
0
⋮
0

 Convert Quadratic Programming Problem to Second-Order Cone Program

10-75

dsc =

0
⋮
0
1

γ = − 1.

Extend the coefficient vector f as well:

fsc =
f
1

.

In terms of the new variables, the quadratic programming problem becomes

min
u

1
2uTAsc

2 u + fsc
T u = − 1/2 + min

u
1/2 + fsc

T u

where

u(end) + 1/2 ≥ 1
2uTAscu.

This quadratic constraint becomes a cone constraint through the following calculation, which uses
the earlier definitions of Asc, dsc, and γ:

1
2‖Hx‖2 = 1

2uTAsc
2 u ≤ t + 1

2

‖Hx‖2 ≤ 2t + 1

‖Hx‖2 + t2 ≤ t2 + 2t + 1 = (t + 1)2

‖Hx‖2 + t2 ≤ | t + 1| = ± (t + 1)

But ‖Hx‖2 + t2 = ‖Ascu‖2. So, recalling that γ = − 1 and the definition of dsc, the inequality becomes

‖Ascu‖ ≤ ± (t − γ)

‖Ascu‖ ≤ ± (dsc
T u− γ).

The quadratic program has the same solution as the corresponding cone program. The only
difference is the added term −1/2 in the cone program.

Numerical Example

The quadprog documentation gives this example.

H = [1,-1,1
 -1,2,-2
 1,-2,4];
f = [-7;-12;-15];
lb = zeros(3,1);
ub = ones(size(lb));

10 Quadratic Programming

10-76

Aineq = [1,1,1];
bineq = 3;
[xqp fqp] = quadprog(H,f,Aineq,bineq,[],[],lb,ub)

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

xqp = 3×1

 1.0000
 1.0000
 1.0000

fqp = -32.5000

Referring to the description at the beginning of this example, specify the second-order cone
constraint variables, and then call the coneprog function.

Asc = sqrtm(H);
Asc((end+1),(end+1)) = 1;
d = [zeros(size(f(:)));1];
gamma = -1;
b = zeros(size(d));
qp = secondordercone(Asc,b,d,gamma);
Aq = Aineq;
Aq(:,(end+1)) = 0;
lb(end+1) = -Inf;
ub(end+1) = Inf;
[u,fval,eflag] = coneprog([f(:);1],qp,Aq,bineq,[],[],lb,ub)

Optimal solution found.

u = 4×1

 1.0000
 1.0000
 1.0000
 1.0000

fval = -33.0000

eflag = 1

The first three elements of the cone solution u are equal to the elements of the quadratic
programming solution xqp, to display precision:

disp([xqp,u(1:(end-1))])

 1.0000 1.0000
 1.0000 1.0000
 1.0000 1.0000

The returned quadratic function value fqp is the returned cone value minus 1/2 when 2t + 1 is
positive, or plus 1/2 when 2t + 1 is negative.

 Convert Quadratic Programming Problem to Second-Order Cone Program

10-77

disp([fqp-sign(2*u(end)+1)*1/2 fval])

 -33.0000 -33.0000

See Also
quadprog | coneprog | secondordercone

More About
• “Convert Quadratic Constraints to Second-Order Cone Constraints” on page 10-73
• “Minimize Energy of Piecewise Linear Mass-Spring System Using Cone Programming, Solver-

Based” on page 10-81

10 Quadratic Programming

10-78

Write Constraints for Problem-Based Cone Programming
To ensure that solve or prob2struct calls coneprog for a second-order cone problem, specify the
second-order cone constraints as one of two types:

• norm(linear expression) + constant <= linear expression
• sqrt(sum of squares) + constant <= linear expression

Here, linear expression means a linear expression in the optimization variables. sum of
squares means a sum of explicit squares of optimization variables, such as sum(x.^2). The
objective function for coneprog must be linear in the optimization variables. For more information
on the sum of squares form, see “Write Objective Function for Problem-Based Least Squares” on page
11-96.

solve and prob2struct also call coneprog when the constraint type has an equivalent form to the
two listed:

• linear expression >= sqrt(sum of squares) + constant
• linear expression >= norm(linear expression) + constant
• const*norm(linear expression) + constant <= linear expression provided const

> 0
• (sum of squares)^0.5 instead of sqrt(sum of squares)

For example, coneprog is the default solver for each of the following two equivalent problem
formulations when you call solve.

x = optimvar('x',3,...
 'LowerBound',[-Inf,-Inf,0],...
 'UpperBound',[Inf,Inf,2]);
A = diag([1,1/2,0]);
d = [0;0;1];
f = [-1,-2,0];
probnorm = optimproblem('Objective',f*x);
probsumsq = optimproblem('Objective',f*x);

consnorm = norm(A*x) <= d'*x;
probnorm.Constraints.consnorm = consnorm;
conssumsq = sqrt(sum((A*x).^2)) <= dot(d,x);
probsumsq.Constraints.conssumsq = conssumsq;

optnorm = optimoptions(probnorm);
class(optnorm)

ans =

 'optim.options.ConeprogOptions

optsumsq = optimoptions(probsumsq);
class(optsumsq)

ans =

 'optim.options.ConeprogOptions

If you write the second-order constraints differently, such as the mathematically equivalent
sqrt(x'*x), solve calls a different solver, such as fmincon. In this case, you need to supply solve

 Write Constraints for Problem-Based Cone Programming

10-79

with an initial point, and the solution process can be different (and often is less efficient), as in the
following example.

x = optimvar('x',3,...
 'LowerBound',[-Inf,-Inf,0],...
 'UpperBound',[Inf,Inf,2]);
A = diag([1,1/2,0]);
d = [0;0;1];
f = [-1,-2,0];
prob = optimproblem('Objective',f*x);
cons = sqrt(x'*A'*A*x) <= d'*x;
prob.Constraints.cons = cons;
opt = optimoptions(prob);
class(opt)

ans =

 'optim.options.Fmincon'

See Also
coneprog | solve | prob2struct

Related Examples
• “Minimize Energy of Piecewise Linear Mass-Spring System Using Cone Programming, Problem-

Based” on page 10-86
• “Write Objective Function for Problem-Based Least Squares” on page 11-96

10 Quadratic Programming

10-80

Minimize Energy of Piecewise Linear Mass-Spring System
Using Cone Programming, Solver-Based

This example shows how to find the equilibrium position of a mass-spring system hanging from two
anchor points. The springs have piecewise linear tensile forces. The system consists of n masses in
two dimensions. Mass i is connected to springs i and i + 1. Springs 1 and n + 1 are also connected to
separate anchor points. In this case, the zero-force length of spring i is a positive length l(i), and the
spring generates force k(i)q when stretched to length q + l(i). The problem is to find the minimum
potential energy configuration of the masses, where potential energy comes from the force of gravity
and from the stretching of the nonlinear springs. The equilibrium occurs at the minimum energy
configuration.

This illustration shows five springs and four masses suspended from two anchor points.

The potential energy of a mass m at height h is mgh, where g is the gravitational constant on Earth.
Also, the potential energy of an ideal linear spring with spring constant k stretched to length q is
kq2/2. The current model is that the spring is not ideal, but has a nonzero resting length l.

The mathematical basis of this example comes from Lobo, Vandenberg, Boyd, and Lebret [1] on page
10-0 . For a problem-based version of this example, see “Minimize Energy of Piecewise Linear
Mass-Spring System Using Cone Programming, Problem-Based” on page 10-86.

Mathematical Formulation

The location of mass i is x(i), with horizontal coordinate x1(i) and vertical coordinate x2(i). Mass i has
potential energy due to gravity of gm(i)x2(i). The potential energy in spring i is k(i)(d(i)− l(i))2/2,
where d(i) is the length of the spring between mass i and mass i− 1. Take anchor point 1 as the
position of mass 0, and anchor point 2 as the position of mass n + 1. The preceding energy calculation
shows that the potential energy of spring i is

Energy(i) = k(i) ‖x(i)− x(i− 1)‖− l(i) 2

2 .

Reformulating this potential energy problem as a second-order cone problem requires the
introduction of some new variables, as described in Lobo [1] on page 10-0 . Create variables t(i)
equal to the square root of the term Energy(i).

 Minimize Energy of Piecewise Linear Mass-Spring System Using Cone Programming, Solver-Based

10-81

t(i) = k(i) ‖x(i)− x(i− 1)‖− l(i) 2

2 .

Let e be the unit column vector 0
1 . Then x2(i) = eTx(i). The problem becomes

min
x, t
∑
i

gm(i)eTx(i) + ‖t‖2 . (1)

Now consider t as a free vector variable, not given by the previous equation for t(i). Incorporate the
relationship between x(i) and t(i) in the new set of cone constraints

‖x(i)− x(i− 1)‖− l(i) ≤ 2
k(i) t(i) . (2)

The objective function is not yet linear in its variables, as required for coneprog. Introduce a new
scalar variable y. Notice that the inequality ‖t‖2 ≤ y is equivalent to the inequality

2t
1− y ≤ 1 + y. (3)

Now the problem is to minimize

min
x, t, y

∑
i

gm(i)eTx(i) + y (4)

subject to the cone constraints on x(i) and t(i) listed in (2) and the additional cone constraint (3).
Cone constraint (3) ensures that ‖t‖2 ≤ y. Therefore, problem (4) is equivalent to problem (1).

The objective function and cone constraints in problem (4) are suitable for solution with coneprog.

MATLAB® Formulation

Define six spring constants k, six length constants l, and five masses m.

k = 40*(1:6);
l = [1 1/2 1 2 1 1/2];
m = [2 1 3 2 1];

Define the approximate gravitational constant on Earth g.

g = 9.807;

The variables for optimization are the ten components of the x vectors, the six components of the t
vector, and the y variable. Let v be the vector containing all these variables.

• [v(1),v(2)] corresponds to the 2-D variable x(1).
• [v(3),v(4)] corresponds to the 2-D variable x(2).
• [v(5),v(6)] corresponds to the 2-D variable x(3).
• [v(7),v(8)] corresponds to the 2-D variable x(4).
• [v(9),v(10)] corresponds to the 2-D variable x(5).
• [v(11):v(16)] corresponds to the 6-D vector t.

10 Quadratic Programming

10-82

• v(17) corresponds to the scalar variable y.

Using these variables, create the corresponding objective function vector f.

f = zeros(size(m));
f = [f;g*m];
f = f(:);
f = [f;zeros(length(k)+1,1)];
f(end) = 1;

Create the cone constraints corresponding to the springs between the masses (2)

‖x(i)− x(i− 1)‖− l(i) ≤ 2
k(i) t(i).

The coneprog solver uses cone constraints for a variable vector v in the form

‖Asc ⋅ v− bsc‖ ≤ dsc
T v− γ.

In the following code, the Asc matrix represents the term ‖x(i)− x(i− 1)‖, with bsc = [0;0]. The
cone variable dsc = 2/k(i) and the corresponding gamma = −l(i) .

d = zeros(1,length(f));
Asc = d;
Asc([1 3]) = [1 -1];
A2 = circshift(Asc,1);
Asc = [Asc;A2];
ml = length(m);
dbase = 2*ml;
bsc = [0;0];
for i = 2:ml
 gamma = -l(i);
 dsc = d;
 dsc(dbase + i) = sqrt(2/k(i));
 conecons(i) = secondordercone(Asc,bsc,dsc,gamma);
 Asc = circshift(Asc,2,2);
end

Create the cone constraints corresponding to the springs between the end masses and the anchor
points by using the anchor points for the locations of the end masses, as in the preceding code.

x0 = [0;5];
xn = [5;4];

Asc = zeros(size(Asc));
Asc(1,(dbase-1)) = 1;
Asc(2,dbase) = 1;
bsc = xn;
gamma = -l(ml);
dsc = d;
dsc(dbase + ml) = sqrt(2/k(ml));
conecons(ml + 1) = secondordercone(Asc,bsc,dsc,gamma);

Asc = zeros(size(Asc));
Asc(1,1) = 1;
Asc(2,2) = 1;
bsc = x0;

 Minimize Energy of Piecewise Linear Mass-Spring System Using Cone Programming, Solver-Based

10-83

gamma = -l(1);
dsc = d;
dsc(dbase + 1) = sqrt(2/k(1));
conecons(1) = secondordercone(Asc,bsc,dsc,gamma);

Create the cone constraint (3) corresponding to the y variable

2t
1− y ≤ 1 + y

by creating the matrix Asc which, when multiplied by the v vector, gives the vector 2t
−y . The bsc

vector corresponds to the constant 1 in the term 1− y. The dsc vector, when multiplied by v, returns
y. And gamma = −1.

Asc = 2*eye(length(f));
Asc(1:dbase,:) = [];
Asc(end,end) = -1;
bsc = zeros(size(Asc,1),1);
bsc(end) = -1;
dsc = d;
dsc(end) = 1;
gamma = -1;
conecons(ml+2) = secondordercone(Asc,bsc,dsc,gamma);

Finally, create lower bounds corresponding to the t and y variables.

lb = -inf(size(f));
lb(dbase+1:end) = 0;

Solve Problem and Plot Solution

The problem formulation is complete. Solve the problem by calling coneprog.

[v,fval,exitflag,output] = coneprog(f,conecons,[],[],[],[],lb);

Optimal solution found.

Plot the solution points and the anchors.

pp = v(1:2*ml);
pp = reshape(pp,2,[]);
pp = pp';
plot(pp(:,1),pp(:,2),'ro')
hold on
xx = [x0,xn]';
plot(xx(:,1),xx(:,2),'ks')
xlim([x0(1)-0.5,xn(1)+0.5])
ylim([min(pp(:,2))-0.5,max(x0(2),xn(2))+0.5])
xxx = [x0';pp;xn'];
plot(xxx(:,1),xxx(:,2),'b--')
legend('Calculated points','Anchor points','Springs','Location',"best")
hold off

10 Quadratic Programming

10-84

You can change the values of the parameters m, l, and k to see how they affect the solution. You can
also change the number of masses; the code takes the number of masses from the data you supply.

References

[1] Lobo, Miguel Sousa, Lieven Vandenberghe, Stephen Boyd, and Hervé Lebret. “Applications of
Second-Order Cone Programming.” Linear Algebra and Its Applications 284, no. 1–3 (November
1998): 193–228. https://doi.org/10.1016/S0024-3795(98)10032-0.

See Also
coneprog | secondordercone

More About
• “Convert Quadratic Constraints to Second-Order Cone Constraints” on page 10-73
• “Convert Quadratic Programming Problem to Second-Order Cone Program” on page 10-75

 Minimize Energy of Piecewise Linear Mass-Spring System Using Cone Programming, Solver-Based

10-85

Minimize Energy of Piecewise Linear Mass-Spring System
Using Cone Programming, Problem-Based

This example shows how to use the problem-based approach to find the equilibrium position of a
mass-spring system hanging from two anchor points. The springs have piecewise linear tensile forces.
The system consists of n masses in two dimensions. Mass i is connected to springs i and i + 1. Springs
1 and n + 1 are also connected to separate anchor points. In this case, the zero-force length of spring
i is a positive length l(i), and the spring generates force k(i)q when stretched to length q + l(i). The
problem is to find the minimum potential energy configuration of the masses, where potential energy
comes from the force of gravity and from stretching the nonlinear springs. The equilibrium occurs at
the minimum energy configuration.

This illustration shows five springs and four masses suspended from two anchor points.

The potential energy of a mass m at height h is mgh, where g is the gravitational constant on Earth.
Also, the potential energy of an ideal linear spring with the spring constant k stretched to length q is
kq2/2. In the current model, the spring is not ideal, but it has a nonzero resting length l.

The mathematical basis of this example comes from Lobo, Vandenberghe, Boyd, and Lebret [1] on
page 10-0 . For a solver-based version of this example, see “Minimize Energy of Piecewise Linear
Mass-Spring System Using Cone Programming, Solver-Based” on page 10-81.

Mathematical Formulation

The location of mass i is x(i), with the horizontal coordinate x1(i) and vertical coordinate x2(i). Mass i
has potential energy due to gravity of gm(i)x2(i). The potential energy in spring i is k(i)(d(i)− l(i))2/2,
where d(i) is the length of the spring between mass i and mass i− 1. Take anchor point 1 as the
position of mass 0, and anchor point 2 as the position of mass n + 1. The preceding energy calculation
shows that the potential energy of spring i is

Energy(i) = k(i) ‖x(i)− x(i− 1)‖− l(i) 2

2 .

Reformulating this potential energy problem as a second-order cone programming problem requires
the introduction of some new variables, as described in Lobo [1] on page 10-0 . Create variables t(i)
equal to the square root of the term Energy(i).

10 Quadratic Programming

10-86

t(i) = k(i) ‖x(i)− x(i− 1)‖− l(i) 2

2 .

Let e be the unit column vector 0
1 . Then x2(i) = eTx(i). The problem becomes

min
x, t
∑
i

gm(i)eTx(i) + ‖t‖2 . (1)

Now consider t as a free vector variable, not given by the previous equation for t(i). Incorporate the
relationship between x(i) and t(i) in the new set of cone constraints

‖x(i)− x(i− 1)‖− l(i) ≤ 2
k(i) t(i) . (2)

The objective function is not yet linear in its variables, as required for coneprog. Introduce a new
scalar variable y. Notice that the inequality ‖t‖2 ≤ y is equivalent to the inequality

2t
1− y ≤ 1 + y. (3)

Now the problem is to minimize

min
x, t, y

∑
i

gm(i)eTx(i) + y (4)

subject to the cone constraints on x(i) and t(i) listed in (2) and the additional cone constraint (3).
Cone constraint (3) ensures that ‖t‖2 ≤ y. Therefore, problem (4) is equivalent to problem (1).

The objective function and cone constraints in problem (4) are suitable for solution with coneprog.

MATLAB® Formulation

Define six spring constants k, six length constants l, and five masses m.

k = 40*(1:6);
l = [1 1/2 1 2 1 1/2];
m = [2 1 3 2 1];
g = 9.807;

Define optimization variables corresponding to the mathematical problem variables. For simplicity,
set the anchor points as two virtual mass points x(1,:) and x(end,:). This formulation allows each
spring to stretch between two masses.

nmass = length(m) + 2;
% k and l have nmass-1 elements
% m has nmass - 2 elements
x = optimvar('x',[nmass,2]);
t = optimvar('t',nmass-1,'LowerBound',0);
y = optimvar('y','LowerBound',0);

Create an optimization problem and set the objective function to the expression in (4).

 Minimize Energy of Piecewise Linear Mass-Spring System Using Cone Programming, Problem-Based

10-87

prob = optimproblem;
obj = dot(x(2:(end-1),2),m)*g + y;
prob.Objective = obj;

Create the cone constraints corresponding to expression (2).

conecons = optimineq(nmass - 1);
for ii = 1:(nmass-1)
 conecons(ii) = norm(x(ii+1,:) - x(ii,:)) - l(ii) <= sqrt(2/k(ii))*t(ii);
end
prob.Constraints.conecons = conecons;

Specify the anchor points anchor0 and anchorn. Create equality constraints specifying that the two
virtual end masses are located at the anchor points.

anchor0 = [0 5];
anchorn = [5 4];
anchorcons = optimeq(2,2);
anchorcons(1,:) = x(1,:) == anchor0;
anchorcons(2,:) = x(end,:) == anchorn;
prob.Constraints.anchorcons = anchorcons;

Create the cone constraint corresponding to expression (3).

ycone = norm([2*t;(1-y)]) <= 1 + y;
prob.Constraints.ycone = ycone;

Solve Problem

The problem formulation is complete. Solve the problem by calling solve.

[sol,fval,eflag,output] = solve(prob);

Solving problem using coneprog.
Optimal solution found.

Plot the solution points and the anchors.

plot(sol.x(2:(nmass-1),1),sol.x(2:(nmass-1),2),'ro')
hold on
plot([sol.x(1,1),sol.x(end,1)],[sol.x(1,2),sol.x(end,2)],'ks')
plot(sol.x(:,1),sol.x(:,2),'b--')
legend('Calculated points','Anchor points','Springs','Location',"best")
xlim([sol.x(1,1)-0.5,sol.x(end,1)+0.5])
ylim([min(sol.x(:,2))-0.5,max(sol.x(:,2))+0.5])
hold off

10 Quadratic Programming

10-88

You can change the values of the parameters m, l, and k to see how they affect the solution. You can
also change the number of masses; the code takes the number of masses from the data you supply.

References

[1] Lobo, Miguel Sousa, Lieven Vandenberghe, Stephen Boyd, and Hervé Lebret. “Applications of
Second-Order Cone Programming.” Linear Algebra and Its Applications 284, no. 1–3 (November
1998): 193–228. https://doi.org/10.1016/S0024-3795(98)10032-0.

See Also
coneprog

Related Examples
• “Minimize Energy of Piecewise Linear Mass-Spring System Using Cone Programming, Solver-

Based” on page 10-81
• “Problem-Based Optimization Setup”
• “Write Constraints for Problem-Based Cone Programming” on page 10-79

 Minimize Energy of Piecewise Linear Mass-Spring System Using Cone Programming, Problem-Based

10-89

Compare Speeds of coneprog Algorithms
This example shows the solution times for coneprog with various problem sizes and all algorithms of
the LinearSolver option. The problem is to find the distance of a point to an ellipsoid where the
point is in n dimensions and the ellipsoid is represented by a cone constraint with m rows for the
constraint matrix. Choose (n,m) = i*(100,20) for i from 1 to 10. The define_problem helper
function at the end of this example on page 10-0 creates the problem for specified values of m, n,
and the seed for the random number generator. The function creates pseudorandom cones with 10
entries of 1 in each matrix row and at least two entries of 1 in each column, and ensures that the first
matrix column is a (dense) column of 1s.

Prepare Problem Data

Set the parameters for the problem generation function.

n = 100;
m = 20;
seed = 0;

Set the experiment to run for ten problem sizes.

numExper = 10;

Create the complete list of LinearSolver option values.

linearSolvers = {'auto','augmented','normal','schur','prodchol'};

For this data, the 'auto' setting causes coneprog to use the 'prodchol' linear solver, so you
obtain essentially the same results for those two values.

Create structures to hold the resulting timing data and the number of iterations each run takes.

time = struct();
s = " ";
time.probsize = repmat(s,numExper,1);
% Initialize time struct to zeros.
for solver_i = linearSolvers
 time.(solver_i{1}) = zeros(numExper, 1);
end

iter = struct();
iter.probsize = repmat(s,numExper,1);
for solver_i = linearSolvers
 iter.(solver_i{1}) = zeros(numExper, 1);
end

Warm Up Solver

To obtain meaningful timing comparisons, run solve (which calls coneprog) a few times without
timing the results. This "warm-up" prepares the solver to use data efficiently, and prepopulates the
internal just-in-time compiler.

[prob, x0] = define_problem(m, n, seed);
options = optimoptions('coneprog','Display','off');
for i = 1 : 4
 sol = solve(prob,x0,'options',options);
end

10 Quadratic Programming

10-90

Run Solver

Run the solver on all the problems while recording the solution times and the number of iterations
the solver takes.

for i = 1:numExper
 % Generate problems of increasing size.
 [prob, x0] = define_problem(m*i, n*i, seed);
 time.probsize(i) = num2str(m*i)+"x"+num2str(n*i);
 iter.probsize(i) = num2str(m*i)+"x"+num2str(n*i);
 % Solve the generated problem for each algorithm and measure time.
 for solver_i = linearSolvers
 options.LinearSolver = solver_i{1};
 tic
 [~,~,~,output] = solve(prob,x0,'options',options);
 time.(solver_i{1})(i) = toc;
 iter.(solver_i{1})(i) = output.iterations;
 end
end

Display Results

Display the timing results. The probsize column indicates the problem size as "m x n", where m is
the number of cone constraints and n is the number of variables.

timetable = struct2table(time)

timetable=10×6 table
 probsize auto augmented normal schur prodchol
 __________ ________ _________ ________ ________ ________

 "20x100" 0.020335 0.042185 0.022258 0.018266 0.019167
 "40x200" 0.028701 0.21417 0.063392 0.01956 0.030663
 "60x300" 0.026849 0.38047 0.11627 0.02042 0.027778
 "80x400" 0.032513 0.65735 0.23975 0.023377 0.034159
 "100x500" 0.040358 1.2081 0.42095 0.026024 0.038788
 "120x600" 0.089219 2.8035 0.92355 0.033922 0.0909
 "140x700" 0.098881 7.4664 2.1049 0.046021 0.10043
 "160x800" 0.11053 8.7302 2.908 0.054712 0.11306
 "180x900" 0.11439 10.485 3.5668 0.056406 0.11708
 "200x1000" 0.099195 6.7833 3.6698 0.053792 0.097791

The shortest times appear in the auto, schur, and prodchol columns. The auto and prodchol
algorithms are identical for the problems, so any timing differences are due to random effects. The
longest times appear in the augmented column, while the normal column times are intermediate.

Are the differences in the timing results due to differences in speed for each iteration or due to the
number of iterations for each solver? Display the corresponding table of iteration counts.

itertable = struct2table(iter)

itertable=10×6 table
 probsize auto augmented normal schur prodchol
 __________ ____ _________ ______ _____ ________

 "20x100" 8 8 8 8 8
 "40x200" 11 11 11 11 11

 Compare Speeds of coneprog Algorithms

10-91

 "60x300" 8 8 8 8 8
 "80x400" 8 8 8 8 8
 "100x500" 8 8 8 8 8
 "120x600" 19 11 11 11 19
 "140x700" 17 18 17 15 17
 "160x800" 16 16 16 16 16
 "180x900" 14 14 14 13 14
 "200x1000" 10 10 10 10 10

For this problem, the number of iterations is not clearly correlated to the problem size, which is a
typical characteristic of the interior-point algorithm used by coneprog. The number of iterations is
nearly the same in each row for all algorithms. The schur and prodchol iterations are faster for this
problem than those of the other algorithms.

Helper Function

The following code creates the define_problem helper function.

function [prob, x0] = define_problem(m,n,seed)
%%% Generate the following optimization problem
%%%
%%% min t
%%% s.t.
%%% || Ax - b || <= gamma
%%% || x - xbar || <= t
%%%
%%% which finds the closest point of a given ellipsoid (||Ax-b||<= gamma)
%%% to a given input point xbar.
%%%

rng(seed);

% The targeted total number of nonzeros in matrix A is
% 10 nonzeros in each row
% plus 2 nonzeros in each column
% plus a dense first column.
numNonZeros = 10*m + 2*n + m;
A = spalloc(m,n,numNonZeros);

% For each row generate 10 nonzeros.
for i = 1:m
 p = randperm(n,10);
 A(i,p) = 1;
end

% For each column generate 2 nonzeros.
for j = 2:n
 p = randperm(m,2);
 A(p,j) = 1;
end

% The first column is dense.
A(:,1) = 1;

b = ones(m, 1);
gamma = 10;

10 Quadratic Programming

10-92

% Find a point outside of the ellipsoid.
xbar = randi([-10,10],n,1);
while norm(A*xbar - b) <= gamma
 xbar = xbar + randi([-10,10],n,1);
end

% Define the cone problem.
prob = optimproblem('Description', 'Minimize Distance to Ellipsoid');
x = optimvar('x',n);
t = optimvar('t');

prob.Objective = t;
prob.Constraints.soc1 = norm(x - xbar) <= t;
prob.Constraints.soc2 = norm(A*x - b) <= gamma;

x0.x = sparse(n,1);
x0.t = 0;

end

See Also
coneprog

Related Examples
• “Quadratic Programming and Cone Programming”
• “Second-Order Cone Programming Algorithm” on page 10-16

 Compare Speeds of coneprog Algorithms

10-93

Discretized Optimal Trajectory, Problem-Based
This example shows how to solve a discretized optimal trajectory problem using the problem-based
approach. The trajectory has constant gravity, limits on the applied force, and no air resistance. The
solution process is to solve for the optimal trajectory over a fixed time T, and use that solution to find
the optimal T, meaning the time that minimizes the cost. The final section shows how to include air
resistance.

Compared to a nondiscretized optimization, such as the example “Fit ODE, Problem-Based” on page
11-78, the discretized version is not as accurate at solving an ordinary differential equation (ODE).
However, the discretized version is not affected by noise in the variable-step ODE solver, as described
in “Optimizing a Simulation or Ordinary Differential Equation” on page 4-26. The discretized version
can also be easier to customize, and is straightforward to model. Finally, the discretized version can
take advantage of automatic differentiation in the optimization process; see “Effect of Automatic
Differentiation in Problem-Based Optimization” on page 6-23.

Problem Description

The problem is to move an object from position p0 at time 0 to position pF at time T using a controlled
jet. Represent position as a vector p(t), velocity as a vector v(t), and applied acceleration as a vector
a(t). In continuous time, the equations of motion, including the force of gravity, are

dp
dt = v(t)

dv
dt = a(t) + g * [0, 0, − 1].

Solve the problem by discretizing time. Divide time into N equal intervals of size t = T /N. The
position at time step i is a vector p(i), the velocity is a vector v(i), and the applied acceleration is a
vector a(i). You can make a set of equations that represent an ODE model fairly accurately. Some
approximate equations of motion are:

v(i) = v(i− 1) + t a(i− 1) + g

p(i) = p(i− 1) + t v(i− 1) + v(i)
2

= p(i− 1) + tv(i− 1) + t2a(i− 1) + g
2 .

The preceding equations integrate velocity using a two-point (trapezoidal rule) approximation, and
integrate acceleration using a one-point (Euler) approximation. This integration scheme gives simple
equations: the position and velocity at step i depend only on the position, velocity, and acceleration at
step i− 1. The equations are also easy to modify for air resistance.

The boundary conditions are p(1) = p0, p(N) = pF, and v(1) = v(N) = [0, 0, 0]. Set the initial and final
positions.

p0 = [0 0 0];
pF = [5 10 3];

The cost of using the jet to create force a for time t is ‖a‖t. The total cost is the sum of the norms of
the accelerations times t:

10 Quadratic Programming

10-94

Cost = ∑
i = 1

N − 1
‖a(i)‖t .

To convert this cost to a linear cost in optimization variables, create variables s(i) and create
associated second-order cone constraints:

Cost = ∑
i = 1

N − 1
s(i)t

‖a(i)‖ ≤ s(i) .

Impose additional constraints that the norm of the acceleration is bounded by a constant Amax for all
time steps:

‖a(i)‖ ≤ Amax .

These constraints are also second-order cone constraints. Because the constraints are linear or
second-order cone constraints and the objective function is linear, solve calls the coneprog solver
to solve the problem.

The following code creates an optimization problem for a fixed time T. The code incorporates the
equations of motion as problem constraints. You can access the setupproblem.m function file by
running this example using the live script. The function includes an air resistance argument; set air
= true for a model with air resistance. For the definition of air resistance, see the section Include
Air Resistance on page 10-0 .

type setupproblem

function trajectoryprob = setupproblem(T,air)
 if nargin == 1
 air = false;
 end
 N = 50;
 g = [0 0 -9.81];
 p0 = [0 0 0];
 pF = [5 10 3];
 Amax = 25;
 t = T/N;
 p = optimvar("p",N,3);
 v = optimvar("v",N,3);
 a = optimvar("a",N-1,3,"LowerBound",-Amax,"UpperBound",Amax);
 trajectoryprob = optimproblem;
 s = optimvar("s",N-1,"LowerBound",0,"UpperBound",3*Amax);
 trajectoryprob.Objective = sum(s)*t;
 scons = optimconstr(N-1);
 for i = 1:(N-1)
 scons(i) = norm(a(i,:)) <= s(i);
 end
 acons = optimconstr(N-1);
 for i = 1:(N-1)
 acons(i) = norm(a(i,:)) <= Amax;
 end
 vcons = optimconstr(N+1,3);
 vcons(1,:) = v(1,:) == [0 0 0];
 if air
 vcons(2:N,:) = v(2:N,:) == v(1:(N-1),:)*exp(-t) + t*(a(1:(N-1),:) + repmat(g,N-1,1));

 Discretized Optimal Trajectory, Problem-Based

10-95

 else
 vcons(2:N,:) = v(2:N,:) == v(1:(N-1),:) + t*(a(1:(N-1),:) + repmat(g,N-1,1));
 end
 vcons(N+1,:) = v(N,:) == [0 0 0];
 pcons = optimconstr(N+1,3);
 pcons(1,:) = p(1,:) == p0;
 if air
 pcons(2:N,:) = p(2:N,:) == p(1:(N-1),:) + t*(1+exp(-t))/2*v(1:(N-1),:) + t^2/2*(a(1:(N-1),:) + repmat(g,N-1,1));
 else
 pcons(2:N,:) = p(2:N,:) == p(1:(N-1),:) + t*v(1:(N-1),:) + t^2/2*(a(1:(N-1),:) + repmat(g,N-1,1));
 end
 pcons((N+1),:) = p(N,:) == pF;
 trajectoryprob.Constraints.acons = acons;
 trajectoryprob.Constraints.scons = scons;
 trajectoryprob.Constraints.vcons = vcons;
 trajectoryprob.Constraints.pcons = pcons;
end

Solve Problem for T = 20

Create and solve a trajectory problem for time T = 20.

trajprob = setupproblem(20);
[sol,fval,eflag,output] = solve(trajprob)

Solving problem using coneprog.
Optimal solution found.

sol = struct with fields:
 a: [49x3 double]
 p: [50x3 double]
 s: [49x1 double]
 v: [50x3 double]

fval = 192.2989

eflag =
 OptimalSolution

output = struct with fields:
 iterations: 8
 primalfeasibility: 3.2932e-07
 dualfeasibility: 2.9508e-07
 dualitygap: 1.7343e-08
 algorithm: 'interior-point'
 linearsolver: 'prodchol'
 message: 'Optimal solution found.'
 solver: 'coneprog'

Plot the trajectory and norm of the acceleration by calling the plottrajandaccel helper function
shown at the end of this example on page 10-0 .

plottrajandaccel(sol,p0,pF)

10 Quadratic Programming

10-96

 Discretized Optimal Trajectory, Problem-Based

10-97

The acceleration is near that of gravity (9.81) for all times except those near the end, when the
acceleration dips a bit.

Find Minimal Cost

What time T causes the cost to be minimal? For too small a time, such as T = 1, the problem is
infeasible, meaning it has no solution.

myprob = setupproblem(1);
[solm,fvalm,eflagm,outputm] = solve(myprob);

Solving problem using coneprog.
Problem is infeasible.

Time 1.5 gives a feasible problem.

myprob = setupproblem(1.5);
[solm,fvalm,eflagm,outputm] = solve(myprob);

Solving problem using coneprog.
Optimal solution found.

The tomin helper function at the end of this example on page 10-0 sets up a problem for time T
and then calls solve to calculate the cost of the solution. Call fminbnd on tomin to find the optimal
time (lowest cost possible) in the interval 1 . 5 ≤ T ≤ 10.

[Tmin,Fmin] = fminbnd(@(T)tomin(T,false),1.5,10)

10 Quadratic Programming

10-98

Tmin = 1.9507

Fmin = 24.6101

Obtain the trajectory for the optimal time Tmin.

minprob = setupproblem(Tmin);
sol = solve(minprob);

Solving problem using coneprog.
Optimal solution found.

Plot the minimizing trajectory and acceleration.

plottrajandaccel(sol,p0,pF)

 Discretized Optimal Trajectory, Problem-Based

10-99

The minimizing solution is nearly a "bang-bang" solution: the acceleration is either maximal or zero
for all but two values.

Plot Nonminimizing Trajectories

Plot the trajectories for a variety of times.

figure
hold on
options = optimoptions("coneprog","Display","none");
for i = 1:10
 T = 2*i;
 prob = setupproblem(T);
 sol = solve(prob,"Options",options);
 psol = sol.p;
 plot3(psol(:,1),psol(:,2),psol(:,3),'rx',"Color",[256-25*i 20*i 25*i]/256)
end
view([18 -10])
xlabel("x")
ylabel("y")
zlabel("z")
legend("T = 2","T = 4","T = 6","T = 8","T = 10","T = 12","T = 14","T = 16","T = 18","T = 20")
hold off

10 Quadratic Programming

10-100

The shortest time (2) has a nearly direct trajectory on this scale. The intermediate times have large
variations from a direct path. The largest time (20) also has a nearly direct path.

Include Air Resistance

Change the model dynamics to include air resistance. Linear air resistance changes the velocity by a
factor exp(− t) after time t. The equations of motion become

v(i) = v(i− 1)exp(− t) + t a(i− 1) + g

p(i) = p(i− 1) + t v(i− 1) + v(i)
2

= p(i− 1) + t 1 + exp(− t)
2 v(i− 1) + t2a(i− 1) + g

2 .

The problem formulation in the setupproblem(T,air) function for air = true has factors of
exp(-t) in both the line defining the velocity constraint and the line defining the position constraint:

vcons(2:N,:) = v(2:N,:) == v(1:(N-1),:)*exp(-t) + t*(a(1:(N-1),:) + repmat(g,N-1,1));
pcons(2:N,:) = p(2:N,:) == p(1:(N-1),:) + t*(1+exp(-t))/2*v(1:(N-1),:) + t^2/2*(a(1:(N-1),:) + repmat(g,N-1,1));

Find the optimal time for the problem with air resistance.

[Tmin2,Fmin2] = fminbnd(@(T)tomin(T,true),1.5,10)

Tmin2 = 1.9396

Fmin2 = 28.7967

 Discretized Optimal Trajectory, Problem-Based

10-101

The optimal time is only slightly lower than the time in the problem without air resistance (1.94
instead of 1.95), but the cost Fmin is about 17% higher (28.8 instead of 24.6).

compartable = table([Tmin;Tmin2],[Fmin;Fmin2],'VariableNames',["Time" "Cost"],'RowNames',["Original" "Air Resistance"])

compartable=2×2 table
 Time Cost
 ______ ______

 Original 1.9507 24.61
 Air Resistance 1.9396 28.797

Plot the trajectory and acceleration for the optimal solution with air resistance.

minprob = setupproblem(Tmin2,true);
sol = solve(minprob);

Solving problem using coneprog.
Optimal solution found.

plottrajandaccel(sol,p0,pF)

10 Quadratic Programming

10-102

With air resistance, the time of zero acceleration shifts to a later time step and is shorter. However,
the solution is still nearly "bang-bang."

Helper Functions

This code creates the plottrajandaccel helper function.

function plottrajandaccel(sol,p0,pF)
figure
psol = sol.p;
plot3(psol(:,1),psol(:,2),psol(:,3),'rx')
hold on
plot3(p0(1),p0(2),p0(3),'ks')
plot3(pF(1),pF(2),pF(3),'bo')
hold off
view([18 -10])
xlabel("x")
ylabel("y")
zlabel("z")
legend("Steps","Initial Point","Final Point")
figure
asolm = sol.a;
nasolm = sqrt(sum(asolm.^2,2));
plot(nasolm,"rx")
xlabel("Time step")
ylabel("Norm(acceleration)")
end

 Discretized Optimal Trajectory, Problem-Based

10-103

This code creates the tomin helper function.

function F = tomin(T,air)
 if nargin == 1
 air = false;
 end
 problem = setupproblem(T,air);
 opts = optimoptions("coneprog","Display","none");
 [~,F] = solve(problem,"Options",opts);
end

See Also
coneprog | solve

Related Examples
• “Optimizing a Simulation or Ordinary Differential Equation” on page 4-26
• “Fit an Ordinary Differential Equation (ODE)” on page 11-55
• “Fit ODE, Problem-Based” on page 11-78

10 Quadratic Programming

10-104

Least Squares

• “Least-Squares (Model Fitting) Algorithms” on page 11-2
• “Nonlinear Data-Fitting” on page 11-10
• “lsqnonlin with a Simulink Model” on page 11-18
• “Nonlinear Least Squares Without and Including Jacobian” on page 11-22
• “Nonnegative Linear Least Squares, Solver-Based” on page 11-25
• “Optimize Live Editor Task with lsqlin Solver” on page 11-28
• “Jacobian Multiply Function with Linear Least Squares” on page 11-31
• “Large-Scale Constrained Linear Least-Squares, Solver-Based” on page 11-35
• “Shortest Distance to a Plane” on page 11-39
• “Nonnegative Linear Least Squares, Problem-Based” on page 11-41
• “Large-Scale Constrained Linear Least-Squares, Problem-Based” on page 11-45
• “Nonlinear Curve Fitting with lsqcurvefit” on page 11-49
• “Fit a Model to Complex-Valued Data” on page 11-51
• “Fit an Ordinary Differential Equation (ODE)” on page 11-55
• “Nonlinear Least-Squares, Problem-Based” on page 11-63
• “Fit ODE, Problem-Based” on page 11-78
• “Nonlinear Data-Fitting Using Several Problem-Based Approaches” on page 11-88
• “Write Objective Function for Problem-Based Least Squares” on page 11-96
• “Code Generation in Linear Least Squares: Background” on page 11-98
• “Generate Code for lsqlin” on page 11-100
• “Code Generation in Nonlinear Least Squares: Background” on page 11-103
• “Generate Code for lsqcurvefit or lsqnonlin” on page 11-105

11

Least-Squares (Model Fitting) Algorithms
In this section...
“Least Squares Definition” on page 11-2
“Linear Least Squares: Interior-Point or Active-Set” on page 11-2
“Trust-Region-Reflective Least Squares” on page 11-3
“Levenberg-Marquardt Method” on page 11-6

Least Squares Definition
Least squares, in general, is the problem of finding a vector x that is a local minimizer to a function
that is a sum of squares, possibly subject to some constraints:

min
x

F(x) 2
2 = min

x
∑
i

Fi
2(x)

such that A·x ≤ b, Aeq·x = beq, lb ≤ x ≤ ub.

There are several Optimization Toolbox solvers available for various types of F(x) and various types of
constraints:

Solver F(x) Constraints
mldivide C·x – d None
lsqnonneg C·x – d x ≥ 0
lsqlin C·x – d Bound, linear
lsqnonlin General F(x) Bound
lsqcurvefit F(x, xdata) – ydata Bound

There are five least-squares algorithms in Optimization Toolbox solvers, in addition to the algorithms
used in mldivide:

• lsqlin interior-point
• lsqlin active-set
• Trust-region-reflective (nonlinear or linear least-squares)
• Levenberg-Marquardt (nonlinear least-squares)
• The algorithm used by lsqnonneg

All the algorithms except lsqlin active-set are large-scale; see “Large-Scale vs. Medium-Scale
Algorithms” on page 2-10. For a general survey of nonlinear least-squares methods, see Dennis [8].
Specific details on the Levenberg-Marquardt method can be found in Moré [28].

Linear Least Squares: Interior-Point or Active-Set
The lsqlin 'interior-point' algorithm uses the “interior-point-convex quadprog Algorithm” on
page 10-2, and the lsqlin 'active-set' algorithm uses the active-set quadprog algorithm. The
quadprog problem definition is to minimize a quadratic function

11 Least Squares

11-2

min
x

1
2xTHx + cTx

subject to linear constraints and bound constraints. The lsqlin function minimizes the squared 2-
norm of the vector Cx – d subject to linear constraints and bound constraints. In other words, lsqlin
minimizes

Cx− d 2
2 = Cx− d T Cx− d

= xTCT − dT Cx− d

= xTCTCx − xTCTd− dTCx + dTd

= 1
2xT 2CTC x + −2CTd Tx + dTd .

This fits into the quadprog framework by setting the H matrix to 2CTC and the c vector to (–2CTd).
(The additive term dTd has no effect on the location of the minimum.) After this reformulation of the
lsqlin problem, quadprog calculates the solution.

Note The quadprog 'interior-point-convex' algorithm has two code paths. It takes one when
the Hessian matrix H is an ordinary (full) matrix of doubles, and it takes the other when H is a sparse
matrix. For details of the sparse data type, see “Sparse Matrices”. Generally, the algorithm is faster
for large problems that have relatively few nonzero terms when you specify H as sparse. Similarly,
the algorithm is faster for small or relatively dense problems when you specify H as full.

Trust-Region-Reflective Least Squares
Trust-Region-Reflective Least Squares Algorithm

Many of the methods used in Optimization Toolbox solvers are based on trust regions, a simple yet
powerful concept in optimization.

To understand the trust-region approach to optimization, consider the unconstrained minimization
problem, minimize f(x), where the function takes vector arguments and returns scalars. Suppose you
are at a point x in n-space and you want to improve, i.e., move to a point with a lower function value.
The basic idea is to approximate f with a simpler function q, which reasonably reflects the behavior of
function f in a neighborhood N around the point x. This neighborhood is the trust region. A trial step s
is computed by minimizing (or approximately minimizing) over N. This is the trust-region subproblem,

min
s

q(s), s ∈ N . (11-1)

The current point is updated to be x + s if f(x + s) < f(x); otherwise, the current point remains
unchanged and N, the region of trust, is shrunk and the trial step computation is repeated.

The key questions in defining a specific trust-region approach to minimizing f(x) are how to choose
and compute the approximation q (defined at the current point x), how to choose and modify the trust
region N, and how accurately to solve the trust-region subproblem. This section focuses on the
unconstrained problem. Later sections discuss additional complications due to the presence of
constraints on the variables.

 Least-Squares (Model Fitting) Algorithms

11-3

In the standard trust-region method ([48]), the quadratic approximation q is defined by the first two
terms of the Taylor approximation to F at x; the neighborhood N is usually spherical or ellipsoidal in
shape. Mathematically the trust-region subproblem is typically stated

min 1
2sTHs + sTg such that Ds ≤ Δ , (11-2)

where g is the gradient of f at the current point x, H is the Hessian matrix (the symmetric matrix of
second derivatives), D is a diagonal scaling matrix, Δ is a positive scalar, and ‖ . ‖ is the 2-norm. Good
algorithms exist for solving “Equation 11-2” (see [48]); such algorithms typically involve the
computation of all eigenvalues of H and a Newton process applied to the secular equation

1
Δ −

1
s = 0.

Such algorithms provide an accurate solution to “Equation 11-2”. However, they require time
proportional to several factorizations of H. Therefore, for trust-region problems a different approach
is needed. Several approximation and heuristic strategies, based on “Equation 11-2”, have been
proposed in the literature ([42] and [50]). The approximation approach followed in Optimization
Toolbox solvers is to restrict the trust-region subproblem to a two-dimensional subspace S ([39] and
[42]). Once the subspace S has been computed, the work to solve “Equation 11-2” is trivial even if full
eigenvalue/eigenvector information is needed (since in the subspace, the problem is only two-
dimensional). The dominant work has now shifted to the determination of the subspace.

The two-dimensional subspace S is determined with the aid of a preconditioned conjugate gradient
process described below. The solver defines S as the linear space spanned by s1 and s2, where s1 is in
the direction of the gradient g, and s2 is either an approximate Newton direction, i.e., a solution to

H ⋅ s2 = − g, (11-3)

or a direction of negative curvature,

s2
T ⋅ H ⋅ s2 < 0. (11-4)

The philosophy behind this choice of S is to force global convergence (via the steepest descent
direction or negative curvature direction) and achieve fast local convergence (via the Newton step,
when it exists).

A sketch of unconstrained minimization using trust-region ideas is now easy to give:

1 Formulate the two-dimensional trust-region subproblem.
2 Solve “Equation 11-2” to determine the trial step s.
3 If f(x + s) < f(x), then x = x + s.
4 Adjust Δ.

These four steps are repeated until convergence. The trust-region dimension Δ is adjusted according
to standard rules. In particular, it is decreased if the trial step is not accepted, i.e., f(x + s) ≥ f(x). See
[46] and [49] for a discussion of this aspect.

Optimization Toolbox solvers treat a few important special cases of f with specialized functions:
nonlinear least-squares, quadratic functions, and linear least-squares. However, the underlying
algorithmic ideas are the same as for the general case. These special cases are discussed in later
sections.

11 Least Squares

11-4

Large Scale Nonlinear Least Squares

An important special case for f(x) is the nonlinear least-squares problem

min
x
∑
i

f i
2(x) = min

x
F(x) 2

2, (11-5)

where F(x) is a vector-valued function with component i of F(x) equal to fi(x). The basic method used
to solve this problem is the same as in the general case described in “Trust-Region Methods for
Nonlinear Minimization” on page 5-2. However, the structure of the nonlinear least-squares problem
is exploited to enhance efficiency. In particular, an approximate Gauss-Newton direction, i.e., a
solution s to

min Js + F 2
2, (11-6)

(where J is the Jacobian of F(x)) is used to help define the two-dimensional subspace S. Second
derivatives of the component function fi(x) are not used.

In each iteration the method of preconditioned conjugate gradients is used to approximately solve the
normal equations, i.e.,

JT Js = − JTF,

although the normal equations are not explicitly formed.

Large Scale Linear Least Squares

In this case the function f(x) to be solved is

f (x) = Cx + d 2
2,

possibly subject to linear constraints. The algorithm generates strictly feasible iterates converging, in
the limit, to a local solution. Each iteration involves the approximate solution of a large linear system
(of order n, where n is the length of x). The iteration matrices have the structure of the matrix C. In
particular, the method of preconditioned conjugate gradients is used to approximately solve the
normal equations, i.e.,

CTCx = − CTd,

although the normal equations are not explicitly formed.

The subspace trust-region method is used to determine a search direction. However, instead of
restricting the step to (possibly) one reflection step, as in the nonlinear minimization case, a
piecewise reflective line search is conducted at each iteration, as in the quadratic case. See [45] for
details of the line search. Ultimately, the linear systems represent a Newton approach capturing the
first-order optimality conditions at the solution, resulting in strong local convergence rates.
Jacobian Multiply Function

lsqlin can solve the linearly-constrained least-squares problem without using the matrix C
explicitly. Instead, it uses a Jacobian multiply function jmfun,

W = jmfun(Jinfo,Y,flag)

that you provide. The function must calculate the following products for a matrix Y:

 Least-Squares (Model Fitting) Algorithms

11-5

• If flag == 0 then W = C'*(C*Y).
• If flag > 0 then W = C*Y.
• If flag < 0 then W = C'*Y.

This can be useful if C is large, but contains enough structure that you can write jmfun without
forming C explicitly. For an example, see “Jacobian Multiply Function with Linear Least Squares” on
page 11-31.

Levenberg-Marquardt Method
The least-squares problem minimizes a function f(x) that is a sum of squares.

min
x

f (x) = F(x) 2
2 = ∑

i
Fi

2(x) . (11-7)

Problems of this type occur in a large number of practical applications, especially those that involve
fitting model functions to data, such as nonlinear parameter estimation. This problem type also
appears in control systems, where the objective is for the output y(x,t) to follow a continuous model
trajectory φ(t) for vector x and scalar t. This problem can be expressed as

min
x ∈ ℜn
∫

t1

t2
y(x, t)− φ(t) 2dt, (11-8)

where y(x,t) and φ(t) are scalar functions.

Discretize the integral to obtain an approximation

min
x ∈ ℜn

f (x) = ∑
i = 1

m
y(x, ti)− φ(ti) 2, (11-9)

where the ti are evenly spaced. In this problem, the vector F(x) is

F(x) =

y(x, t1)− φ(t1)
y(x, t2)− φ(t2)

...
y(x, tm)− φ(tm)

.

In this type of problem, the residual ‖F(x)‖ is likely to be small at the optimum, because the general
practice is to set realistically achievable target trajectories. Although you can minimize the function
in “Equation 11-7” using a general, unconstrained minimization technique, as described in “Basics of
Unconstrained Optimization” on page 5-4, certain characteristics of the problem can often be
exploited to improve the iterative efficiency of the solution procedure. The gradient and Hessian
matrix of “Equation 11-7” have a special structure.

Denoting the m-by-n Jacobian matrix of F(x) as J(x), gradient vector of f(x) as G(x), Hessian matrix of
f(x) as H(x), and Hessian matrix of each Fi(x) as Di(x),

G(x) = 2 J(xF(x)

H(x) = 2 J(x J(x) + 2Q(x),
 (11-10)

11 Least Squares

11-6

where

Q(x) = ∑
i = 1

m
Fi(x) ⋅ Di(x) .

A property of the matrix Q(x) is that when the residual ‖F(x)‖ tends towards zero as xk approaches the
solution, then Q(x) also tends towards zero. So, when ‖F(x)‖ is small at the solution, an effective
method is to use the Gauss-Newton direction as a basis for an optimization procedure.

At each major iteration k, the Gauss-Newton method obtains a search direction dk that is a solution of
the linear least-squares problem

min
dk ∈ ℜn

J(xk)dk + F(xk) 2
2 . (11-11)

The direction derived from this method is equivalent to the Newton direction when the terms of Q(x)
= 0. The algorithm can use the search direction dk as part of a line search strategy to ensure that the
function f(x) decreases at each iteration.

The Gauss-Newton method often encounters problems when the second-order term Q(x) is
nonnegligible. The Levenberg-Marquardt method overcomes this problem.

The Levenberg-Marquardt method (see [25] and [27]) uses a search direction that is a solution of the
linear set of equations

J xk
T J xk + λkI dk = − J xk

TF xk , (11-12)

or, optionally, of the equations

J xk
T J xk + λkdiag J xk

T J xk dk = − J xk
TF xk , (11-13)

where the scalar λk controls both the magnitude and direction of dk, and diag(A) means the matrix
of diagonal terms in A. Set the option ScaleProblem to 'none' to choose “Equation 11-12”, or set
ScaleProblem to 'Jacobian' to choose “Equation 11-13”.

You set the initial value of the parameter λ0 using the InitDamping option. Occasionally, the 0.01
default value of this option can be unsuitable. If you find that the Levenberg-Marquardt algorithm
makes little initial progress, try setting InitDamping to a different value from the default, such as
1e2.

When λk is zero, the direction dk is identical to that of the Gauss-Newton method. As λk tends towards
infinity, dk tends towards the steepest descent direction, with magnitude tending towards zero.
Consequently, for some sufficiently large λk, the term F(xk + dk) < F(xk) holds true. Therefore, you
can control the term λk to ensure descent even when the algorithm encounters second-order terms,
which restrict the efficiency of the Gauss-Newton method. When the step is successful (gives a lower
function value), the algorithm sets λk+1 = λk/10. When the step is unsuccessful, the algorithm sets λk
+1 = λk*10.

Internally, the Levenberg-Marquardt algorithm uses an optimality tolerance (stopping criterion) of
1e-4 times the function tolerance.

The Levenberg-Marquardt method, therefore, uses a search direction that is a cross between the
Gauss-Newton direction and the steepest descent direction.

 Least-Squares (Model Fitting) Algorithms

11-7

Another advantage to the Levenberg-Marquardt method is when the Jacobian J is rank-deficient. In
this case, the Gauss-Newton method can have numerical issues because the minimization problem in
“Equation 11-11” is ill-posed. In contrast, the Levenberg-Marquardt method has full rank at each
iteration, and, therefore, avoids these issues.

The following figure shows the iterations of the Levenberg-Marquardt method when minimizing
Rosenbrock's function, a notoriously difficult minimization problem that is in least-squares form.

Levenberg-Marquardt Method on Rosenbrock's Function

For a more complete description of this figure, including scripts that generate the iterative points, see
“Banana Function Minimization” on page 5-55.

Bound Constraints in Levenberg-Marquardt Method

When the problem contains bound constraints, lsqcurvefit and lsqnonlin modify the Levenberg-
Marquardt iterations. If a proposed iterative point x lies outside of the bounds, the algorithm projects
the step onto the nearest feasible point. In other words, with P defined as the projection operator that
projects infeasible points onto the feasible region, the algorithm modifies the proposed point x to
P(x). By definition, the projection operator P operates on each component xi independently according
to

P(xi) =
lbi if xi < lbi
ubi if xi > ubi
xi otherwise

or, equivalently,

P(xi) = min(max(xi, lbi), ubi) .

The algorithm modifies the stopping criterion for the first-order optimality measure. Let x be a
proposed iterative point. In the unconstrained case, the stopping criterion is

∇ f (x) ∞ ≤ tol, (11-14)

where tol is the optimality tolerance value, which is 1e-4*FunctionTolerance. In the bounded
case, the stopping criterion is

x− P x− ∇ f (x) ∞
2 ≤ tol ∇ f (x) ∞ . (11-15)

11 Least Squares

11-8

To understand this criterion, first note that if x is in the interior of the feasible region, then the
operator P has no effect. So, the stopping criterion becomes

x− P x− ∇ f (x) ∞
2 = ∇ f (x) ∞

2 ≤ tol ∇ f (x) ∞,

which is the same as the original unconstrained stopping criterion, ∇ f (x) ∞ ≤ tol. If the boundary
constraint is active, meaning x – ∇f(x) is not feasible, then at a point where the algorithm should stop,
the gradient at a point on the boundary is perpendicular to the boundary. Therefore, the point x is
equal to P(x – ∇f(x)), the projection of the steepest descent step, as shown in the following figure.

Levenberg-Marquardt Stopping Condition

See Also
quadprog | lsqlin | lsqcurvefit | lsqnonlin | lsqnonneg

More About
• “Least Squares”

 Least-Squares (Model Fitting) Algorithms

11-9

Nonlinear Data-Fitting
This example shows how to fit a nonlinear function to data using several Optimization Toolbox™
algorithms.

Problem Setup

Consider the following data:

Data = ...
 [0.0000 5.8955
 0.1000 3.5639
 0.2000 2.5173
 0.3000 1.9790
 0.4000 1.8990
 0.5000 1.3938
 0.6000 1.1359
 0.7000 1.0096
 0.8000 1.0343
 0.9000 0.8435
 1.0000 0.6856
 1.1000 0.6100
 1.2000 0.5392
 1.3000 0.3946
 1.4000 0.3903
 1.5000 0.5474
 1.6000 0.3459
 1.7000 0.1370
 1.8000 0.2211
 1.9000 0.1704
 2.0000 0.2636];

Let's plot these data points.

t = Data(:,1);
y = Data(:,2);
% axis([0 2 -0.5 6])
% hold on
plot(t,y,'ro')
title('Data points')

11 Least Squares

11-10

% hold off

We would like to fit the function

y = c(1)*exp(-lam(1)*t) + c(2)*exp(-lam(2)*t)

to the data.

Solution Approach Using lsqcurvefit

The lsqcurvefit function solves this type of problem easily.

To begin, define the parameters in terms of one variable x:

x(1) = c(1)

x(2) = lam(1)

x(3) = c(2)

x(4) = lam(2)

Then define the curve as a function of the parameters x and the data t:

F = @(x,xdata)x(1)*exp(-x(2)*xdata) + x(3)*exp(-x(4)*xdata);

We arbitrarily set our initial point x0 as follows: c(1) = 1, lam(1) = 1, c(2) = 1, lam(2) = 0:

 Nonlinear Data-Fitting

11-11

x0 = [1 1 1 0];

We run the solver and plot the resulting fit.

[x,resnorm,~,exitflag,output] = lsqcurvefit(F,x0,t,y)

Local minimum possible.

lsqcurvefit stopped because the final change in the sum of squares relative to
its initial value is less than the value of the function tolerance.

x = 1×4

 3.0068 10.5869 2.8891 1.4003

resnorm = 0.1477

exitflag = 3

output = struct with fields:
 firstorderopt: 7.8841e-06
 iterations: 6
 funcCount: 35
 cgiterations: 0
 algorithm: 'trust-region-reflective'
 stepsize: 0.0096
 message: 'Local minimum possible....'

hold on
plot(t,F(x,t))
hold off

11 Least Squares

11-12

Solution Approach Using fminunc

To solve the problem using fminunc, we set the objective function as the sum of squares of the
residuals.

Fsumsquares = @(x)sum((F(x,t) - y).^2);
opts = optimoptions('fminunc','Algorithm','quasi-newton');
[xunc,ressquared,eflag,outputu] = ...
 fminunc(Fsumsquares,x0,opts)

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

xunc = 1×4

 2.8890 1.4003 3.0069 10.5862

ressquared = 0.1477

eflag = 1

outputu = struct with fields:
 iterations: 30
 funcCount: 185
 stepsize: 0.0017

 Nonlinear Data-Fitting

11-13

 lssteplength: 1
 firstorderopt: 2.9662e-05
 algorithm: 'quasi-newton'
 message: 'Local minimum found....'

Notice that fminunc found the same solution as lsqcurvefit, but took many more function
evaluations to do so. The parameters for fminunc are in the opposite order as those for
lsqcurvefit; the larger lam is lam(2), not lam(1). This is not surprising, the order of variables is
arbitrary.

fprintf(['There were %d iterations using fminunc,' ...
 ' and %d using lsqcurvefit.\n'], ...
 outputu.iterations,output.iterations)

There were 30 iterations using fminunc, and 6 using lsqcurvefit.

fprintf(['There were %d function evaluations using fminunc,' ...
 ' and %d using lsqcurvefit.'], ...
 outputu.funcCount,output.funcCount)

There were 185 function evaluations using fminunc, and 35 using lsqcurvefit.

Splitting the Linear and Nonlinear Problems

Notice that the fitting problem is linear in the parameters c(1) and c(2). This means for any values of
lam(1) and lam(2), we can use the backslash operator to find the values of c(1) and c(2) that solve the
least-squares problem.

We now rework the problem as a two-dimensional problem, searching for the best values of lam(1)
and lam(2). The values of c(1) and c(2) are calculated at each step using the backslash operator as
described above.

type fitvector

function yEst = fitvector(lam,xdata,ydata)
%FITVECTOR Used by DATDEMO to return value of fitting function.
% yEst = FITVECTOR(lam,xdata) returns the value of the fitting function, y
% (defined below), at the data points xdata with parameters set to lam.
% yEst is returned as a N-by-1 column vector, where N is the number of
% data points.
%
% FITVECTOR assumes the fitting function, y, takes the form
%
% y = c(1)*exp(-lam(1)*t) + ... + c(n)*exp(-lam(n)*t)
%
% with n linear parameters c, and n nonlinear parameters lam.
%
% To solve for the linear parameters c, we build a matrix A
% where the j-th column of A is exp(-lam(j)*xdata) (xdata is a vector).
% Then we solve A*c = ydata for the linear least-squares solution c,
% where ydata is the observed values of y.

A = zeros(length(xdata),length(lam)); % build A matrix
for j = 1:length(lam)
 A(:,j) = exp(-lam(j)*xdata);
end
c = A\ydata; % solve A*c = y for linear parameters c
yEst = A*c; % return the estimated response based on c

11 Least Squares

11-14

Solve the problem using lsqcurvefit, starting from a two-dimensional initial point lam(1), lam(2):

x02 = [1 0];
F2 = @(x,t) fitvector(x,t,y);

[x2,resnorm2,~,exitflag2,output2] = lsqcurvefit(F2,x02,t,y)

Local minimum possible.

lsqcurvefit stopped because the final change in the sum of squares relative to
its initial value is less than the value of the function tolerance.

x2 = 1×2

 10.5861 1.4003

resnorm2 = 0.1477

exitflag2 = 3

output2 = struct with fields:
 firstorderopt: 4.4071e-06
 iterations: 10
 funcCount: 33
 cgiterations: 0
 algorithm: 'trust-region-reflective'
 stepsize: 0.0080
 message: 'Local minimum possible....'

The efficiency of the two-dimensional solution is similar to that of the four-dimensional solution:

fprintf(['There were %d function evaluations using the 2-d ' ...
 'formulation, and %d using the 4-d formulation.'], ...
 output2.funcCount,output.funcCount)

There were 33 function evaluations using the 2-d formulation, and 35 using the 4-d formulation.

Split Problem is More Robust to Initial Guess

Choosing a bad starting point for the original four-parameter problem leads to a local solution that is
not global. Choosing a starting point with the same bad lam(1) and lam(2) values for the split two-
parameter problem leads to the global solution. To show this we re-run the original problem with a
start point that leads to a relatively bad local solution, and compare the resulting fit with the global
solution.

x0bad = [5 1 1 0];
[xbad,resnormbad,~,exitflagbad,outputbad] = ...
 lsqcurvefit(F,x0bad,t,y)

Local minimum possible.

lsqcurvefit stopped because the final change in the sum of squares relative to
its initial value is less than the value of the function tolerance.

xbad = 1×4

 -24.6714 2.4788 29.7951 2.4787

 Nonlinear Data-Fitting

11-15

resnormbad = 2.2173

exitflagbad = 3

outputbad = struct with fields:
 firstorderopt: 4.9955e-05
 iterations: 38
 funcCount: 195
 cgiterations: 0
 algorithm: 'trust-region-reflective'
 stepsize: 2.6841e-04
 message: 'Local minimum possible....'

hold on
plot(t,F(xbad,t),'g')
legend('Data','Global fit','Bad local fit','Location','NE')
hold off

fprintf(['The residual norm at the good ending point is %f,' ...
 ' and the residual norm at the bad ending point is %f.'], ...
 resnorm,resnormbad)

11 Least Squares

11-16

The residual norm at the good ending point is 0.147723, and the residual norm at the bad ending point is 2.217300.

See Also

More About
• “Nonlinear Data-Fitting Using Several Problem-Based Approaches” on page 11-88
• “Nonlinear Least Squares Without and Including Jacobian” on page 11-22
• “Nonlinear Curve Fitting with lsqcurvefit” on page 11-49

 Nonlinear Data-Fitting

11-17

lsqnonlin with a Simulink Model
This example shows how to tune the parameters of a Simulink® model. The model, optsim, is
included in the optim/demos folder of your MATLAB® installation. The model includes a nonlinear
process plant modeled as a Simulink block diagram.

Plant with Actuator Saturation

The plant is an under-damped third-order model with actuator limits. The actuator limits are a
saturation limit and a slew rate limit. The actuator saturation limit cuts off input values greater than
2 units or less than –2 units. The slew rate limit of the actuator is 0.8 units/sec. The closed-loop
response of the system to a step input is shown in Closed-Loop Response on page 11-0 . You can see
this response by opening the model (type optsim at the command line or click the model name), and
selecting Run from the Simulation menu. The response plots to the scope.

Closed-Loop Response

The problem is to design a feedback control loop that tracks a unit step input to the system. The
closed-loop plant is entered in terms of the blocks where the plant and actuator are located in a
hierarchical Subsystem block. A Scope block displays output trajectories during the design process.

11 Least Squares

11-18

Closed-Loop Model

To solve this problem, minimize the error between the output and the input signal. (In contrast, in the
example “Using fminimax with a Simulink Model” on page 7-9, the solution involves minimizing the
maximum value of the output.) The variables are the parameters of the Proportional Integral
Derivative (PID) controller. If you only need to minimize the error at one time unit, you would have a
scalar objective function. But the goal is to minimize the error for all time steps from 0 to 100, thus
producing a multiobjective function (one function for each time step).

Use lsqnonlin to perform a least-squares fit on the tracking of the output. The tracking is
performed by the function tracklsq, which is nested in runtracklsq on page 11-0 at the end of
this example. tracklsq returns the error signal yout, the output computed by calling sim, minus
the input signal 1.

The function runtracklsq sets up all required values and then calls lsqnonlin with the objective
function tracklsq. The variable options passed to lsqnonlin defines the criteria and display
characteristics. The options specify to have no displayed output, to use the 'levenberg-
marquardt' algorithm, and the options give termination tolerances for the step and objective
function on the order of 0.001.

To run the simulation in the model optsim, you must specify the variables Kp, Ki, Kd, a1, and a2 (a1
and a2 are variables in the Plant block). Kp, Ki, and Kd are the variables to be optimized. The
function tracklsq is nested inside runtracklsq so that the variables a1 and a2 are shared
between the two functions. The variables a1 and a2 are initialized in runtracklsq.

The objective function tracklsq runs the simulation. You can run the simulation either in the base
workspace or the current workspace, that is, the workspace of the function calling sim, which in this
case is the workspace of tracklsq. In this example, the SrcWorkspace option is set to 'Current'
to tell sim to run the simulation in the current workspace. runtracklsq runs the simulation to 100
seconds.

When the simulation is complete, runtracklsq creates the myobj object in the current workspace
(that is, the workspace of tracklsq). The Outport block in the block diagram model puts the yout
field of the object into the current workspace at the end of the simulation.

When you run runtracklsq, the optimization gives the solution for the proportional, integral, and
derivative (Kp, Ki, Kd) gains of the controller.

[Kp, Ki, Kd] = runtracklsq

Kp = 3.1330

Ki = 0.1465

Kd = 14.3918

The scope shows the optimized closed-loop step response.

 lsqnonlin with a Simulink Model

11-19

Closed-Loop Response After lsqnonlin

Note: The call to sim results in a call to one of the Simulink ordinary differential equation (ODE)
solvers. You need to choose which type of solver to use. From the optimization point of view, a fixed-
step ODE solver is the best choice if it is sufficient to solve the ODE. However, in the case of a stiff
system, a variable-step ODE method might be required to solve the ODE.

The numerical solution produced by a variable-step solver, however, is not a smooth function of
parameters, because of step-size control mechanisms. This lack of smoothness can prevent an
optimization routine from converging. The lack of smoothness is not an issue when you use a fixed-
step solver. (For a further explanation, see [53].)

Simulink Design Optimization™ software is recommended for solving multiobjective optimization
problems in conjunction with Simulink variable-step solvers. This software provides a special numeric
gradient computation that works with Simulink and avoids introducing a problem of lack of
smoothness.

Helper Function

The following code creates the runtracklsq helper function.

function [Kp,Ki,Kd] = runtracklsq
% RUNTRACKLSQ demonstrates using LSQNONLIN with Simulink.
mdl = 'optsim';
open_system(mdl) % Load the model
in = Simulink.SimulationInput(mdl); % Create simulation input object
in = in.setModelParameter('StopTime','100'); % Stop time 100
pid0 = [0.63 0.0504 1.9688]; % Initial gain values

11 Least Squares

11-20

a1 = 3; a2 = 43; % Initialize model plant variables
options = optimoptions(@lsqnonlin,'Algorithm','levenberg-marquardt',...
 'Display','off','StepTolerance',0.001,'OptimalityTolerance',0.001);
% Optimize the gains
set_param(mdl,'FastRestart','on'); % Fast restart
pid = lsqnonlin(@tracklsq,pid0,[],[],options);
set_param(mdl,'FastRestart','off');
% Return the gains
Kp = pid(1); Ki = pid(2); Kd = pid(3);

 function F = tracklsq(pid)
 % Track the output of optsim to a signal of 1
 % Set the simulation input object parameters
 in = in.setVariable('Kp',pid(1),'Workspace',mdl);
 in = in.setVariable('Ki',pid(2),'Workspace',mdl);
 in = in.setVariable('Kd',pid(3),'Workspace',mdl);

 % Simulate
 out = sim(in);
 F = out.get('yout') - 1;
 end
end

Copyright 2019–2020 The MathWorks, Inc.

 lsqnonlin with a Simulink Model

11-21

Nonlinear Least Squares Without and Including Jacobian
This example shows how to solve a nonlinear least-squares problem in two ways. The example first
solves the problem without using a Jacobian function. Then it shows how to include a Jacobian, and
illustrates the resulting improved efficiency.

The problem has 10 terms with two unknowns: find x, a two-dimensional vector, that minimizes

∑
k = 1

10
2 + 2k− ekx1− ekx2 2

,

starting at the point x0 = [0.3,0.4].

Because lsqnonlin assumes that the sum of squares is not explicitly formed in the user function,
the function passed to lsqnonlin must compute the vector-valued function

Fk(x) = 2 + 2k− ekx1− ekx2,

for k = 1 to 10 (that is, F must have 10 components).

Solve Problem Without Jacobian

The helper function myfun defined at the end of this example on page 11-0 implements the vector-
valued objective function with no derivative information. Solve the minimization starting from the
point x0.

x0 = [0.3,0.4]; % Starting guess
[x,resnorm,res,eflag,output] = lsqnonlin(@myfun,x0); % Invoke optimizer

Local minimum possible.
lsqnonlin stopped because the size of the current step is less than
the value of the step size tolerance.

Examine the solution and number of function evaluations.

disp(x)

 0.2578 0.2578

disp(resnorm)

 124.3622

disp(output.funcCount)

 72

Solve Problem Including Jacobian

The objective function is simple enough that you can calculate its Jacobian. Following the definition in
“Jacobians of Vector Functions” on page 2-26, a Jacobian function represents the matrix

Jk j(x) =
∂Fk(x)
∂x j

.

Here, Fk(x) is the kth component of the objective function. This example has

11 Least Squares

11-22

Fk(x) = 2 + 2k− ekx1− ekx2,

so

Jk1(x) = − kekx1

Jk2(x) = − kekx2 .

The helper function myfun2 defined at the end of this example on page 11-0 implements the
objective function with the Jacobian. Set options so the solver uses the Jacobian.

opts = optimoptions(@lsqnonlin,'SpecifyObjectiveGradient',true);

Run the solver.

lb = []; % No bounds
ub = [];
[x2,resnorm2,res2,eflag2,output2] = lsqnonlin(@myfun2,x0,lb,ub,opts);

Local minimum possible.
lsqnonlin stopped because the size of the current step is less than
the value of the step size tolerance.

The solution is the same as the previous solution.

disp(x2)

 0.2578 0.2578

disp(resnorm2)

 124.3622

The advantage of using a Jacobian is that the solver takes many fewer function evaluations.

disp(output2.funcCount)

 24

Helper Functions

This code creates the myfun helper function.

function F = myfun(x)
k = 1:10;
F = 2 + 2*k-exp(k*x(1))-exp(k*x(2));
end

This code creates the myfun2 helper function.

function [F,J] = myfun2(x)
k = 1:10;
F = 2 + 2*k-exp(k*x(1))-exp(k*x(2));
if nargout > 1
 J = zeros(10,2);
 J(k,1) = -k.*exp(k*x(1));
 J(k,2) = -k.*exp(k*x(2));

 Nonlinear Least Squares Without and Including Jacobian

11-23

end
end

See Also

More About
• “Nonlinear Data-Fitting” on page 11-10
• “Nonlinear Curve Fitting with lsqcurvefit” on page 11-49

11 Least Squares

11-24

Nonnegative Linear Least Squares, Solver-Based
This example shows how to use several algorithms to solve a linear least-squares problem with the
bound constraint that the solution is nonnegative. A linear least-squares problem has the form

min
x

‖Cx− d‖2.

In this case, constrain the solution to be nonnegative, x ≥ 0.

To begin, load the arrays C and d into your workspace.

load particle

View the size of each array.

sizec = size(C)

sizec = 1×2

 2000 400

sized = size(d)

sized = 1×2

 2000 1

The C matrix has 2000 rows and 400 columns. Therefore, to have the correct size for matrix
multiplication, the x vector has 400 rows. To represent the nonnegativity constraint, set lower bounds
of zero on all variables.

lb = zeros(size(C,2),1);

Solve the problem using lsqlin.

[x,resnorm,residual,exitflag,output] = ...
 lsqlin(C,d,[],[],[],[],lb);

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

To see details of the optimization process, examine the output structure.

disp(output)

 message: 'Minimum found that satisfies the constraints....'
 algorithm: 'interior-point'
 firstorderopt: 3.6717e-06
 constrviolation: 0
 iterations: 8
 linearsolver: 'sparse'
 cgiterations: []

 Nonnegative Linear Least Squares, Solver-Based

11-25

The output structure shows that lsqlin uses a sparse internal linear solver for the interior-point
algorithm and takes 8 iterations to reach a first-order optimality measure of about 3.7e-6.

Change Algorithm

The trust-region-reflective algorithm handles bound-constrained problems. See how well it performs
on this problem.

options = optimoptions('lsqlin','Algorithm','trust-region-reflective');
[x2,resnorm2,residual2,exitflag2,output2] = ...
 lsqlin(C,d,[],[],[],[],lb,[],[],options);

Local minimum possible.

lsqlin stopped because the relative change in function value is less than the square root of the function tolerance and the rate of change in the function value is slow.

disp(output2)

 iterations: 10
 algorithm: 'trust-region-reflective'
 firstorderopt: 2.7870e-05
 cgiterations: 42
 constrviolation: []
 linearsolver: []
 message: 'Local minimum possible....'

This time, the solver takes more iterations and reaches a solution with a higher (worse) first-order
optimality measure.

To improve the first-order optimality measure, try setting the SubproblemAlgorithm option to
'factorization'.

options.SubproblemAlgorithm = 'factorization';
[x3,resnorm3,residual3,exitflag3,output3] = ...
 lsqlin(C,d,[],[],[],[],lb,[],[],options);

Optimal solution found.

disp(output3)

 iterations: 12
 algorithm: 'trust-region-reflective'
 firstorderopt: 5.5907e-15
 cgiterations: 0
 constrviolation: []
 linearsolver: []
 message: 'Optimal solution found.'

Using this option brings the first-order optimality measure nearly to zero, which is the best possible
result.

Change Solver

Try solving t problem using the lsqnonneg solver, which is designed to handle nonnegative linear
least squares.

[x4,resnorm4,residual4,exitflag4,output4] = lsqnonneg(C,d);
disp(output4)

11 Least Squares

11-26

 iterations: 184
 algorithm: 'active-set'
 message: 'Optimization terminated.'

lsqnonneg does not report a first-order optimality measure. Instead, investigate the residual norms.
To see the lower-significance digits, subtract 22.5794 from each residual norm.

t = table(resnorm - 22.5794, resnorm2 - 22.5794, resnorm3 - 22.5794, resnorm4 - 22.5794,...
 'VariableNames',{'default','trust-region-reflective','factorization','lsqnonneg'})

t=1×4 table
 default trust-region-reflective factorization lsqnonneg
 __________ _______________________ _____________ __________

 7.5411e-05 4.9186e-05 4.9179e-05 4.9179e-05

The default lsqlin algorithm has a higher residual norm than the trust-region-reflective
algorithm. The factorization and lsqnonneg residual norms are even lower, and are the same at
this level of display precision. See which one is lower.

disp(resnorm3 - resnorm4)

 6.8212e-13

The lsqnonneg residual norm is the lowest by a negligible amount. However, lsqnonneg takes the
most iterations to converge.

See Also
lsqlin | lsqnonneg

More About
• “Nonnegative Linear Least Squares, Problem-Based” on page 11-41

 Nonnegative Linear Least Squares, Solver-Based

11-27

Optimize Live Editor Task with lsqlin Solver
This example shows how to use the Optimize Live Editor task to solve a constrained least-squares
problem.

The problem in this example is to find the point on the plane x1 + 2x2 + 4x3 = 7 that is closest to the
origin. The easiest way to solve this problem is to minimize the square of the distance from a point
x = (x1,x2,x3) on the plane to the origin, which returns the same optimal point as minimizing the
actual distance. Because the square of the distance from an arbitrary point (x1,x2,x3) to the origin is
x1

2 + x2
2 + x3

2, you can describe the problem as follows:

min
x

f (x) = x1
2 + x2

2 + x3
2,

subject to the constraint

x1 + 2x2 + 4x3 = 7. (11-16)

The function f(x) is the objective function and x1 + 2x2 + 4x3 = 7 is an equality constraint. More
complicated problems might contain other equality constraints, inequality constraints, and upper or
lower bound constraints.

Set Up and Solve the Problem Using Optimize
Set up the problem with the lsqlin solver in the Optimize Live Editor task.

1 Create a new live script by clicking the New Live Script button in the File section on the Home
tab.

2 Insert an Optimize Live Editor task. Click the Insert tab and then, in the Code section, select
Task > Optimize.

3 Click the Solver-based button. The Optimize task opens.
4 In the Specify problem type section of the task, select Objective > Least squares and

Constraints > Linear equality.

11 Least Squares

11-28

The task selects lsqlin as the recommended solver.
5 To get the data C and d into the MATLAB workspace, click the Section Break button on the

Insert tab. In the new section, enter the following code.

C = eye(3);
d = zeros(3,1);

6 Set the linear equality constraint matrix and vector.

Aeq = [1 2 4];
beq = 7;

7 Run the section by pressing Ctrl+Enter. This places the variables into the workspace.
8 In the Select problem data section of the task, set the entries to their corresponding values.

9 Run the solver by pressing Ctrl+Enter. View the exit message.

10 To find the solution, look at the top of the task.

The solver returns the variables solution and objectiveValue to the MATLAB workspace.
11 Insert a section break below the task. Place these lines in the new section.

disp(solution)
disp(objectiveValue)

12 Run the section by pressing Ctrl+Enter.

 Optimize Live Editor Task with lsqlin Solver

11-29

See Also
Optimize | lsqlin

More About
• “Shortest Distance to a Plane” on page 11-39
• “Use Solver-Based Optimize Live Editor Task Effectively” on page 1-41

11 Least Squares

11-30

Jacobian Multiply Function with Linear Least Squares
Using a Jacobian multiply function, you can solve a least-squares problem of the form

min
x

1
2 C ⋅ x− d 2

2

such that lb ≤ x ≤ ub, for problems where C is very large, perhaps too large to be stored. For this
technique, use the 'trust-region-reflective' algorithm.

For example, consider a problem where C is a 2n-by-n matrix based on a circulant matrix. The rows of
C are shifts of a row vector v. This example has the row vector v with elements of the form
(– 1)k + 1/k:

v = [1, − 1/2, 1/3, − 1/4, …, − 1/n],

where the elements are cyclically shifted.

C =

1 −1/2 1/3 . . . −1/n
−1/n 1 −1/2 . . . 1/(n− 1)

1/(n− 1) −1/n 1 . . . −1/(n− 2)
⋮ ⋮ ⋮ ⋱ ⋮

−1/2 1/3 −1/4 . . . 1
1 −1/2 1/3 . . . −1/n

−1/n 1 −1/2 . . . 1/(n− 1)
1/(n− 1) −1/n 1 . . . −1/(n− 2)

⋮ ⋮ ⋮ ⋱ ⋮
−1/2 1/3 −1/4 . . . 1

.

This least-squares example considers the problem where

d = [n− 1, n− 2, …, − n],

and the constraints are −5 ≤ xi ≤ 5 for i = 1, …, n.

For large enough n, the dense matrix C does not fit into computer memory (n = 10, 000 is too large on
one tested system).

A Jacobian multiply function has the following syntax.

w = jmfcn(Jinfo,Y,flag)

Jinfo is a matrix the same size as C, used as a preconditioner. If C is too large to fit into memory,
Jinfo should be sparse. Y is a vector or matrix sized so that C*Y or C'*Y works as matrix
multiplication. flag tells jmfcn which product to form:

• flag > 0 ⇒ w = C*Y
• flag < 0 ⇒ w = C'*Y
• flag = 0 ⇒ w = C'*C*Y

 Jacobian Multiply Function with Linear Least Squares

11-31

Because C is such a simply structured matrix, you can easily write a Jacobian multiply function in
terms of the vector v, without forming C. Each row of C*Y is the product of a circularly shifted
version of v times Y. Use circshift to circularly shift v.

To compute C*Y, compute v*Y to find the first row, then shift v and compute the second row, and so
on.

To compute C'*Y, perform the same computation, but use a shifted version of temp, the vector
formed from the first row of C':

temp = [fliplr(v),fliplr(v)];

temp = [circshift(temp,1,2),circshift(temp,1,2)]; % Now temp = C'(1,:)

To compute C'*C*Y, simply compute C*Y using shifts of v, and then compute C' times the result
using shifts of fliplr(v).

The helper function lsqcirculant3 is a Jacobian multiply function that implements this procedure;
it appears at the end of this example on page 11-0 .

The dolsqJac3 helper function at the end of this example on page 11-0 sets up the vector v and
calls the solver lsqlin using the lsqcirculant3 Jacobian multiply function.

When n = 3000, C is an 18,000,000-element dense matrix. Determine the results of the dolsqJac3
function for n = 3000 at selected values of x, and display the output structure.

[x,resnorm,residual,exitflag,output] = dolsqJac3(3000);

Local minimum possible.

lsqlin stopped because the relative change in function value is less than the function tolerance.

disp(x(1))

 5.0000

disp(x(1500))

 -0.5201

disp(x(3000))

 -5.0000

disp(output)

 iterations: 16
 algorithm: 'trust-region-reflective'
 firstorderopt: 5.9351e-05
 cgiterations: 36
 constrviolation: []
 linearsolver: []
 message: 'Local minimum possible.↵↵lsqlin stopped because the relative change in function value is less than the function tolerance.'

Helper Functions

This code creates the lsqcirculant3 helper function.

function w = lsqcirculant3(Jinfo,Y,flag,v)
% This function computes the Jacobian multiply function

11 Least Squares

11-32

% for a 2n-by-n circulant matrix example.

if flag > 0
 w = Jpositive(Y);
elseif flag < 0
 w = Jnegative(Y);
else
 w = Jnegative(Jpositive(Y));
end

 function a = Jpositive(q)
 % Calculate C*q
 temp = v;

 a = zeros(size(q)); % Allocating the matrix a
 a = [a;a]; % The result is twice as tall as the input.

 for r = 1:size(a,1)
 a(r,:) = temp*q; % Compute the rth row
 temp = circshift(temp,1,2); % Shift the circulant
 end
 end

 function a = Jnegative(q)
 % Calculate C'*q
 temp = fliplr(v);
 temp = circshift(temp,1,2); % Shift the circulant for C'

 len = size(q,1)/2; % The returned vector is half as long
 % as the input vector.
 a = zeros(len,size(q,2)); % Allocating the matrix a

 for r = 1:len
 a(r,:) = [temp,temp]*q; % Compute the rth row
 temp = circshift(temp,1,2); % Shift the circulant
 end
 end
end

This code creates the dolsqJac3 helper function.

function [x,resnorm,residual,exitflag,output] = dolsqJac3(n)
%
r = 1:n-1; % Index for making vectors

v(n) = (-1)^(n+1)/n; % Allocating the vector v
v(r) =(-1).^(r+1)./r;

% Now C should be a 2n-by-n circulant matrix based on v,
% but it might be too large to fit into memory.

r = 1:2*n;
d(r) = n-r;

Jinfo = [speye(n);speye(n)]; % Sparse matrix for preconditioning
% This matrix is a required input for the solver;
% preconditioning is not used in this example.

 Jacobian Multiply Function with Linear Least Squares

11-33

% Pass the vector v so that it does not need to be
% computed in the Jacobian multiply function.
options = optimoptions('lsqlin','Algorithm','trust-region-reflective',...
 'JacobianMultiplyFcn',@(Jinfo,Y,flag)lsqcirculant3(Jinfo,Y,flag,v));

lb = -5*ones(1,n);
ub = 5*ones(1,n);

[x,resnorm,residual,exitflag,output] = ...
 lsqlin(Jinfo,d,[],[],[],[],lb,ub,[],options);
end

See Also
circshift | fliplr

More About
• “Quadratic Minimization with Dense, Structured Hessian” on page 10-26

11 Least Squares

11-34

Large-Scale Constrained Linear Least-Squares, Solver-Based
This example shows how to recover a blurred image by solving a large-scale bound-constrained linear
least-squares optimization problem. The example uses the solver-based approach. For the problem-
based approach, see “Large-Scale Constrained Linear Least-Squares, Problem-Based” on page 11-
45.

The Problem

Here is a photo of people sitting in a car having an interesting license plate.

load optdeblur
[m,n] = size(P);
mn = m*n;
imshow(P)
title(sprintf('Original Image, size %d-by-%d, %d pixels',m,n,mn))

The problem is to take a blurred version of this photo and try to deblur it. The starting image is black
and white, meaning it consists of pixel values from 0 through 1 in the m x n matrix P.

Add Motion

Simulate the effect of vertical motion blurring by averaging each pixel with the 5 pixels above and
below. Construct a sparse matrix D to blur with a single matrix multiply.

blur = 5; mindex = 1:mn; nindex = 1:mn;
for i = 1:blur
 mindex=[mindex i+1:mn 1:mn-i];
 nindex=[nindex 1:mn-i i+1:mn];
end
D = sparse(mindex,nindex,1/(2*blur+1));

Draw a picture of D.

cla
axis off ij
xs = 31;
ys = 15;
xlim([0,xs+1]);

 Large-Scale Constrained Linear Least-Squares, Solver-Based

11-35

ylim([0,ys+1]);
[ix,iy] = meshgrid(1:(xs-1),1:(ys-1));
l = abs(ix-iy)<=5;
text(ix(l),iy(l),'x')
text(ix(~l),iy(~l),'0')
text(xs*ones(ys,1),1:ys,'...');
text(1:xs,ys*ones(xs,1),'...');
title('Blurring Operator D (x = 1/11)')

Multiply the image P by the matrix D to create a blurred image G.

G = D*(P(:));
figure
imshow(reshape(G,m,n));
title('Blurred Image')

The image is much less distinct; you can no longer read the license plate.

Deblurred Image

To deblur, suppose that you know the blurring operator D. How well can you remove the blur and
recover the original image P?

11 Least Squares

11-36

The simplest approach is to solve a least squares problem for x:

min(‖Dx− G‖2) subject to 0 ≤ x ≤ 1.

This problem takes the blurring matrix D as given, and tries to find the x that makes Dx closest to G =
DP. In order for the solution to represent sensible pixel values, restrict the solution to be from 0
through 1.

lb = zeros(mn,1);
ub = 1 + lb;
sol = lsqlin(D,G,[],[],[],[],lb,ub);

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

xpic = reshape(sol,m,n);
figure
imshow(xpic)
title('Deblurred Image')

The deblurred image is much clearer than the blurred image. You can once again read the license
plate. However, the deblurred image has some artifacts, such as horizontal bands in the lower-right
pavement region. Perhaps these artifacts can be removed by a regularization.

Regularization

Regularization is a way to smooth the solution. There are many regularization methods. For a simple
approach, add a term to the objective function as follows:

min(‖(D + εI)x− G‖2) subject to 0 ≤ x ≤ 1.

The termεI makes the resulting quadratic problem more stable. Take ε = 0 . 02 and solve the problem
again.

addI = speye(mn);
sol2 = lsqlin(D+0.02*addI,G,[],[],[],[],lb,ub);

 Large-Scale Constrained Linear Least-Squares, Solver-Based

11-37

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

xpic2 = reshape(sol2,m,n);
figure
imshow(xpic2)
title('Deblurred Regularized Image')

Apparently, this simple regularization does not remove the artifacts.

See Also

More About
• “Large-Scale Constrained Linear Least-Squares, Problem-Based” on page 11-45

11 Least Squares

11-38

Shortest Distance to a Plane
The Problem

This example shows how to formulate a linear least squares problem using the problem-based
approach.

The problem is to find the shortest distance from the origin (the point [0,0,0]) to the plane
x1 + 2x2 + 4x3 = 7. In other words, this problem is to minimize f (x) = x1

2 + x2
2 + x3

2 subject to the
constraint x1 + 2x2 + 4x3 = 7. The function f(x) is called the objective function and x1 + 2x2 + 4x3 = 7
is an equality constraint. More complicated problems might contain other equality constraints,
inequality constraints, and upper or lower bound constraints.

Set Up the Problem

To formulate this problem using the problem-based approach, create an optimization problem object
called pointtoplane.

pointtoplane = optimproblem;

Create a problem variable x as a continuous variable with three components.

x = optimvar('x',3);

Create the objective function and put it in the Objective property of pointtoplane.

obj = sum(x.^2);
pointtoplane.Objective = obj;

Create the linear constraint and put it in the problem.

v = [1,2,4];
pointtoplane.Constraints = dot(x,v) == 7;

The problem formulation is complete. To check for errors, review the problem.

show(pointtoplane)

 OptimizationProblem :

 Solve for:
 x

 minimize :
 sum(x.^2)

 subject to :
 x(1) + 2*x(2) + 4*x(3) == 7

The formulation is correct.

Solve the Problem

Solve the problem by calling solve.

 Shortest Distance to a Plane

11-39

[sol,fval,exitflag,output] = solve(pointtoplane);

Solving problem using lsqlin.

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

disp(sol.x)

 0.3333
 0.6667
 1.3333

Verify the Solution

To verify the solution, solve the problem analytically. Recall that for any nonzero t, the vector
t*[1,2,4] = t*v is perpendicular to the plane x1 + 2x2 + 4x3 = 7. So the solution point xopt is
t*v for the value of t that satisfies the equation dot(t*v,v) = 7.

t = 7/dot(v,v)

t = 0.3333

xopt = t*v

xopt = 1×3

 0.3333 0.6667 1.3333

Indeed, the vector xopt is equivalent to the point sol.x that solve finds.

See Also

More About
• “Optimize Live Editor Task with lsqlin Solver” on page 11-28
• “Problem-Based Optimization Workflow” on page 9-2

11 Least Squares

11-40

Nonnegative Linear Least Squares, Problem-Based
This example shows how to use several algorithms to solve a linear least squares problem with the
bound constraint that the solution is nonnegative. A linear least squares problem has the form

min
x

‖Cx− d‖2.

In this case, constrain the solution to be nonnegative, x ≥ 0.

To begin, load the arrays C and d into your workspace.

load particle

View the size of each array.

sizec = size(C)

sizec = 1×2

 2000 400

sized = size(d)

sized = 1×2

 2000 1

Create an optimization variable x of the appropriate size for multiplication by C. Impose a lower
bound of 0 on the elements of x.

x = optimvar('x',sizec(2),'LowerBound',0);

Create the objective function expression.

residual = C*x - d;
obj = sum(residual.^2);

Create an optimization problem called nonneglsq and include the objective function in the problem.

nonneglsq = optimproblem('Objective',obj);

Find the default solver for the problem.

opts = optimoptions(nonneglsq)

opts =
 lsqlin options:

 Options used by current Algorithm ('interior-point'):
 (Other available algorithms: 'active-set', 'trust-region-reflective')

 Set properties:
 No options set.

 Default properties:

 Nonnegative Linear Least Squares, Problem-Based

11-41

 Algorithm: 'interior-point'
 ConstraintTolerance: 1.0000e-08
 Display: 'final'
 LinearSolver: 'auto'
 MaxIterations: 200
 OptimalityTolerance: 1.0000e-08
 StepTolerance: 1.0000e-12

 Show options not used by current Algorithm ('interior-point')

Solve the problem using the default solver.

[sol,fval,exitflag,output] = solve(nonneglsq);

Solving problem using lsqlin.

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

To see details of the optimization process, examine the output structure.

disp(output)

 message: 'Minimum found that satisfies the constraints....'
 algorithm: 'interior-point'
 firstorderopt: 9.9673e-07
 constrviolation: 0
 iterations: 9
 linearsolver: 'sparse'
 cgiterations: []
 solver: 'lsqlin'

The output structure shows that the lsqlin solver uses a sparse internal linear solver for the
interior-point algorithm and takes 9 iterations to arrive at a first-order optimality measure of about
1e-6.

Change Algorithm

The trust-region-reflective algorithm handles bound-constrained problems. See how well it performs
on this problem.

opts.Algorithm = 'trust-region-reflective';
[sol2,fval2,exitflag2,output2] = solve(nonneglsq,'Options',opts);

Solving problem using lsqlin.

Local minimum possible.

lsqlin stopped because the relative change in function value is less than the function tolerance.

disp(output2)

 iterations: 14
 algorithm: 'trust-region-reflective'
 firstorderopt: 5.2187e-08

11 Least Squares

11-42

 cgiterations: 54
 constrviolation: []
 linearsolver: []
 message: 'Local minimum possible....'
 solver: 'lsqlin'

This time, the solver takes more iterations and arrives at a solution with a lower (better) first-order
optimality measure.

To get an even better first-order optimality measure, try setting the SubproblemAlgorithm option
to 'factorization'.

opts.SubproblemAlgorithm = 'factorization';
[sol3,fval3,exitflag3,output3] = solve(nonneglsq,'Options',opts);

Solving problem using lsqlin.

Optimal solution found.

disp(output3)

 iterations: 11
 algorithm: 'trust-region-reflective'
 firstorderopt: 1.3973e-14
 cgiterations: 0
 constrviolation: []
 linearsolver: []
 message: 'Optimal solution found.'
 solver: 'lsqlin'

Using this option brings the first-order optimality measure nearly to zero, which is the best possible.

Change Solver

The lsqnonneg solver is specially designed to handle nonnegative linear least squares. Try that
solver.

[sol4,fval4,exitflag4,output4] = solve(nonneglsq,'Solver','lsqnonneg');

Solving problem using lsqnonneg.

disp(output4)

 iterations: 184
 algorithm: 'active-set'
 message: 'Optimization terminated.'
 solver: 'lsqnonneg'

lsqnonneg does not report a first-order optimality measure. Instead, investigate the residual norms,
which are returned in the fval outputs. To see the lower-significance digits, subtract 22.5794 from
each residual norm.

t = table(fval - 22.5794, fval2 - 22.5794, fval3 - 22.5794, fval4 - 22.5794,...
 'VariableNames',{'default','trust-region-reflective','factorization','lsqnonneg'})

t=1×4 table
 default trust-region-reflective factorization lsqnonneg
 __________ _______________________ _____________ __________

 Nonnegative Linear Least Squares, Problem-Based

11-43

 5.0804e-05 4.9179e-05 4.9179e-05 4.9179e-05

The default solver has a slightly higher (worse) residual norm than the other three, whose residual
norms are indistinguishable at this level of display precision. To see which is lowest, subtract the
lsqnonneg result from the two results.

disp([fval2 - fval4,fval3 - fval4])

 1.0e-12 *

 0.7070 0.6928

The lsqnonneg residual norm is the smallest by a nearly negligible amount. However, lsqnonneg
takes the most iterations to converge.

See Also

More About
• “Nonnegative Linear Least Squares, Solver-Based” on page 11-25
• “Problem-Based Optimization Workflow” on page 9-2

11 Least Squares

11-44

Large-Scale Constrained Linear Least-Squares, Problem-Based
This example shows how to recover a blurred image by solving a large-scale bound-constrained linear
least-squares optimization problem. The example uses the problem-based approach. For the solver-
based approach, see “Large-Scale Constrained Linear Least-Squares, Solver-Based” on page 11-35.

The Problem

Here is a photo of people sitting in a car having an interesting license plate.

load optdeblur
[m,n] = size(P);
mn = m*n;
figure
imshow(P);
colormap(gray);
axis off image;
title([int2str(m) ' x ' int2str(n) ' (' int2str(mn) ') pixels'])

The problem is to take a blurred version of this photo and try to deblur it. The starting image is black
and white, meaning it consists of pixel values from 0 through 1 in the m x n matrix P.

Add Motion

Simulate the effect of vertical motion blurring by averaging each pixel with the 5 pixels above and
below. Construct a sparse matrix D to blur with a single matrix multiply.

blur = 5;
mindex = 1:mn;
nindex = 1:mn;
for i = 1:blur
 mindex=[mindex i+1:mn 1:mn-i];
 nindex=[nindex 1:mn-i i+1:mn];
end
D = sparse(mindex,nindex,1/(2*blur+1));

Draw a picture of D.

cla
axis off ij

 Large-Scale Constrained Linear Least-Squares, Problem-Based

11-45

xs = 31;
ys = 15;
xlim([0,xs+1]);
ylim([0,ys+1]);
[ix,iy] = meshgrid(1:(xs-1),1:(ys-1));
l = abs(ix-iy) <= blur;
text(ix(l),iy(l),'x')
text(ix(~l),iy(~l),'0')
text(xs*ones(ys,1),1:ys,'...');
text(1:xs,ys*ones(xs,1),'...');
title('Blurring Operator D (x = 1/11)')

Multiply the image P by the matrix D to create a blurred image G.

G = D*(P(:));
figure
imshow(reshape(G,m,n));

The image is much less distinct; you can no longer read the license plate.

11 Least Squares

11-46

Deblurred Image

To deblur, suppose that you know the blurring operator D. How well can you remove the blur and
recover the original image P?

The simplest approach is to solve a least squares problem for x:

min(‖Dx− G‖2) subject to 0 ≤ x ≤ 1.

This problem takes the blurring matrix D as given, and tries to find the x that makes Dx closest to G =
DP. In order for the solution to represent sensible pixel values, restrict the solution to be from 0
through 1.

x = optimvar('x',mn,'LowerBound',0,'UpperBound',1);
expr = D*x-G;
objec = expr'*expr;
blurprob = optimproblem('Objective',objec);
sol = solve(blurprob);

Solving problem using quadprog.

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

xpic = reshape(sol.x,m,n);
figure
imshow(xpic)
title('Deblurred Image')

The deblurred image is much clearer than the blurred image. You can once again read the license
plate. However, the deblurred image has some artifacts, such as horizontal bands in the lower-right
pavement region. Perhaps these artifacts can be removed by a regularization.

Regularization

Regularization is a way to smooth the solution. There are many regularization methods. For a simple
approach, add a term to the objective function as follows:

 Large-Scale Constrained Linear Least-Squares, Problem-Based

11-47

min(‖(D + εI)x− G‖2) subject to 0 ≤ x ≤ 1.

The termεI makes the resulting quadratic problem more stable. Take ε = 0 . 02 and solve the problem
again.

addI = speye(mn);
expr2 = (D + 0.02*addI)*x - G;
objec2 = expr2'*expr2;
blurprob2 = optimproblem('Objective',objec2);
sol2 = solve(blurprob2);

Solving problem using quadprog.

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

xpic2 = reshape(sol2.x,m,n);
figure
imshow(xpic2)
title('Deblurred Regularized Image')

Apparently, this simple regularization does not remove the artifacts.

See Also

More About
• “Large-Scale Constrained Linear Least-Squares, Solver-Based” on page 11-35
• “Problem-Based Optimization Workflow” on page 9-2

11 Least Squares

11-48

Nonlinear Curve Fitting with lsqcurvefit
lsqcurvefit enables you to fit parameterized nonlinear functions to data easily. You can also use
lsqnonlin; lsqcurvefit is simply a convenient way to call lsqnonlin for curve fitting.

In this example, the vector xdata represents 100 data points, and the vector ydata represents the
associated measurements. Generate the data for the problem.

rng(5489,'twister') % reproducible
xdata = -2*log(rand(100,1));
ydata = (ones(100,1) + .1*randn(100,1)) + (3*ones(100,1)+...
 0.5*randn(100,1)).*exp((-(2*ones(100,1)+...
 .5*randn(100,1))).*xdata);

The modeled relationship between xdata and ydata is

ydatai = a1 + a2exp(− a3 xdatai) + εi .

The code generates xdata from 100 independent samples of an exponential distribution with mean 2.
The code generates ydata from its defining equation using a = [1;3;2], perturbed by adding
normal deviates with standard deviations [0.1;0.5;0.5].

The goal is to find parameters ai, i = 1, 2, 3, for the model that best fit the data.

In order to fit the parameters to the data using lsqcurvefit, you need to define a fitting function.
Define the fitting function predicted as an anonymous function.

predicted = @(a,xdata) a(1)*ones(100,1)+a(2)*exp(-a(3)*xdata);

To fit the model to the data, lsqcurvefit needs an initial estimate a0 of the parameters.

a0 = [2;2;2];

Call lsqcurvefit to find the best-fitting parameters ai.

[ahat,resnorm,residual,exitflag,output,lambda,jacobian] =...
 lsqcurvefit(predicted,a0,xdata,ydata);

Local minimum possible.

lsqcurvefit stopped because the final change in the sum of squares relative to
its initial value is less than the value of the function tolerance.

Examine the resulting parameters.

disp(ahat)

 1.0169
 3.1444
 2.1596

The fitted values ahat are within 8% of a = [1;3;2].

If you have the Statistics and Machine Learning Toolbox™ software, use the nlparci function to
generate confidence intervals for the ahat estimate.

 Nonlinear Curve Fitting with lsqcurvefit

11-49

See Also
lsqcurvefit | nlparci

More About
• “Nonlinear Data-Fitting” on page 11-10
• “Nonlinear Least Squares Without and Including Jacobian” on page 11-22

11 Least Squares

11-50

Fit a Model to Complex-Valued Data
This example shows how to perform nonlinear fitting of complex-valued data. While most
Optimization Toolbox™ solvers and algorithms operate only on real-valued data, least-squares solvers
and fsolve can work on both real-valued and complex-valued data for unconstrained problems. The
objective function must be analytic in the complex function sense.

Do not set the FunValCheck option to 'on' when using complex data. The solver errors.

Data Model

The data model is a simple exponential:

The is input data, is the response, and is a complex-valued vector of coefficients. The goal is to
estimate from and noisy observations . The data model is analytic, so you can use it in a complex
solution.

Artificial Data with Noise

Generate artificial data for the model. Take the complex coefficient vector as [2;3+4i;-.5+.4i].
Take the observations as exponentially distributed. Add complex-valued noise to the responses .

rng default % for reproducibility
N = 100; % number of observations
v0 = [2;3+4i;-.5+.4i]; % coefficient vector
xdata = -log(rand(N,1)); % exponentially distributed
noisedata = randn(N,1).*exp((1i*randn(N,1))); % complex noise
cplxydata = v0(1) + v0(2).*exp(v0(3)*xdata) + noisedata;

Fit the Model to Recover the Coefficient Vector

The difference between the response predicted by the data model and an observation (xdata for
and response cplxydata for) is:

objfcn = @(v)v(1)+v(2)*exp(v(3)*xdata) - cplxydata;

Use either lsqnonlin or lsqcurvefit to fit the model to the data. This example first uses
lsqnonlin.

opts = optimoptions(@lsqnonlin,'Display','off');
x0 = (1+1i)*[1;1;1]; % arbitrary initial guess
[vestimated,resnorm,residuals,exitflag,output] = lsqnonlin(objfcn,x0,[],[],opts);
vestimated,resnorm,exitflag,output.firstorderopt

vestimated =

 2.1582 + 0.1351i
 2.7399 + 3.8012i
 -0.5338 + 0.4660i

resnorm =

 100.9933

 Fit a Model to Complex-Valued Data

11-51

exitflag =

 3

ans =

 0.0018

lsqnonlin recovers the complex coefficient vector to about one significant digit. The norm of the
residual is sizable, indicating that the noise keeps the model from fitting all the observations. The exit
flag is 3, not the preferable 1, because the first-order optimality measure is about 1e-3, not below
1e-6.

Alternative: Use lsqcurvefit

To fit using lsqcurvefit, write the model to give just the responses, not the responses minus the
response data.

objfcn = @(v,xdata)v(1)+v(2)*exp(v(3)*xdata);

Use lsqcurvefit options and syntax.

opts = optimoptions(@lsqcurvefit,opts); % reuse the options
[vestimated,resnorm] = lsqcurvefit(objfcn,x0,xdata,cplxydata,[],[],opts)

vestimated =

 2.1582 + 0.1351i
 2.7399 + 3.8012i
 -0.5338 + 0.4660i

resnorm =

 100.9933

The results match those from lsqnonlin, because the underlying algorithms are identical. Use
whichever solver you find more convenient.

Alternative: Split Real and Imaginary Parts

To include bounds, or simply to stay completely within real values, you can split the real and complex
parts of the coefficients into separate variables. For this problem, split the coefficients as follows:

Write the response function for lsqcurvefit.

function yout = cplxreal(v,xdata)

11 Least Squares

11-52

yout = zeros(length(xdata),2); % allocate yout

expcoef = exp(v(5)*xdata(:)); % magnitude
coscoef = cos(v(6)*xdata(:)); % real cosine term
sincoef = sin(v(6)*xdata(:)); % imaginary sin term
yout(:,1) = v(1) + expcoef.*(v(3)*coscoef - v(4)*sincoef);
yout(:,2) = v(2) + expcoef.*(v(4)*coscoef + v(3)*sincoef);

Save this code as the file cplxreal.m on your MATLAB® path.

Split the response data into its real and imaginary parts.

ydata2 = [real(cplxydata),imag(cplxydata)];

The coefficient vector v now has six dimensions. Initialize it as all ones, and solve the problem using
lsqcurvefit.

x0 = ones(6,1);
[vestimated,resnorm,residuals,exitflag,output] = ...
 lsqcurvefit(@cplxreal,x0,xdata,ydata2);
vestimated,resnorm,exitflag,output.firstorderopt

Local minimum possible.

lsqcurvefit stopped because the final change in the sum of squares relative to
its initial value is less than the value of the function tolerance.

vestimated =

 2.1582
 0.1351
 2.7399
 3.8012
 -0.5338
 0.4660

resnorm =

 100.9933

exitflag =

 3

ans =

 0.0018

 Fit a Model to Complex-Valued Data

11-53

Interpret the six-element vector vestimated as a three-element complex vector, and you see that the
solution is virtually the same as the previous solutions.

See Also

More About
• “Complex Numbers in Optimization Toolbox Solvers” on page 2-14

11 Least Squares

11-54

Fit an Ordinary Differential Equation (ODE)
This example shows how to fit parameters of an ODE to data in two ways. The first shows a
straightforward fit of a constant-speed circular path to a portion of a solution of the Lorenz system, a
famous ODE with sensitive dependence on initial parameters. The second shows how to modify the
parameters of the Lorenz system to fit a constant-speed circular path. You can use the appropriate
approach for your application as a model for fitting a differential equation to data.

Lorenz System: Definition and Numerical Solution

The Lorenz system is a system of ordinary differential equations (see Lorenz system). For real
constants σ, ρ, β, the system is

dx
dt = σ(y − x)

dy
dt = x(ρ− z)− y

dz
dt = xy − βz .

Lorenz's values of the parameters for a sensitive system are σ = 10, β = 8/3, ρ = 28. Start the
system from [x(0),y(0),z(0)] = [10,20,10] and view the evolution of the system from time 0
through 100.

sigma = 10;
beta = 8/3;
rho = 28;
f = @(t,a) [-sigma*a(1) + sigma*a(2); rho*a(1) - a(2) - a(1)*a(3); -beta*a(3) + a(1)*a(2)];
xt0 = [10,20,10];
[tspan,a] = ode45(f,[0 100],xt0); % Runge-Kutta 4th/5th order ODE solver
figure
plot3(a(:,1),a(:,2),a(:,3))
view([-10.0 -2.0])

 Fit an Ordinary Differential Equation (ODE)

11-55

https://en.wikipedia.org/wiki/Lorenz_system

The evolution is quite complicated. But over a small time interval, it looks somewhat like uniform
circular motion. Plot the solution over the time interval [0,1/10].

[tspan,a] = ode45(f,[0 1/10],xt0); % Runge-Kutta 4th/5th order ODE solver
figure
plot3(a(:,1),a(:,2),a(:,3))
view([-30 -70])

11 Least Squares

11-56

Fit a Circular Path to the ODE Solution

The equations of a circular path have several parameters:

• Angle θ(1) of the path from the x-y plane
• Angle θ(2) of the plane from a tilt along the x-axis
• Radius R
• Speed V
• Shift t0 from time 0
• 3-D shift in space delta

In terms of these parameters, determine the position of the circular path for times xdata.

type fitlorenzfn

function f = fitlorenzfn(x,xdata)

theta = x(1:2);
R = x(3);
V = x(4);
t0 = x(5);
delta = x(6:8);
f = zeros(length(xdata),3);
f(:,3) = R*sin(theta(1))*sin(V*(xdata - t0)) + delta(3);
f(:,1) = R*cos(V*(xdata - t0))*cos(theta(2)) ...

 Fit an Ordinary Differential Equation (ODE)

11-57

 - R*sin(V*(xdata - t0))*cos(theta(1))*sin(theta(2)) + delta(1);
f(:,2) = R*sin(V*(xdata - t0))*cos(theta(1))*cos(theta(2)) ...
 - R*cos(V*(xdata - t0))*sin(theta(2)) + delta(2);

To find the best-fitting circular path to the Lorenz system at times given in the ODE solution, use
lsqcurvefit. In order to keep the parameters in reasonable limits, put bounds on the various
parameters.

lb = [-pi/2,-pi,5,-15,-pi,-40,-40,-40];
ub = [pi/2,pi,60,15,pi,40,40,40];
theta0 = [0;0];
R0 = 20;
V0 = 1;
t0 = 0;
delta0 = zeros(3,1);
x0 = [theta0;R0;V0;t0;delta0];
[xbest,resnorm,residual] = lsqcurvefit(@fitlorenzfn,x0,tspan,a,lb,ub);

Local minimum possible.

lsqcurvefit stopped because the final change in the sum of squares relative to
its initial value is less than the value of the function tolerance.

Plot the best-fitting circular points at the times from the ODE solution together with the solution of
the Lorenz system.

soln = a + residual;
hold on
plot3(soln(:,1),soln(:,2),soln(:,3),'r')
legend('ODE Solution','Circular Arc')
hold off

11 Least Squares

11-58

figure
plot3(a(:,1),a(:,2),a(:,3),'b.','MarkerSize',10)
hold on
plot3(soln(:,1),soln(:,2),soln(:,3),'rx','MarkerSize',10)
legend('ODE Solution','Circular Arc')
hold off

 Fit an Ordinary Differential Equation (ODE)

11-59

Fit the ODE to the Circular Arc

Now modify the parameters σ, β, and ρ to best fit the circular arc. For an even better fit, allow the
initial point [10,20,10] to change as well.

To do so, write a function file paramfun that takes the parameters of the ODE fit and calculates the
trajectory over the times t.

type paramfun

function pos = paramfun(x,tspan)

sigma = x(1);
beta = x(2);
rho = x(3);
xt0 = x(4:6);
f = @(t,a) [-sigma*a(1) + sigma*a(2); rho*a(1) - a(2) - a(1)*a(3); -beta*a(3) + a(1)*a(2)];
[~,pos] = ode45(f,tspan,xt0);

To find the best parameters, use lsqcurvefit to minimize the differences between the new
calculated ODE trajectory and the circular arc soln.

xt0 = zeros(1,6);
xt0(1) = sigma;
xt0(2) = beta;
xt0(3) = rho;
xt0(4:6) = soln(1,:);
[pbest,presnorm,presidual,exitflag,output] = lsqcurvefit(@paramfun,xt0,tspan,soln);

11 Least Squares

11-60

Local minimum possible.

lsqcurvefit stopped because the final change in the sum of squares relative to
its initial value is less than the value of the function tolerance.

Determine how much this optimization changed the parameters.

fprintf('New parameters: %f, %f, %f',pbest(1:3))

New parameters: 9.132446, 2.854998, 27.937986

fprintf('Original parameters: %f, %f, %f',[sigma,beta,rho])

Original parameters: 10.000000, 2.666667, 28.000000

The parameters sigma and beta changed by about 10%.

Plot the modified solution.

figure
hold on
odesl = presidual + soln;
plot3(odesl(:,1),odesl(:,2),odesl(:,3),'b')
plot3(soln(:,1),soln(:,2),soln(:,3),'r')
legend('ODE Solution','Circular Arc')
view([-30 -70])
hold off

 Fit an Ordinary Differential Equation (ODE)

11-61

Problems in Fitting ODEs

As described in “Optimizing a Simulation or Ordinary Differential Equation” on page 4-26, an
optimizer can have trouble due to the inherent noise in numerical ODE solutions. If you suspect that
your solution is not ideal, perhaps because the exit message or exit flag indicates a potential
inaccuracy, then try changing the finite differencing. In this example, use a larger finite difference
step size and central finite differences.

options = optimoptions('lsqcurvefit','FiniteDifferenceStepSize',1e-4,...
 'FiniteDifferenceType','central');
[pbest2,presnorm2,presidual2,exitflag2,output2] = ...
 lsqcurvefit(@paramfun,xt0,tspan,soln,[],[],options);

Local minimum possible.

lsqcurvefit stopped because the final change in the sum of squares relative to
its initial value is less than the value of the function tolerance.

In this case, using these finite differencing options does not improve the solution.

disp([presnorm,presnorm2])

 20.0637 20.0637

See Also

More About
• “Discretized Optimal Trajectory, Problem-Based” on page 10-94
• “Optimizing a Simulation or Ordinary Differential Equation” on page 4-26

11 Least Squares

11-62

Nonlinear Least-Squares, Problem-Based
This example shows how to perform nonlinear least-squares curve fitting using the “Problem-Based
Optimization Workflow” on page 9-2.

Model

The model equation for this problem is

y(t) = A1exp(r1t) + A2exp(r2t),

where A1, A2, r1, and r2 are the unknown parameters, y is the response, and t is time. The problem
requires data for times tdata and (noisy) response measurements ydata. The goal is to find the best
A and r, meaning those values that minimize

∑
t ∈ tdata

y(t)− ydata 2 .

Sample Data

Typically, you have data for a problem. In this case, generate artificial noisy data for the problem. Use
A = [1,2] and r = [-1,-3] as the underlying values, and use 200 random values from 0 to 3 as
the time data. Plot the resulting data points.

rng default % For reproducibility
A = [1,2];
r = [-1,-3];
tdata = 3*rand(200,1);
tdata = sort(tdata); % Increasing times for easier plotting
noisedata = 0.05*randn(size(tdata)); % Artificial noise
ydata = A(1)*exp(r(1)*tdata) + A(2)*exp(r(2)*tdata) + noisedata;
plot(tdata,ydata,'r*')
xlabel 't'
ylabel 'Response'

 Nonlinear Least-Squares, Problem-Based

11-63

The data are noisy. Therefore, the solution probably will not match the original parameters A and r
very well.

Problem-Based Approach

To find the best-fitting parameters A and r, first define optimization variables with those names.

A = optimvar('A',2);
r = optimvar('r',2);

Create an expression for the objective function, which is the sum of squares to minimize.

fun = A(1)*exp(r(1)*tdata) + A(2)*exp(r(2)*tdata);
obj = sum((fun - ydata).^2);

Create an optimization problem with the objective function obj.

lsqproblem = optimproblem("Objective",obj);

For the problem-based approach, specify the initial point as a structure, with the variable names as
the fields of the structure. Specify the initial A = [1/2,3/2] and the initial r = [-1/2,-3/2].

x0.A = [1/2,3/2];
x0.r = [-1/2,-3/2];

Review the problem formulation.

show(lsqproblem)

11 Least Squares

11-64

 OptimizationProblem :

 Solve for:
 A, r

 minimize :
 sum(arg6)

 where:

 arg5 = extraParams{3};
 arg6 = (((A(1) .* exp((r(1) .* extraParams{1})))
 + (A(2) .* exp((r(2) .* extraParams{2})))) - arg5).^2;

 extraParams{1}:

 0.0139
 0.0357
 0.0462
 0.0955
 0.1033
 0.1071
 0.1291
 0.1385
 0.1490
 0.1619
 0.1793
 0.2276
 0.2279
 0.2345
 0.2434
 0.2515
 0.2533
 0.2894
 0.2914
 0.2926
 0.3200
 0.3336
 0.3570
 0.3700
 0.3810
 0.3897
 0.3959
 0.4082
 0.4159
 0.4257
 0.4349
 0.4366
 0.4479
 0.4571
 0.4728
 0.4865
 0.4878
 0.4969
 0.5070
 0.5136
 0.5455
 0.5505

 Nonlinear Least-Squares, Problem-Based

11-65

 0.5517
 0.5606
 0.5669
 0.5898
 0.6714
 0.6869
 0.7043
 0.7197
 0.7199
 0.7251
 0.7306
 0.7533
 0.7628
 0.7653
 0.7725
 0.7796
 0.7889
 0.7914
 0.8281
 0.8308
 0.8355
 0.8575
 0.8890
 0.9190
 0.9336
 0.9513
 1.0114
 1.0132
 1.0212
 1.0500
 1.0529
 1.0550
 1.0595
 1.1055
 1.1077
 1.1413
 1.1447
 1.1692
 1.1767
 1.1993
 1.2054
 1.2117
 1.2518
 1.2653
 1.2942
 1.3076
 1.3162
 1.3280
 1.3368
 1.3404
 1.3516
 1.3528
 1.4082
 1.4199
 1.4561
 1.4604
 1.4678
 1.4693

11 Least Squares

11-66

 1.4726
 1.4951
 1.5179
 1.5255
 1.5323
 1.5397
 1.5856
 1.5924
 1.6150
 1.6406
 1.6410
 1.6416
 1.6492
 1.6496
 1.7035
 1.7065
 1.7256
 1.7391
 1.7558
 1.7558
 1.8059
 1.8481
 1.8662
 1.8769
 1.8971
 1.9389
 1.9432
 1.9473
 1.9622
 1.9653
 1.9664
 1.9672
 2.0362
 2.0391
 2.0603
 2.0676
 2.0845
 2.0972
 2.1181
 2.1281
 2.1952
 2.2294
 2.2341
 2.2445
 2.2538
 2.2612
 2.2641
 2.2716
 2.2732
 2.2966
 2.3247
 2.3271
 2.3375
 2.3407
 2.3408
 2.3766
 2.3829
 2.3845

 Nonlinear Least-Squares, Problem-Based

11-67

 2.3856
 2.4002
 2.4008
 2.4429
 2.4442
 2.4519
 2.4529
 2.4636
 2.4704
 2.4775
 2.4925
 2.5222
 2.5474
 2.5591
 2.6061
 2.6079
 2.6727
 2.7002
 2.7081
 2.7174
 2.7319
 2.7400
 2.7401
 2.7472
 2.7516
 2.7878
 2.7882
 2.8020
 2.8020
 2.8262
 2.8344
 2.8507
 2.8684
 2.8715
 2.8725
 2.8779
 2.8785
 2.8792
 2.8857
 2.8947
 2.9118
 2.9884

 extraParams{2}:

 0.0139
 0.0357
 0.0462
 0.0955
 0.1033
 0.1071
 0.1291
 0.1385
 0.1490
 0.1619
 0.1793
 0.2276
 0.2279

11 Least Squares

11-68

 0.2345
 0.2434
 0.2515
 0.2533
 0.2894
 0.2914
 0.2926
 0.3200
 0.3336
 0.3570
 0.3700
 0.3810
 0.3897
 0.3959
 0.4082
 0.4159
 0.4257
 0.4349
 0.4366
 0.4479
 0.4571
 0.4728
 0.4865
 0.4878
 0.4969
 0.5070
 0.5136
 0.5455
 0.5505
 0.5517
 0.5606
 0.5669
 0.5898
 0.6714
 0.6869
 0.7043
 0.7197
 0.7199
 0.7251
 0.7306
 0.7533
 0.7628
 0.7653
 0.7725
 0.7796
 0.7889
 0.7914
 0.8281
 0.8308
 0.8355
 0.8575
 0.8890
 0.9190
 0.9336
 0.9513
 1.0114
 1.0132
 1.0212

 Nonlinear Least-Squares, Problem-Based

11-69

 1.0500
 1.0529
 1.0550
 1.0595
 1.1055
 1.1077
 1.1413
 1.1447
 1.1692
 1.1767
 1.1993
 1.2054
 1.2117
 1.2518
 1.2653
 1.2942
 1.3076
 1.3162
 1.3280
 1.3368
 1.3404
 1.3516
 1.3528
 1.4082
 1.4199
 1.4561
 1.4604
 1.4678
 1.4693
 1.4726
 1.4951
 1.5179
 1.5255
 1.5323
 1.5397
 1.5856
 1.5924
 1.6150
 1.6406
 1.6410
 1.6416
 1.6492
 1.6496
 1.7035
 1.7065
 1.7256
 1.7391
 1.7558
 1.7558
 1.8059
 1.8481
 1.8662
 1.8769
 1.8971
 1.9389
 1.9432
 1.9473
 1.9622

11 Least Squares

11-70

 1.9653
 1.9664
 1.9672
 2.0362
 2.0391
 2.0603
 2.0676
 2.0845
 2.0972
 2.1181
 2.1281
 2.1952
 2.2294
 2.2341
 2.2445
 2.2538
 2.2612
 2.2641
 2.2716
 2.2732
 2.2966
 2.3247
 2.3271
 2.3375
 2.3407
 2.3408
 2.3766
 2.3829
 2.3845
 2.3856
 2.4002
 2.4008
 2.4429
 2.4442
 2.4519
 2.4529
 2.4636
 2.4704
 2.4775
 2.4925
 2.5222
 2.5474
 2.5591
 2.6061
 2.6079
 2.6727
 2.7002
 2.7081
 2.7174
 2.7319
 2.7400
 2.7401
 2.7472
 2.7516
 2.7878
 2.7882
 2.8020
 2.8020

 Nonlinear Least-Squares, Problem-Based

11-71

 2.8262
 2.8344
 2.8507
 2.8684
 2.8715
 2.8725
 2.8779
 2.8785
 2.8792
 2.8857
 2.8947
 2.9118
 2.9884

 extraParams{3}:

 2.9278
 2.7513
 2.7272
 2.4199
 2.3172
 2.3961
 2.2522
 2.1974
 2.1666
 2.0944
 1.9566
 1.7989
 1.7984
 1.7540
 1.8318
 1.6745
 1.6874
 1.5526
 1.5229
 1.5680
 1.4784
 1.5280
 1.3727
 1.2968
 1.4012
 1.3602
 1.2714
 1.1773
 1.2119
 1.2033
 1.2037
 1.1729
 1.1829
 1.1602
 1.0448
 1.0320
 1.0397
 1.0334
 1.0233
 1.0275
 0.8173
 0.9373

11 Least Squares

11-72

 1.0202
 0.8896
 0.9791
 0.9128
 0.7763
 0.7669
 0.6579
 0.7135
 0.7978
 0.7164
 0.7071
 0.6429
 0.6676
 0.6782
 0.6802
 0.6328
 0.6301
 0.7406
 0.4908
 0.7126
 0.6136
 0.6269
 0.4668
 0.4963
 0.5007
 0.5226
 0.3764
 0.4824
 0.3930
 0.4390
 0.4665
 0.4490
 0.4841
 0.4539
 0.3698
 0.3974
 0.3356
 0.3045
 0.4131
 0.3561
 0.3506
 0.3960
 0.3625
 0.3446
 0.3778
 0.3565
 0.3187
 0.2677
 0.2664
 0.3572
 0.2129
 0.2919
 0.1764
 0.3210
 0.3016
 0.2572
 0.2514
 0.1301

 Nonlinear Least-Squares, Problem-Based

11-73

 0.2825
 0.1372
 0.1243
 0.2421
 0.1888
 0.2547
 0.2559
 0.2632
 0.1801
 0.2309
 0.2134
 0.2495
 0.2332
 0.2512
 0.1875
 0.1861
 0.2397
 0.0803
 0.1579
 0.1196
 0.1541
 0.1978
 0.2034
 0.1095
 0.1332
 0.1567
 0.1345
 0.1635
 0.1661
 0.0991
 0.1366
 0.0387
 0.1922
 0.1031
 0.0714
 0.1178
 0.0568
 0.1255
 0.0957
 0.2313
 0.1710
 -0.0148
 0.1316
 0.0385
 0.0946
 0.1147
 0.1436
 0.0917
 0.1840
 0.0786
 0.1161
 0.1327
 0.1026
 0.1421
 0.1142
 0.0553
 0.0036
 0.1866

11 Least Squares

11-74

 0.0634
 0.0974
 0.1203
 0.0939
 0.0429
 0.0640
 0.0811
 0.1603
 0.0427
 0.1244
 0.0993
 0.0696
 0.0264
 0.0641
 0.0703
 0.0010
 0.0793
 0.0267
 0.0625
 0.0834
 0.0204
 0.0507
 0.0826
 -0.0272
 0.1161
 0.1832
 0.1100
 0.0453
 0.0826
 0.0079
 0.1531
 0.1052
 0.0965
 0.0132
 0.0729
 0.0287
 0.0410
 0.0280
 0.0049
 0.0102
 0.0442
 -0.0343

Problem-Based Solution

Solve the problem.

[sol,fval] = solve(lsqproblem,x0)

Solving problem using lsqnonlin.

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

sol = struct with fields:
 A: [2x1 double]

 Nonlinear Least-Squares, Problem-Based

11-75

 r: [2x1 double]

fval = 0.4724

Plot the resulting solution and the original data.

figure
responsedata = evaluate(fun,sol);
plot(tdata,ydata,'r*',tdata,responsedata,'b-')
legend('Original Data','Fitted Curve')
xlabel 't'
ylabel 'Response'
title("Fitted Response")

The plot shows that the fitted data match the original noisy data fairly well.

See how closely the fitted parameters match the original parameters A = [1,2] and r = [-1,-3].

disp(sol.A)

 1.1615
 1.8629

disp(sol.r)

 -1.0882
 -3.2256

11 Least Squares

11-76

The fitted parameters are off by about 15% in A and 8% in r.

Unsupported Functions Require fcn2optimexpr

If your objective function is not composed of elementary functions, you must convert the function to
an optimization expression using fcn2optimexpr. See “Convert Nonlinear Function to Optimization
Expression” on page 6-8. For the present example:

fun = @(A,r) A(1)*exp(r(1)*tdata) + A(2)*exp(r(2)*tdata);
response = fcn2optimexpr(fun,A,r);
obj = sum((response - ydata).^2);

The remainder of the steps in solving the problem are the same. The only other difference is in the
plotting routine, where you call response instead of fun:

responsedata = evaluate(response,sol);

For the list of supported functions, see “Supported Operations for Optimization Variables and
Expressions” on page 9-43.

See Also
solve

More About
• “Problem-Based Optimization Workflow” on page 9-2

 Nonlinear Least-Squares, Problem-Based

11-77

Fit ODE, Problem-Based
This example shows how to find parameters that optimize an ordinary differential equation (ODE) in
the least-squares sense, using the problem-based approach.

Problem

The problem is a multistep reaction model involving several substances, some of which react with
each other to produce different substances.

For this problem, the true reaction rates are unknown. So, you need to observe the reactions and
infer the rates. Assume that you can measure the substances for a set of times t. From these
observations, fit the best set of reaction rates to the measurements.

Model

The model has six substances, C1 through C6, that react as follows:

• One C1 and one C2 react to form one C3 at rate r1

• One C3 and one C4 react to form one C5 at rate r2

• One C3 and one C4 react to form one C6 at rate r3

The reaction rate is proportional to the product of the quantities of the required substances. So, if yi
represents the quantity of substance Ci, then the reaction rate to produce C3 is r1y1y2. Similarly, the
reaction rate to produce C5 is r2y3y4, and the reaction rate to produce C6 is r3y3y4.

In other words, the differential equation controlling the evolution of the system is

dy
dt =

−r1y1y2
−r1y1y2

−r2y3y4 + r1y1y2− r3y3y4
−r2y3y4− r3y3y4

r2y3y4
r3y3y4

.

Start the differential equation at time 0 at the point y(0) = [1, 1, 0, 1, 0, 0]. These initial values ensure
that all of the substances react completely, causing C1 through C4 to approach zero as time increases.

Express Model in MATLAB

The diffun function implements the differential equations in a form ready for solution by ode45.

type diffun

function dydt = diffun(~,y,r)
dydt = zeros(6,1);

11 Least Squares

11-78

s12 = y(1)*y(2);
s34 = y(3)*y(4);

dydt(1) = -r(1)*s12;
dydt(2) = -r(1)*s12;
dydt(3) = -r(2)*s34 + r(1)*s12 - r(3)*s34;
dydt(4) = -r(2)*s34 - r(3)*s34;
dydt(5) = r(2)*s34;
dydt(6) = r(3)*s34;
end

The true reaction rates are r1 = 2 . 5, r2 = 1 . 2, and r3 = 0 . 45. Compute the evolution of the system
for times zero through five by calling ode45.

rtrue = [2.5 1.2 0.45];
y0 = [1 1 0 1 0 0];
tspan = linspace(0,5);
soltrue = ode45(@(t,y)diffun(t,y,rtrue),tspan,y0);
yvalstrue = deval(soltrue,tspan);
for i = 1:6
 subplot(3,2,i)
 plot(tspan,yvalstrue(i,:))
 title(['y(',num2str(i),')'])
end

 Fit ODE, Problem-Based

11-79

Optimization Problem

To prepare the problem for solution in the problem-based approach, create a three-element
optimization variable r that has a lower bound of 0.1 and an upper bound of 10.

r = optimvar('r',3,"LowerBound",0.1,"UpperBound",10);

The objective function for this problem is the sum of squares of the differences between the ODE
solution with parameters r and the solution with the true parameters yvals. To express this
objective function, first write a MATLAB function that computes the ODE solution using parameters
r. This function is the RtoODE function.

type RtoODE

function solpts = RtoODE(r,tspan,y0)
sol = ode45(@(t,y)diffun(t,y,r),tspan,y0);
solpts = deval(sol,tspan);
end

To use RtoODE in an objective function, convert the function to an optimization expression by using
fcn2optimexpr. See “Convert Nonlinear Function to Optimization Expression” on page 6-8.

myfcn = fcn2optimexpr(@RtoODE,r,tspan,y0);

Express the objective function as the sum of squared differences between the ODE solution and the
solution with true parameters.

obj = sum(sum((myfcn - yvalstrue).^2));

Create an optimization problem with the objective function obj.

prob = optimproblem("Objective",obj);

View the problem by calling show.

show(prob)

 OptimizationProblem :

 Solve for:
 r

 minimize :
 sum(sum((RtoODE(r, extraParams{1}, extraParams{2})
 - extraParams{3}).^2, 1))

 extraParams{1}:

 Columns 1 through 7

 0 0.0505 0.1010 0.1515 0.2020 0.2525 0.3030

 Columns 8 through 14

 0.3535 0.4040 0.4545 0.5051 0.5556 0.6061 0.6566

 Columns 15 through 21

11 Least Squares

11-80

 0.7071 0.7576 0.8081 0.8586 0.9091 0.9596 1.0101

 Columns 22 through 28

 1.0606 1.1111 1.1616 1.2121 1.2626 1.3131 1.3636

 Columns 29 through 35

 1.4141 1.4646 1.5152 1.5657 1.6162 1.6667 1.7172

 Columns 36 through 42

 1.7677 1.8182 1.8687 1.9192 1.9697 2.0202 2.0707

 Columns 43 through 49

 2.1212 2.1717 2.2222 2.2727 2.3232 2.3737 2.4242

 Columns 50 through 56

 2.4747 2.5253 2.5758 2.6263 2.6768 2.7273 2.7778

 Columns 57 through 63

 2.8283 2.8788 2.9293 2.9798 3.0303 3.0808 3.1313

 Columns 64 through 70

 3.1818 3.2323 3.2828 3.3333 3.3838 3.4343 3.4848

 Columns 71 through 77

 3.5354 3.5859 3.6364 3.6869 3.7374 3.7879 3.8384

 Columns 78 through 84

 3.8889 3.9394 3.9899 4.0404 4.0909 4.1414 4.1919

 Columns 85 through 91

 4.2424 4.2929 4.3434 4.3939 4.4444 4.4949 4.5455

 Columns 92 through 98

 4.5960 4.6465 4.6970 4.7475 4.7980 4.8485 4.8990

 Columns 99 through 100

 4.9495 5.0000

 extraParams{2}:

 1 1 0 1 0 0

 extraParams{3}:

 Columns 1 through 7

 Fit ODE, Problem-Based

11-81

 1.0000 0.8879 0.7984 0.7253 0.6644 0.6130 0.5690
 1.0000 0.8879 0.7984 0.7253 0.6644 0.6130 0.5690
 0 0.1074 0.1847 0.2404 0.2805 0.3089 0.3287
 1.0000 0.9953 0.9831 0.9657 0.9449 0.9219 0.8977
 0 0.0034 0.0123 0.0249 0.0401 0.0568 0.0744
 0 0.0013 0.0046 0.0094 0.0150 0.0213 0.0279

 Columns 8 through 14

 0.5308 0.4975 0.4681 0.4420 0.4186 0.3976 0.3786
 0.5308 0.4975 0.4681 0.4420 0.4186 0.3976 0.3786
 0.3421 0.3506 0.3554 0.3574 0.3573 0.3556 0.3527
 0.8729 0.8481 0.8235 0.7994 0.7759 0.7532 0.7313
 0.0924 0.1105 0.1284 0.1459 0.1630 0.1795 0.1954
 0.0347 0.0414 0.0481 0.0547 0.0611 0.0673 0.0733

 Columns 15 through 21

 0.3613 0.3456 0.3311 0.3178 0.3056 0.2942 0.2837
 0.3613 0.3456 0.3311 0.3178 0.3056 0.2942 0.2837
 0.3489 0.3444 0.3395 0.3342 0.3287 0.3230 0.3173
 0.7102 0.6900 0.6706 0.6520 0.6343 0.6173 0.6010
 0.2108 0.2255 0.2396 0.2531 0.2660 0.2783 0.2902
 0.0790 0.0846 0.0898 0.0949 0.0997 0.1044 0.1088

 Columns 22 through 28

 0.2739 0.2647 0.2562 0.2481 0.2406 0.2335 0.2268
 0.2739 0.2647 0.2562 0.2481 0.2406 0.2335 0.2268
 0.3116 0.3059 0.3002 0.2946 0.2891 0.2837 0.2784
 0.5855 0.5706 0.5564 0.5428 0.5297 0.5172 0.5052
 0.3015 0.3123 0.3226 0.3325 0.3420 0.3511 0.3598
 0.1131 0.1171 0.1210 0.1247 0.1283 0.1317 0.1349

 Columns 29 through 35

 0.2205 0.2146 0.2089 0.2035 0.1984 0.1936 0.1890
 0.2205 0.2146 0.2089 0.2035 0.1984 0.1936 0.1890
 0.2732 0.2682 0.2633 0.2585 0.2538 0.2493 0.2449
 0.4938 0.4827 0.4722 0.4620 0.4523 0.4429 0.4339
 0.3682 0.3762 0.3839 0.3913 0.3984 0.4052 0.4117
 0.1381 0.1411 0.1440 0.1467 0.1494 0.1519 0.1544

 Columns 36 through 42

 0.1846 0.1804 0.1763 0.1725 0.1688 0.1653 0.1619
 0.1846 0.1804 0.1763 0.1725 0.1688 0.1653 0.1619
 0.2406 0.2364 0.2324 0.2285 0.2246 0.2209 0.2173
 0.4252 0.4168 0.4087 0.4010 0.3935 0.3862 0.3792
 0.4181 0.4241 0.4300 0.4357 0.4411 0.4464 0.4515
 0.1568 0.1591 0.1613 0.1634 0.1654 0.1674 0.1693

 Columns 43 through 49

 0.1587 0.1556 0.1526 0.1497 0.1469 0.1442 0.1416
 0.1587 0.1556 0.1526 0.1497 0.1469 0.1442 0.1416
 0.2138 0.2104 0.2071 0.2039 0.2007 0.1977 0.1947
 0.3725 0.3660 0.3596 0.3535 0.3476 0.3419 0.3364

11 Least Squares

11-82

 0.4564 0.4611 0.4657 0.4702 0.4744 0.4786 0.4826
 0.1711 0.1729 0.1746 0.1763 0.1779 0.1795 0.1810

 Columns 50 through 56

 0.1392 0.1368 0.1344 0.1322 0.1300 0.1279 0.1259
 0.1392 0.1368 0.1344 0.1322 0.1300 0.1279 0.1259
 0.1918 0.1890 0.1863 0.1836 0.1810 0.1785 0.1761
 0.3310 0.3258 0.3207 0.3158 0.3111 0.3064 0.3019
 0.4866 0.4903 0.4940 0.4976 0.5010 0.5044 0.5077
 0.1825 0.1839 0.1853 0.1866 0.1879 0.1892 0.1904

 Columns 57 through 63

 0.1239 0.1220 0.1202 0.1184 0.1166 0.1149 0.1133
 0.1239 0.1220 0.1202 0.1184 0.1166 0.1149 0.1133
 0.1737 0.1713 0.1690 0.1668 0.1646 0.1625 0.1605
 0.2976 0.2933 0.2892 0.2852 0.2813 0.2775 0.2737
 0.5109 0.5139 0.5169 0.5199 0.5227 0.5255 0.5282
 0.1916 0.1927 0.1939 0.1950 0.1960 0.1971 0.1981

 Columns 64 through 70

 0.1117 0.1101 0.1086 0.1072 0.1057 0.1043 0.1030
 0.1117 0.1101 0.1086 0.1072 0.1057 0.1043 0.1030
 0.1584 0.1565 0.1546 0.1527 0.1508 0.1491 0.1473
 0.2701 0.2666 0.2632 0.2598 0.2566 0.2534 0.2503
 0.5308 0.5334 0.5359 0.5383 0.5407 0.5430 0.5453
 0.1991 0.2000 0.2010 0.2019 0.2028 0.2036 0.2045

 Columns 71 through 77

 0.1017 0.1004 0.0991 0.0979 0.0967 0.0955 0.0944
 0.1017 0.1004 0.0991 0.0979 0.0967 0.0955 0.0944
 0.1456 0.1439 0.1423 0.1407 0.1391 0.1376 0.1361
 0.2472 0.2443 0.2414 0.2385 0.2358 0.2331 0.2304
 0.5475 0.5496 0.5517 0.5538 0.5558 0.5578 0.5597
 0.2053 0.2061 0.2069 0.2077 0.2084 0.2092 0.2099

 Columns 78 through 84

 0.0933 0.0922 0.0911 0.0901 0.0891 0.0881 0.0871
 0.0933 0.0922 0.0911 0.0901 0.0891 0.0881 0.0871
 0.1346 0.1331 0.1317 0.1303 0.1290 0.1277 0.1264
 0.2279 0.2253 0.2229 0.2204 0.2181 0.2157 0.2135
 0.5616 0.5634 0.5652 0.5670 0.5687 0.5704 0.5720
 0.2106 0.2113 0.2119 0.2126 0.2133 0.2139 0.2145

 Columns 85 through 91

 0.0862 0.0852 0.0843 0.0834 0.0826 0.0817 0.0809
 0.0862 0.0852 0.0843 0.0834 0.0826 0.0817 0.0809
 0.1251 0.1238 0.1226 0.1214 0.1202 0.1191 0.1179
 0.2112 0.2091 0.2069 0.2048 0.2028 0.2008 0.1988
 0.5736 0.5752 0.5768 0.5783 0.5798 0.5813 0.5827
 0.2151 0.2157 0.2163 0.2169 0.2174 0.2180 0.2185

 Columns 92 through 98

 Fit ODE, Problem-Based

11-83

 0.0801 0.0793 0.0785 0.0777 0.0770 0.0762 0.0755
 0.0801 0.0793 0.0785 0.0777 0.0770 0.0762 0.0755
 0.1168 0.1157 0.1146 0.1136 0.1125 0.1115 0.1105
 0.1969 0.1950 0.1931 0.1913 0.1895 0.1877 0.1860
 0.5841 0.5855 0.5868 0.5882 0.5895 0.5907 0.5920
 0.2190 0.2196 0.2201 0.2206 0.2210 0.2215 0.2220

 Columns 99 through 100

 0.0748 0.0741
 0.0748 0.0741
 0.1095 0.1086
 0.1843 0.1826
 0.5932 0.5944
 0.2225 0.2229

 variable bounds:
 0.1 <= r(1) <= 10
 0.1 <= r(2) <= 10
 0.1 <= r(3) <= 10

Solve Problem

To find the best-fitting parameters r, give an initial guess r0 for the solver and call solve.

r0.r = [1 1 1];
[rsol,sumsq] = solve(prob,r0)

Solving problem using lsqnonlin.

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

rsol = struct with fields:
 r: [3x1 double]

sumsq = 3.8668e-15

The sum of squared differences is essentially zero, meaning the solver found parameters that cause
the ODE solution to match the solution with true parameters. So, as expected, the solution contains
the true parameters.

disp(rsol.r)

 2.5000
 1.2000
 0.4500

disp(rtrue)

 2.5000 1.2000 0.4500

11 Least Squares

11-84

Limited Observations

Suppose that you cannot observe all the components of y, but only the final outputs y(5) and y(6).
Can you obtain the values of all the reaction rates based on this limited information?

To find out, modify the function RtoODE to return only the fifth and sixth ODE outputs. The modified
ODE solver is in RtoODE2.

type RtoODE2

function solpts = RtoODE2(r,tspan,y0)
solpts = RtoODE(r,tspan,y0);
solpts = solpts([5,6],:); % Just y(5) and y(6)
end

The RtoODE2 function simply calls RtoODE and then takes the final two rows of the output.

Create a new optimization expression from RtoODE2 and the optimization variable r, the time span
data tspan, and the initial point y0.

myfcn2 = fcn2optimexpr(@RtoODE2,r,tspan,y0);

Modify the comparison data to include outputs 5 and 6 only.

yvals2 = yvalstrue([5,6],:);

Create a new objective and new optimization problem from the optimization expression myfcn2 and
the comparison data yvals2.

obj2 = sum(sum((myfcn2 - yvals2).^2));
prob2 = optimproblem("Objective",obj2);

Solve the problem based on this limited set of observations.

[rsol2,sumsq2] = solve(prob2,r0)

Solving problem using lsqnonlin.

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to
its initial value is less than the value of the function tolerance.

rsol2 = struct with fields:
 r: [3x1 double]

sumsq2 = 2.1616e-05

Once again, the returned sum of squares is essentially zero. Does this mean that the solver found the
correct reaction rates?

disp(rsol2.r)

 1.7811
 1.5730
 0.5899

disp(rtrue)

 Fit ODE, Problem-Based

11-85

 2.5000 1.2000 0.4500

No; in this case, the new rates are quite different from the true rates. However, a plot of the new ODE
solution compared to the true values shows that y(5) and y(6) match the true values.

figure
plot(tspan,yvals2(1,:),'b-')
hold on
ss2 = RtoODE2(rsol2.r,tspan,y0);
plot(tspan,ss2(1,:),'r--')
plot(tspan,yvals2(2,:),'c-')
plot(tspan,ss2(2,:),'m--')
legend('True y(5)','New y(5)','True y(6)','New y(6)','Location','northwest')
hold off

To identify the correct reaction rates for this problem, you must have data for more observations than
y(5) and y(6).

Plot all the components of the solution with the new parameters, and plot the solution with the true
parameters.

figure
yvals2 = RtoODE(rsol2.r,tspan,y0);
for i = 1:6
 subplot(3,2,i)
 plot(tspan,yvalstrue(i,:),'b-',tspan,yvals2(i,:),'r--')
 legend('True','New','Location','best')

11 Least Squares

11-86

 title(['y(',num2str(i),')'])
end

With the new parameters, substances C1 and C2 drain more slowly, and substance C3 does not
accumulate as much. But substances C4, C5, and C6 have exactly the same evolution with both the
new parameters and the true parameters.

See Also
solve | ode45 | fcn2optimexpr

More About
• “Problem-Based Optimization Workflow” on page 9-2
• “Discretized Optimal Trajectory, Problem-Based” on page 10-94

 Fit ODE, Problem-Based

11-87

Nonlinear Data-Fitting Using Several Problem-Based
Approaches

The general advice for least-squares problem setup is to formulate the problem in a way that allows
solve to recognize that the problem has a least-squares form. When you do that, solve internally
calls lsqnonlin, which is efficient at solving least-squares problems. See “Write Objective Function
for Problem-Based Least Squares” on page 11-96.

This example shows the efficiency of a least-squares solver by comparing the performance of
lsqnonlin with that of fminunc on the same problem. Additionally, the example shows added
benefits that you can obtain by explicitly recognizing and handling separately the linear parts of a
problem.

Problem Setup

Consider the following data:

Data = ...
 [0.0000 5.8955
 0.1000 3.5639
 0.2000 2.5173
 0.3000 1.9790
 0.4000 1.8990
 0.5000 1.3938
 0.6000 1.1359
 0.7000 1.0096
 0.8000 1.0343
 0.9000 0.8435
 1.0000 0.6856
 1.1000 0.6100
 1.2000 0.5392
 1.3000 0.3946
 1.4000 0.3903
 1.5000 0.5474
 1.6000 0.3459
 1.7000 0.1370
 1.8000 0.2211
 1.9000 0.1704
 2.0000 0.2636];

Plot the data points.

t = Data(:,1);
y = Data(:,2);
plot(t,y,'ro')
title('Data points')

11 Least Squares

11-88

The problem is to fit the function

y = c(1)*exp(-lam(1)*t) + c(2)*exp(-lam(2)*t)

to the data.

Solution Approach Using Default Solver

To begin, define optimization variables corresponding to the equation.

c = optimvar('c',2);
lam = optimvar('lam',2);

Arbitrarily set the initial point x0 as follows: c(1) = 1, c(2) = 1, lam(1) = 1, and lam(2) = 0:

x0.c = [1,1];
x0.lam = [1,0];

Create a function that computes the value of the response at times t when the parameters are c and
lam.

diffun = c(1)*exp(-lam(1)*t) + c(2)*exp(-lam(2)*t);

Convert diffun to an optimization expression that sums the squares of the differences between the
function and the data y.

diffexpr = sum((diffun - y).^2);

 Nonlinear Data-Fitting Using Several Problem-Based Approaches

11-89

Create an optimization problem having diffexpr as the objective function.

ssqprob = optimproblem('Objective',diffexpr);

Solve the problem using the default solver.

[sol,fval,exitflag,output] = solve(ssqprob,x0)

Solving problem using lsqnonlin.

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to
its initial value is less than the value of the function tolerance.

sol = struct with fields:
 c: [2x1 double]
 lam: [2x1 double]

fval = 0.1477

exitflag =
 FunctionChangeBelowTolerance

output = struct with fields:
 firstorderopt: 7.8870e-06
 iterations: 6
 funcCount: 7
 cgiterations: 0
 algorithm: 'trust-region-reflective'
 stepsize: 0.0096
 message: 'Local minimum possible....'
 objectivederivative: "forward-AD"
 solver: 'lsqnonlin'

Plot the resulting curve based on the returned solution values sol.c and sol.lam.

resp = evaluate(diffun,sol);
hold on
plot(t,resp)
hold off

11 Least Squares

11-90

The fit looks to be as good as possible.

Solution Approach Using fminunc

To solve the problem using the fminunc solver, set the 'Solver' option to 'fminunc' when calling
solve.

[xunc,fvalunc,exitflagunc,outputunc] = solve(ssqprob,x0,'Solver',"fminunc")

Solving problem using fminunc.

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

xunc = struct with fields:
 c: [2x1 double]
 lam: [2x1 double]

fvalunc = 0.1477

exitflagunc =
 OptimalSolution

outputunc = struct with fields:
 iterations: 30

 Nonlinear Data-Fitting Using Several Problem-Based Approaches

11-91

 funcCount: 37
 stepsize: 0.0017
 lssteplength: 1
 firstorderopt: 2.9454e-05
 algorithm: 'quasi-newton'
 message: 'Local minimum found....'
 objectivederivative: "forward-AD"
 solver: 'fminunc'

Notice that fminunc found the same solution as lsqcurvefit, but took many more function
evaluations to do so. The parameters for fminunc are in the opposite order as those for
lsqcurvefit; the larger lam is lam(2), not lam(1). This is not surprising, the order of variables is
arbitrary.

fprintf(['There were %d iterations using fminunc,' ...
 ' and %d using lsqcurvefit.\n'], ...
 outputunc.iterations,output.iterations)

There were 30 iterations using fminunc, and 6 using lsqcurvefit.

fprintf(['There were %d function evaluations using fminunc,' ...
 ' and %d using lsqcurvefit.'], ...
 outputunc.funcCount,output.funcCount)

There were 37 function evaluations using fminunc, and 7 using lsqcurvefit.

Splitting the Linear and Nonlinear Problems

Notice that the fitting problem is linear in the parameters c(1) and c(2). This means for any values
of lam(1) and lam(2), you can use the backslash operator to find the values of c(1) and c(2) that
solve the least-squares problem.

Rework the problem as a two-dimensional problem, searching for the best values of lam(1) and
lam(2). The values of c(1) and c(2) are calculated at each step using the backslash operator as
described above. To do so, use the fitvector function, which performs the backslash operation to
obtain c(1) and c(2) at each solver iteration.

type fitvector

function yEst = fitvector(lam,xdata,ydata)
%FITVECTOR Used by DATDEMO to return value of fitting function.
% yEst = FITVECTOR(lam,xdata) returns the value of the fitting function, y
% (defined below), at the data points xdata with parameters set to lam.
% yEst is returned as a N-by-1 column vector, where N is the number of
% data points.
%
% FITVECTOR assumes the fitting function, y, takes the form
%
% y = c(1)*exp(-lam(1)*t) + ... + c(n)*exp(-lam(n)*t)
%
% with n linear parameters c, and n nonlinear parameters lam.
%
% To solve for the linear parameters c, we build a matrix A
% where the j-th column of A is exp(-lam(j)*xdata) (xdata is a vector).
% Then we solve A*c = ydata for the linear least-squares solution c,
% where ydata is the observed values of y.

11 Least Squares

11-92

A = zeros(length(xdata),length(lam)); % build A matrix
for j = 1:length(lam)
 A(:,j) = exp(-lam(j)*xdata);
end
c = A\ydata; % solve A*c = y for linear parameters c
yEst = A*c; % return the estimated response based on c

Solve the problem using solve starting from a two-dimensional initial point x02.lam = [1,0]. To do
so, first convert the fitvector function to an optimization expression using fcn2optimexpr. See
“Convert Nonlinear Function to Optimization Expression” on page 6-8. To avoid a warning, give the
output size of the resulting expression. Create a new optimization problem with objective as the sum
of squared differences between the converted fitvector function and the data y.

x02.lam = x0.lam;
F2 = fcn2optimexpr(@(x) fitvector(x,t,y),lam,'OutputSize',[length(t),1]);
ssqprob2 = optimproblem('Objective',sum((F2 - y).^2));
[sol2,fval2,exitflag2,output2] = solve(ssqprob2,x02)

Solving problem using lsqnonlin.

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to
its initial value is less than the value of the function tolerance.

sol2 = struct with fields:
 lam: [2x1 double]

fval2 = 0.1477

exitflag2 =
 FunctionChangeBelowTolerance

output2 = struct with fields:
 firstorderopt: 4.4071e-06
 iterations: 10
 funcCount: 33
 cgiterations: 0
 algorithm: 'trust-region-reflective'
 stepsize: 0.0080
 message: 'Local minimum possible....'
 objectivederivative: "finite-differences"
 solver: 'lsqnonlin'

The efficiency of the two-dimensional solution is similar to that of the four-dimensional solution:

fprintf(['There were %d function evaluations using the 2-d ' ...
 'formulation, and %d using the 4-d formulation.'], ...
 output2.funcCount,output.funcCount)

There were 33 function evaluations using the 2-d formulation, and 7 using the 4-d formulation.

Split Problem is More Robust to Initial Guess

Choosing a bad starting point for the original four-parameter problem leads to a local solution that is
not global. Choosing a starting point with the same bad lam(1) and lam(2) values for the split two-

 Nonlinear Data-Fitting Using Several Problem-Based Approaches

11-93

parameter problem leads to the global solution. To show this, rerun the original problem with a start
point that leads to a relatively bad local solution, and compare the resulting fit with the global
solution.

x0bad.c = [5 1];
x0bad.lam = [1 0];
[solbad,fvalbad,exitflagbad,outputbad] = solve(ssqprob,x0bad)

Solving problem using lsqnonlin.

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to
its initial value is less than the value of the function tolerance.

solbad = struct with fields:
 c: [2x1 double]
 lam: [2x1 double]

fvalbad = 2.2173

exitflagbad =
 FunctionChangeBelowTolerance

outputbad = struct with fields:
 firstorderopt: 0.0036
 iterations: 31
 funcCount: 32
 cgiterations: 0
 algorithm: 'trust-region-reflective'
 stepsize: 0.0012
 message: 'Local minimum possible....'
 objectivederivative: "forward-AD"
 solver: 'lsqnonlin'

respbad = evaluate(diffun,solbad);
hold on
plot(t,respbad,'g')
legend('Data','Global fit','Bad local fit','Location','NE')
hold off

11 Least Squares

11-94

fprintf(['The residual norm at the good ending point is %f,' ...
 ' and the residual norm at the bad ending point is %f.'], ...
 fval,fvalbad)

The residual norm at the good ending point is 0.147723, and the residual norm at the bad ending point is 2.217300.

See Also
solve | fcn2optimexpr

More About
• “Nonlinear Data-Fitting” on page 11-10
• “Problem-Based Optimization Workflow” on page 9-2

 Nonlinear Data-Fitting Using Several Problem-Based Approaches

11-95

Write Objective Function for Problem-Based Least Squares
To specify an objective function for problem-based least squares, write the objective either explicitly
as a sum of squares or as the square of a norm of an expression. By explicitly using a least-squares
formulation, you obtain the most appropriate and efficient solver for your problem. For example,

t = randn(10,1); % Data for the example
x = optimvar('x',10);

obj = sum((x - t).^2); % Explicit sum of squares

prob = optimproblem("Objective",obj);
% Check to see the default solver
opts = optimoptions(prob)

opts =

 lsqlin options:
...

Equivalently, write the objective as a squared norm.

obj2 = norm(x-t)^2;
prob2 = optimproblem("Objective",obj2);
% Check to see the default solver
opts = optimoptions(prob2)

opts =

 lsqlin options:
...

In contrast, expressing the objective as a mathematically equivalent expression gives a problem that
the software interprets as a general quadratic problem.

obj3 = (x - t)'*(x - t); % Equivalent to a sum of squares,
 % but not interpreted as a sum of squares
prob3 = optimproblem("Objective",obj3);
% Check to see the default solver
opts = optimoptions(prob3)

opts =

 quadprog options:
...

Similarly, write nonlinear least-squares as a square of a norm or an explicit sums of squares of
optimization expressions. This objective is an explicit sum of squares.

t = linspace(0,5); % Data for the example
A = optimvar('A');
r = optimvar('r');
expr = A*exp(r*t);
ydata = 3*exp(-2*t) + 0.1*randn(size(t));

obj4 = sum((expr - ydata).^2); % Explicit sum of squares

prob4 = optimproblem("Objective",obj4);

11 Least Squares

11-96

% Check to see the default solver
opts = optimoptions(prob4)

opts =

 lsqnonlin options:
...

Equivalently, write the objective as a squared norm.

obj5 = norm(expr - ydata)^2; % norm squared
prob5 = optimproblem("Objective",obj5);
% Check to see the default solver
opts = optimoptions(prob5)

opts =

 lsqnonlin options:
...

The most general form that the software interprets as a least-squares problem is a square of a norm
or else a sum of expressions Rn of this form:

Rn = an + k1∑ k2∑ k3∑ ...k jen
2

• en is any expression. If multidimensional, en should be squared term-by-term using .^2.
• an is a scalar numeric value.
• The kj are positive scalar numeric values.

Each expression Rn must evaluate to a scalar, not a multidimensional value. For example,

x = optimvar('x',10,3,4);
y = optimvar('y',10,2);
t = randn(10,3,4); % Data for example
u = randn(10,2); % Data for example
a = randn; % Coefficient
k = abs(randn(5,1)); % Positive coefficients
% Explicit sums of squares:
R1 = a + k(1)*sum(k(2)*sum(k(3)*sum((x - t).^2,3)));
R2 = k(4)*sum(k(5)*sum((y - u).^2,2));
R3 = 1 + cos(x(1))^2;
prob = optimproblem('Objective',R1 + R2 + R3);
options = optimoptions(prob)

options =

 lsqnonlin options:
...

See Also

More About
• “Problem-Based Optimization Workflow” on page 9-2

 Write Objective Function for Problem-Based Least Squares

11-97

Code Generation in Linear Least Squares: Background
In this section...
“What Is Code Generation?” on page 11-98
“Requirements for Code Generation” on page 11-98
“Generated Code Not Multithreaded” on page 11-99

What Is Code Generation?
Code generation is the conversion of MATLAB code to C code using MATLAB Coder. Code generation
requires a MATLAB Coder license.

Typically, you use code generation to deploy code on hardware that is not running MATLAB. For
example, you can deploy code on a robot, using lsqlin for optimizing movement or planning.

For an example, see “Generate Code for lsqlin” on page 11-100. For code generation in other
optimization solvers, see “Generate Code for fmincon” on page 5-138, “Generate Code for quadprog”
on page 10-62, “Generate Code for lsqcurvefit or lsqnonlin” on page 11-105, or “Generate Code for
fsolve” on page 12-38.

Requirements for Code Generation
• lsqlin supports code generation using either the codegen function or the MATLAB Coder app.

You must have a MATLAB Coder license to generate code.
• The target hardware must support standard double-precision floating-point computations. You

cannot generate code for single-precision or fixed-point computations.
• Code generation targets do not use the same math kernel libraries as MATLAB solvers. Therefore,

code generation solutions can vary from solver solutions, especially for poorly conditioned
problems.

• When solving unconstrained and underdetermined problems in MATLAB, lsqlin calls mldivide,
which returns a basic solution. In code generation, the returned solution has minimum norm,
which usually differs.

• lsqlin does not support the problem argument for code generation.

[x,fval] = lsqlin(problem) % Not supported

• All lsqlin input matrices such as A, Aeq, lb, and ub must be full, not sparse. You can convert
sparse matrices to full by using the full function.

• The lb and ub arguments must have the same number of entries as the number of columns in C or
must be empty [].

• For advanced code optimization involving embedded processors, you also need an Embedded
Coder license.

• You must include options for lsqlin and specify them using optimoptions. The options must
include the Algorithm option, set to 'active-set'.

options = optimoptions('lsqlin','Algorithm','active-set');
[x,fval,exitflag] = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,options);

• Code generation supports these options:

11 Least Squares

11-98

• Algorithm — Must be 'active-set'
• ConstraintTolerance
• MaxIterations
• ObjectiveLimit
• OptimalityTolerance
• StepTolerance

• Generated code has limited error checking for options. The recommended way to update an option
is to use optimoptions, not dot notation.

opts = optimoptions('lsqlin','Algorithm','active-set');
opts = optimoptions(opts,'MaxIterations',1e4); % Recommended
opts.MaxIterations = 1e4; % Not recommended

• Do not load options from a file. Doing so can cause code generation to fail. Instead, create options
in your code.

• If you specify an option that is not supported, the option is typically ignored during code
generation. For reliable results, specify only supported options.

Generated Code Not Multithreaded
By default, generated code for use outside the MATLAB environment uses linear algebra libraries that
are not multithreaded. Therefore, this code can run significantly slower than code in the MATLAB
environment.

If your target hardware has multiple cores, you can achieve better performance by using custom
multithreaded LAPACK and BLAS libraries. To incorporate these libraries in your generated code, see
“Speed Up Linear Algebra in Generated Standalone Code by Using LAPACK Calls” (MATLAB Coder).

See Also
codegen | optimoptions | lsqlin | quadprog

More About
• “Generate Code for lsqlin” on page 11-100
• “Static Memory Allocation for fmincon Code Generation” on page 5-142
• “Optimization Code Generation for Real-Time Applications” on page 5-144

 Code Generation in Linear Least Squares: Background

11-99

Generate Code for lsqlin

Linear Least-Squares Problem to Solve
Create pseudorandom data for the problem of minimizing the norm of C*x – d subject to bounds
and linear inequality constraints. Create a problem for 15 variables, subject to the bounds lb = –1
and ub = 1 and subject to 150 linear constraints A*x <= b.

N = 15; % Number of variables
rng default % For reproducibility
A = randn([10*N,N]);
b = 5*ones(size(A,1),1);
Aeq = []; % No equality constraints
beq = [];
ub = ones(N,1);
lb = -ub;
C = 10*eye(N) + randn(N);
C = (C + C.')/2; % Symmetrize the matrix
d = 20*randn(N,1);

Solve Using lsqlin
Code generation requires the 'active-set' algorithm, which requires an initial point x0. To solve
the problem in MATLAB using the algorithm required by code generation, set options and an initial
point.

x0 = zeros(size(d));
options = optimoptions('lsqlin','Algorithm','active-set');

To solve the problem, call lsqlin.

[x,fv,~,ef,output,lam] = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,options);

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

After lsqlin solves this problem, look at the number of nonzero Lagrange multipliers of each type.
See how many solution components are unconstrained by subtracting the total number of nonzero
Lagrange multipliers.
nl = nnz(lam.lower);
nu = nnz(lam.upper);
ni = nnz(lam.ineqlin);
nunconstrained = N - nl - nu - ni;

fprintf('Number of solution components at lower bounds: %g\n',nl);
fprintf('Number of solution components at upper bounds: %g\n',nu);
fprintf('Number of solution components at inequality: %g\n',ni);
fprintf('Number of unconstrained solution components: %g\n',nunconstrained);

Number of solution components at lower bounds: 3
Number of solution components at upper bounds: 2
Number of solution components at inequality: 5
Number of unconstrained solution components: 5

11 Least Squares

11-100

Code Generation Steps
To solve the same problem using code generation, complete the following steps.

1 Write a function that incorporates all of the preceding steps. To produce less output, set the
Display option to 'off'.
function [x,fv,lam] = solvelsqlin
N = 15; % Number of variables
rng default % For reproducibility
A = randn([10*N,N]);
b = 5*ones(size(A,1),1);
Aeq = []; % No equality constraints
beq = [];
ub = ones(N,1);
lb = -ub;
C = 10*eye(N) + randn(N);
C = (C + C.')/2; % Symmetrize the matrix
d = 20*randn(N,1);
x0 = zeros(size(d));
options = optimoptions('lsqlin','Algorithm','active-set',...
 'Display','off');
[x,fv,~,ef,output,lam] = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,options);

nl = nnz(lam.lower);
nu = nnz(lam.upper);
ni = nnz(lam.ineqlin);
nunconstrained = N - nl - nu - ni;
fprintf('Number of solution components at lower bounds: %g\n',nl);
fprintf('Number of solution components at upper bounds: %g\n',nu);
fprintf('Number of solution components at inequality: %g\n',ni);
fprintf('Number of unconstrained solution components: %g\n',nunconstrained);
end

2 Create a configuration for code generation. In this case, use 'mex'.

cfg = coder.config('mex');
3 Generate code for the solvelsqlin function.

codegen -config cfg solvelsqlin
4 Test the generated code by running the generated file, which is named

solvelsqlin_mex.mexw64 or similar.

[x2,fv2,lam2] = solvelsqlin_mex;

Number of solution components at lower bounds: 1
Number of solution components at upper bounds: 5
Number of solution components at inequality: 6
Number of unconstrained solution components: 3

5 The number of solution components at various bounds has changed from the previous solution.
To see whether these differences are important, compare the solution point differences and
function value differences.

disp([norm(x - x2), abs(fv - fv2)])

 1.0e-12 *

 0.0007 0.2274

The differences between the two solutions are negligible.

See Also
quadprog | lsqlin | codegen | optimoptions

 Generate Code for lsqlin

11-101

More About
• “Code Generation in Linear Least Squares: Background” on page 11-98
• “Static Memory Allocation for fmincon Code Generation” on page 5-142
• “Optimization Code Generation for Real-Time Applications” on page 5-144

11 Least Squares

11-102

Code Generation in Nonlinear Least Squares: Background

What Is Code Generation?
Code generation is the conversion of MATLAB code to C code using MATLAB Coder. Code generation
requires a MATLAB Coder license.

Typically, you use code generation to deploy code on hardware that is not running MATLAB. For
example, you can deploy code on a robot, using lsqnonlin for optimizing movement or planning.

For an example, see “Generate Code for lsqcurvefit or lsqnonlin” on page 11-105. For code generation
in other optimization solvers, see “Generate Code for fmincon” on page 5-138, “Generate Code for
quadprog” on page 10-62, “Generate Code for lsqlin” on page 11-100, or “Generate Code for fsolve”
on page 12-38.

Requirements for Code Generation
• lsqcurvefit and lsqnonlin support code generation using either the codegen function or the

MATLAB Coder app. You must have a MATLAB Coder license to generate code.
• The target hardware must support standard double-precision floating-point computations. You

cannot generate code for single-precision or fixed-point computations.
• Code generation targets do not use the same math kernel libraries as MATLAB solvers. Therefore,

code generation solutions can vary from solver solutions, especially for poorly conditioned
problems.

• All code for generation must be MATLAB code. In particular, you cannot use a custom black-box
function as an objective function for lsqcurvefit or lsqnonlin. You can use coder.ceval to
evaluate a custom function coded in C or C++. However, the custom function must be called in a
MATLAB function.

• lsqcurvefit and lsqnonlin do not support the problem argument for code generation.

[x,fval] = lsqnonlin(problem) % Not supported

• You must specify the objective function by using function handles, not strings or character names.

x = lsqnonlin(@fun,x0,lb,ub,options) % Supported
% Not supported: lsqnonlin('fun',...) or lsqnonlin("fun",...)

• All input matrices lb and ub must be full, not sparse. You can convert sparse matrices to full by
using the full function.

• The lb and ub arguments must have the same number of entries as the x0 argument or must be
empty [].

• For advanced code optimization involving embedded processors, you also need an Embedded
Coder license.

• You must include options for lsqcurvefit or lsqnonlin and specify them using
optimoptions. The options must include the Algorithm option, set to 'levenberg-
marquardt'.

options = optimoptions('lsqnonlin','Algorithm','levenberg-marquardt');
[x,fval,exitflag] = lsqnonlin(fun,x0,lb,ub,options);

• Code generation supports these options:

 Code Generation in Nonlinear Least Squares: Background

11-103

• Algorithm — Must be 'levenberg-marquardt'
• FiniteDifferenceStepSize
• FiniteDifferenceType
• FunctionTolerance
• MaxFunctionEvaluations
• MaxIterations
• SpecifyObjectiveGradient
• StepTolerance
• TypicalX

• Generated code has limited error checking for options. The recommended way to update an option
is to use optimoptions, not dot notation.

opts = optimoptions('lsqnonlin','Algorithm','levenberg-marquardt');
opts = optimoptions(opts,'MaxIterations',1e4); % Recommended
opts.MaxIterations = 1e4; % Not recommended

• Do not load options from a file. Doing so can cause code generation to fail. Instead, create options
in your code.

• Usually, if you specify an option that is not supported, the option is silently ignored during code
generation. However, if you specify a plot function or output function by using dot notation, code
generation can issue an error. For reliability, specify only supported options.

• Because output functions and plot functions are not supported, solvers do not return the exit flag –
1.

Generated Code Not Multithreaded
By default, generated code for use outside the MATLAB environment uses linear algebra libraries that
are not multithreaded. Therefore, this code can run significantly slower than code in the MATLAB
environment.

If your target hardware has multiple cores, you can achieve better performance by using custom
multithreaded LAPACK and BLAS libraries. To incorporate these libraries in your generated code, see
“Speed Up Linear Algebra in Generated Standalone Code by Using LAPACK Calls” (MATLAB Coder).

See Also
lsqnonlin | lsqcurvefit | codegen | optimoptions

More About
• “Generate Code for lsqcurvefit or lsqnonlin” on page 11-105
• “Static Memory Allocation for fmincon Code Generation” on page 5-142
• “Optimization Code Generation for Real-Time Applications” on page 5-144

11 Least Squares

11-104

Generate Code for lsqcurvefit or lsqnonlin
This example shows how to generate C code for nonlinear least squares.

Data and Model for Least Squares
In this example, the vector xdata represents 100 data points, and the vector ydata represents the
associated measurements. The modeled relationship between xdata and ydata is

ydatai = a1 + a2exp(− a3xdatai) + εi .

Generate the data for the problem.

rng(5489,'twister') % For reproducibility
xdata = -2*log(rand(100,1));
ydata = (ones(100,1) + .1*randn(100,1)) + (3*ones(100,1)+...
 0.5*randn(100,1)).*exp((-(2*ones(100,1)+...
 0.5*randn(100,1))).*xdata);

The code generates xdata from 100 independent samples of an exponential distribution with mean 2.
The code generates ydata from its defining equation using a = [1;3;2], perturbed by adding
normal deviates with standard deviations [0.1;0.5;0.5].

Solve Generating Code for lsqcurvefit
Solver Approach

The goal is to find parameters for the model a i, i = 1, 2, 3 that best fit the data.

To fit the parameters to the data using lsqcurvefit, you need to define a fitting function. For
lsqcurvefit, the fitting function takes a parameter vector a and the data xdata and returns a
prediction of the response, which should be equal to ydata with no noise and a perfect model. Define
the fitting function predicted as an anonymous function.

predicted = @(a,xdata) a(1)*ones(100,1)+a(2)*exp(-a(3)*xdata);

To fit the model to the data, lsqcurvefit needs an initial estimate a0 of the parameters.

a0 = [2;2;2];

Call lsqcurvefit to find the best-fitting parameters a i.

[ahat,resnorm,residual,exitflag,output,lambda,jacobian] =...
 lsqcurvefit(predicted,a0,xdata,ydata);

Code Generation Approach

To solve the same problem using code generation, complete the following steps.

1 Write a function that incorporates all of the previous steps: generate data, create a fitting
function, create an initial point, and call lsqcurvefit.
function [x,res] = solvelsqcurve
rng(5489,'twister') % For reproducibility
xdata = -2*log(rand(100,1));
ydata = (ones(100,1) + .1*randn(100,1)) + (3*ones(100,1)+...

 Generate Code for lsqcurvefit or lsqnonlin

11-105

 0.5*randn(100,1)).*exp((-(2*ones(100,1)+...
 0.5*randn(100,1))).*xdata);
predicted = @(a,xdata) a(1)*ones(100,1)+a(2)*exp(-a(3)*xdata);
options = optimoptions('lsqcurvefit','Algorithm','levenberg-marquardt','Display','off');
a0 = [2;2;2];
lb = [];
ub = [];
[x,res] = lsqcurvefit(predicted,a0,xdata,ydata,lb,ub,options);
end

2 Create a configuration for code generation. In this case, use 'mex'.

cfg = coder.config('mex');
3 Generate code for the solvelsqcurve function.

codegen -config cfg solvelsqcurve
4 Test the generated code by running the generated file, which is named

solvelsqcurve_mex.mexw64 or similar.

[x,res] = solvelsqcurve_mex

x =

 1.0169
 3.1444
 2.1596

res =

 7.4101

Solve Generating Code for lsqnonlin
Solver Approach

The goal is to find parameters for the model a i, i = 1, 2, 3 that best fit the data.

To fit the parameters to the data using lsqnonlin, you need to define a fitting function. For
lsqnonlin, the fitting function takes a parameter vector a, the data xdata, and the data ydata. The
fitting function returns the difference between the prediction of a response and the data ydata,
which should equal 0 with no noise and a perfect model. Define the fitting function predicted as an
anonymous function.

predicted = @(a)(a(1)*ones(100,1)+a(2)*exp(-a(3)*xdata) - ydata)

To fit the model to the data, lsqnonlin needs an initial estimate a0 of the parameters.

a0 = [2;2;2];

Call lsqnonlin to find the best-fitting parameters a i.

[ahat,resnorm,residual,exitflag,output,lambda,jacobian] =...
 lsqnonlin(predicted,a0);

Code Generation Approach

To solve the same problem using code generation, complete the following steps.

1 Write a function that incorporates all of the previous steps: generate data, create a fitting
function, create an initial point, and call lsqnonlin.

11 Least Squares

11-106

function [x,res] = solvelsqnon
rng(5489,'twister') % For reproducibility
xdata = -2*log(rand(100,1));
ydata = (ones(100,1) + .1*randn(100,1)) + (3*ones(100,1)+...
 0.5*randn(100,1)).*exp((-(2*ones(100,1)+...
 0.5*randn(100,1))).*xdata);
predicted = @(a) (a(1)*ones(100,1)+a(2)*exp(-a(3)*xdata) - ydata);
options = optimoptions('lsqnonlin','Algorithm','levenberg-marquardt','Display','off');
a0 = [2;2;2];
lb = [];
ub = [];
[x,res] = lsqnonlin(predicted,a0,lb,ub,options);
end

2 Create a configuration for code generation. In this case, use 'mex'.

cfg = coder.config('mex');
3 Generate code for the solvelsqnon function.

codegen -config cfg solvelsqnon
4 Test the generated code by running the generated file, which is named

solvelsqnon_mex.mexw64 or similar.

[x,res] = solvelsqnon_mex

x =

 1.0169
 3.1444
 2.1596

res =

 7.4101

The solution is identical to the one generated by solvelsqcurve_mex because the solvers have
identical underlying algorithms. So, you can use the solver you find most convenient.

See Also
lsqcurvefit | lsqnonlin | codegen | optimoptions

More About
• “Code Generation in Nonlinear Least Squares: Background” on page 11-103
• “Static Memory Allocation for fmincon Code Generation” on page 5-142
• “Optimization Code Generation for Real-Time Applications” on page 5-144

 Generate Code for lsqcurvefit or lsqnonlin

11-107

Systems of Equations

• “Equation Solving Algorithms” on page 12-2
• “Solve Nonlinear System Without and Including Jacobian” on page 12-7
• “Large Sparse System of Nonlinear Equations with Jacobian” on page 12-10
• “Large System of Nonlinear Equations with Jacobian Sparsity Pattern” on page 12-14
• “Nonlinear Systems with Constraints” on page 12-17
• “Solve Nonlinear System of Equations, Problem-Based” on page 12-21
• “Solve Nonlinear System of Polynomials, Problem-Based” on page 12-23
• “Follow Equation Solution as a Parameter Changes” on page 12-25
• “Nonlinear System of Equations with Constraints, Problem-Based” on page 12-32
• “Code Generation in Nonlinear Equation Solving: Background” on page 12-36
• “Generate Code for fsolve” on page 12-38

12

Equation Solving Algorithms
In this section...
“Equation Solving Definition” on page 12-2
“Trust-Region Algorithm” on page 12-2
“Trust-Region-Dogleg Algorithm” on page 12-4
“Levenberg-Marquardt Method” on page 12-5
“fzero Algorithm” on page 12-6
“\ Algorithm” on page 12-6

Equation Solving Definition
Given a set of n nonlinear functions Fi(x), where n is the number of components in the vector x, the
goal of equation solving is to find a vector x that makes all Fi(x) = 0.

fsolve attempts to solve a system of equations by minimizing the sum of squares of the components.
If the sum of squares is zero, the system of equations is solved. fsolve has three algorithms:

• Trust-region
• Trust-region-dogleg
• Levenberg-Marquardt

All algorithms are large scale; see “Large-Scale vs. Medium-Scale Algorithms” on page 2-10.

The fzero function solves a single one-dimensional equation.

The mldivide function solves a system of linear equations.

Trust-Region Algorithm
Many of the methods used in Optimization Toolbox solvers are based on trust regions, a simple yet
powerful concept in optimization.

To understand the trust-region approach to optimization, consider the unconstrained minimization
problem, minimize f(x), where the function takes vector arguments and returns scalars. Suppose that
the current point is x in n-space and you want to improve by moving to a point with a lower function
value. To do so, the algorithm approximates f with a simpler function q, which reasonably reflects the
behavior of function f in a neighborhood N around the point x. This neighborhood is the trust region.
The solver computes a trial step s by minimizing (or approximately minimizing) over N. The trust-
region subproblem is

min
s

q(s), s ∈ N .

The solver updates the current point to x + s if f(x + s) < f(x); otherwise, the current point remains
unchanged and the solver shrinks N (the trust region) and repeats the trial step computation.

The key questions in defining a specific trust-region approach to minimizing f(x) are how to choose
and compute the approximation q (defined at the current point x), how to choose and modify the trust
region N, and how accurately to solve the trust-region subproblem.

12 Systems of Equations

12-2

In the standard trust-region method ([48]), the quadratic approximation q is defined by the first two
terms of the Taylor approximation to F at x. The neighborhood N is usually spherical or ellipsoidal in
shape. Mathematically, the trust-region subproblem is typically stated

min 1
2sTHs + sTg such that Ds ≤ Δ , (12-1)

where g is the gradient of f at the current point x, H is the Hessian matrix (the symmetric matrix of
second derivatives), D is a diagonal scaling matrix, Δ is a positive scalar, and ‖ . ‖ is the 2-norm. To
solve “Equation 12-1”, an algorithm (see [48]) can compute all eigenvalues of H and then apply a
Newton process to the secular equation

1
Δ −

1
s = 0.

Such an algorithm provides an accurate solution to “Equation 12-1”. However, this requires time
proportional to several factorizations of H. Therefore, trust-region problems require a different
approach. Several approximation and heuristic strategies, based on “Equation 12-1”, have been
proposed in the literature ([42] and [50]). Optimization Toolbox solvers follow an approximation
approach that restricts the trust-region subproblem to a two-dimensional subspace S ([39] and [42]).
After the solver computes the subspace S, the work to solve “Equation 12-1” is trivial because, in the
subspace, the problem is only two-dimensional. The dominant work now shifts to the determination of
the subspace.

The solver determines the two-dimensional subspace S with the aid of a preconditioned conjugate
gradient method (described in the next section). The solver defines S as the linear space spanned by
s1 and s2, where s1 is in the direction of the gradient g, and s2 is either an approximate Newton
direction, that is, a solution to

H ⋅ s2 = − g,

or a direction of negative curvature,

s2
T ⋅ H ⋅ s2 < 0.

The philosophy behind this choice of S is to force global convergence (via the steepest descent
direction or negative curvature direction) and achieve fast local convergence (via the Newton step,
when it exists).

The process of unconstrained minimization using the trust-region approach is now easy to specify:

1 Formulate the two-dimensional trust-region subproblem.
2 Solve “Equation 12-1” to determine the trial step s.
3 If f(x + s) < f(x), then x = x + s.
4 Adjust Δ.

The solver repeats these four steps until convergence, adjusting he trust-region dimension Δ
according to standard rules. In particular, the solver decreases the trust-region size if it does not
accept the trial step, when f(x + s) ≥ f(x). See [46] and [49] for a discussion of this aspect.

Optimization Toolbox solvers treat important cases of f with specialized functions: nonlinear least-
squares, quadratic functions, and linear least-squares. However, the underlying algorithmic ideas are
the same as for the general case.

 Equation Solving Algorithms

12-3

Preconditioned Conjugate Gradient Method

A popular way to solve large, symmetric, positive definite systems of linear equations Hp = –g is the
method of Preconditioned Conjugate Gradients (PCG). This iterative approach requires the ability to
calculate matrix-vector products of the form H·v where v is an arbitrary vector. The symmetric
positive definite matrix M is a preconditioner for H. That is, M = C2, where C–1HC–1 is a well-
conditioned matrix or a matrix with clustered eigenvalues.

In a minimization context, you can assume that the Hessian matrix H is symmetric. However, H is
guaranteed to be positive definite only in the neighborhood of a strong minimizer. Algorithm PCG
exits when it encounters a direction of negative (or zero) curvature, that is, dTHd ≤ 0. The PCG
output direction p is either a direction of negative curvature or an approximate solution to the
Newton system Hp = –g. In either case, p helps to define the two-dimensional subspace used in the
trust-region approach discussed in “Trust-Region Methods for Nonlinear Minimization” on page 5-2.

Trust-Region-Dogleg Algorithm
Another approach is to solve a linear system of equations to find the search direction. Newton's
method specifies to solve for the search direction dk such that

J(xk)dk = –F(xk)
xk + 1 = xk + dk,

where J(xk) is the n-by-n Jacobian

J xk =

∇F1 xk
T

∇F2 xk
T

⋮
∇Fn xk

T

.

Newton's method can be problematic. J(xk) might be singular, in which case the Newton step dk is not
even defined. Also, the exact Newton step dk can be expensive to compute. In addition, Newton's
method might not converge if the starting point is far from the solution.

Using trust-region techniques (introduced in “Trust-Region Methods for Nonlinear Minimization” on
page 5-2) handles the case when J(xk) is singular and improves robustness when the starting point is
far from the solution. To use a trust-region strategy, you need a merit function to decide if xk + 1 is
better or worse than xk. A possible choice is

min
d

f (d) = 1
2F xk + d TF xk + d .

But a minimum of f(d) is not necessarily a root of F(x).

The Newton step dk is a root of

M(xk + d) = F(xk) + J(xk)d,

so it is also a minimum of m(d), where

12 Systems of Equations

12-4

min
d

m(d) = 1
2 M xk + d 2

2 = 1
2 F xk + J xk d 2

2

= 1
2F xk

TF xk + dT J xk
TF xk + 1

2dT J xk
T J xk d .

 (12-2)

m(d) is a better choice of merit function than f(d), so the trust-region subproblem is

min
d

1
2F xk

TF xk + dT J xk
TF xk + 1

2dT J xk
T J xk d , (12-3)

such that ‖D·d‖ ≤ Δ. You can solve this subproblem efficiently using a dogleg strategy.

For an overview of trust-region methods, see Conn [4] and Nocedal [31].

Trust-Region-Dogleg Implementation

The key feature of the trust-region-dogleg algorithm is the use of the Powell dogleg procedure for
computing the step d, which minimizes “Equation 12-3”. For a detailed description, see Powell [34].

The algorithm constructs the step d from a convex combination of a Cauchy step (a step along the
steepest descent direction) and a Gauss-Newton step for f(x). The Cauchy step is calculated as

dC = –αJ(xk)TF(xk),

where α minimizes “Equation 12-2”.

The Gauss-Newton step is calculated by solving

J(xk)·dGN = –F(xk),

using the MATLAB mldivide (matrix left division) operator.

The algorithm chooses the step d so that

d = dC + λ(dGN – dC),

where λ is the largest value in the interval [0,1] such that ‖d‖ ≤ Δ. If Jk is (nearly) singular, d is just
the Cauchy direction.

The trust-region-dogleg algorithm is efficient because it requires only one linear solve per iteration
(for the computation of the Gauss-Newton step). Additionally, the algorithm can be more robust than
using the Gauss-Newton method with a line search.

Levenberg-Marquardt Method
The Levenberg-Marquardt algorithm ([25], and [27]) uses a search direction that is a solution of the
linear set of equations

J xk
T J xk + λkI dk = − J xk

TF xk , (12-4)

or, optionally, of the equations

J xk
T J xk + λkdiag J xk

T J xk dk = − J xk
TF xk , (12-5)

 Equation Solving Algorithms

12-5

where the scalar λk controls both the magnitude and direction of dk. Set the fsolve option
ScaleProblem to 'none' to use “Equation 12-4”, or set this option to 'jacobian' to use
“Equation 12-5”.

When λk is zero, the direction dk is the Gauss-Newton method. As λk tends towards infinity, dk tends
towards the steepest descent direction, with magnitude tending towards zero. The implication is that,
for some sufficiently large λk, the term F(xk + dk) < F(xk) holds true. Therefore, the algorithm can
control the term λk to ensure descent despite second-order terms, which restrict the efficiency of the
Gauss-Newton method. The Levenberg-Marquardt algorithm, therefore, uses a search direction that
is a cross between the Gauss-Newton direction and the steepest descent direction. For more details,
see “Levenberg-Marquardt Method” on page 11-6 in the least squares documentation.

fzero Algorithm
fzero attempts to find the root of a scalar function f of a scalar variable x.

fzero looks for an interval around an initial point such that f(x) changes sign. If you specify an initial
interval instead of an initial point, fzero checks to make sure that f(x) has different signs at the
endpoints of the interval. The initial interval must be finite; it cannot contain ±Inf.

fzero uses a combination of interval bisection, linear interpolation, and inverse quadratic
interpolation in order to locate a root of f(x). See fzero for more information.

\ Algorithm
The \ algorithm is described in the MATLAB arithmetic operators section for mldivide.

See Also
fsolve | fzero

More About
• “Systems of Nonlinear Equations”

12 Systems of Equations

12-6

Solve Nonlinear System Without and Including Jacobian
This example shows the reduction in function evaluations when you provide derivatives for a system
of nonlinear equations. As explained in “Writing Vector and Matrix Objective Functions” on page 2-

26, the Jacobian J(x) of a system of equations F(x) is Ji j(x) =
∂Fi(x)
∂x j

. Provide this derivative as the

second output of your objective function.

For example, the multirosenbrock function is an n-dimensional generalization of Rosenbrock's
function (see “Solve a Constrained Nonlinear Problem, Problem-Based” on page 1-5) for any positive,
even value of n:

F(1) = 1− x1

F(2) = 10 x2− x1
2

F(3) = 1− x3

F(4) = 10 x4− x3
2

⋮
F(n− 1) = 1− xn− 1

F(n) = 10 xn− xn− 1
2 .

The solution of the equation system F(x) = 0 is the point xi = 1, i = 1…n.

For this objective function, all the Jacobian terms Ji j(x) are zero except the terms where i and j differ
by at most one. For odd values of i < n, the nonzero terms are

Jii(x) = − 1
J(i + 1)i = − 20xi
J(i + 1)(i + 1) = 10 .

The multirosenbrock helper function at the end of this example on page 12-0 creates the
objective function F(x) and its Jacobian J(x).

Solve the system of equations starting from the point xi = − 1 . 9 for odd values of i < n, and xi = 2 for
even values of i. Specify n = 64.

n = 64;
x0(1:n,1) = -1.9;
x0(2:2:n,1) = 2;
[x,F,exitflag,output,JAC] = fsolve(@multirosenbrock,x0);

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.

Examine the distance of the computed solution x from the true solution, and the number of function
evaluations that fsolve takes to compute the solution.

disp(norm(x-ones(size(x))))

 Solve Nonlinear System Without and Including Jacobian

12-7

 0

disp(output.funcCount)

 1043

fsolve finds the solution, and takes over 1000 function evaluations to do so.

Solve the system of equations again, this time using the Jacobian. To do so, set the
'SpecifyObjectiveGradient' option to true.

opts = optimoptions('fsolve','SpecifyObjectiveGradient',true);
[x2,F2,exitflag2,output2,JAC2] = fsolve(@multirosenbrock,x0,opts);

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.

Again, examine the distance of the computed solution x2 from the true solution, and the number of
function evaluations that fsolve takes to compute the solution.

disp(norm(x2-ones(size(x2))))

 0

disp(output2.funcCount)

 21

fsolve returns the same solution as the previous solution, but takes about 20 function evaluations to
do so, rather than over 1000. In general, using the Jacobian can lower the number of function
evaluations and provide increased robustness, although this example does not show improved
robustness.

Helper Function

This code creates the multirosenbrock helper function.

function [F,J] = multirosenbrock(x)
% Get the problem size
n = length(x);
if n == 0, error('Input vector, x, is empty.'); end
if mod(n,2) ~= 0
 error('Input vector, x ,must have an even number of components.');
end
% Evaluate the vector function
odds = 1:2:n;
evens = 2:2:n;
F = zeros(n,1);
F(odds,1) = 1-x(odds);
F(evens,1) = 10.*(x(evens)-x(odds).^2);
% Evaluate the Jacobian matrix if nargout > 1
if nargout > 1
 c = -ones(n/2,1); C = sparse(odds,odds,c,n,n);
 d = 10*ones(n/2,1); D = sparse(evens,evens,d,n,n);
 e = -20.*x(odds); E = sparse(evens,odds,e,n,n);
 J = C + D + E;

12 Systems of Equations

12-8

end
end

See Also
fsolve

More About
• “Systems of Nonlinear Equations”

 Solve Nonlinear System Without and Including Jacobian

12-9

Large Sparse System of Nonlinear Equations with Jacobian
This example shows how to use features of the fsolve solver to solve large sparse systems of
equations effectively. The example uses the objective function, defined for a system of n equations,

F(1) = 3x1− 2x1
2− 2x2 + 1,

F(i) = 3xi− 2xi
2− xi− 1− 2xi + 1 + 1,

F(n) = 3xn− 2xn
2− xn− 1 + 1 .

The equations to solve are Fi(x) = 0, 1 ≤ i ≤ n. The example uses n = 1000.

This objective function is simple enough that you can calculate its Jacobian analytically. As explained
in “Writing Vector and Matrix Objective Functions” on page 2-26, the Jacobian J(x) of a system of

equations F(x) is Ji j(x) =
∂Fi(x)
∂x j

. Provide this derivative as the second output of your objective

function. The nlsf1 helper function at the end of this example on page 12-0 creates the objective
function F(x) and its Jacobian J(x).

Solve the system of equations using the default options, which call the 'trust-region-dogleg'
algorithm. Start from the point xstart(i) = -1.

n = 1000;
xstart = -ones(n,1);
fun = @nlsf1;
[x,fval,exitflag,output] = fsolve(fun,xstart);

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.

Display the solution quality and the number of function evaluations taken.

disp(norm(fval))

 2.8577e-13

disp(output.funcCount)

 7007

fsolve solves the equation accurately, but takes thousands of function evaluations to do so.

Solve the equation using the Jacobian in both the default and 'trust-region' algorithms.

options = optimoptions('fsolve','SpecifyObjectiveGradient',true);
[x2,fval2,exitflag2,output2] = fsolve(fun,xstart,options);

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.

12 Systems of Equations

12-10

options.Algorithm = 'trust-region';
[x3,fval3,exitflag3,output3] = fsolve(fun,xstart,options);

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.

disp([norm(fval2),norm(fval3)])

 1.0e-08 *

 0.0000 0.1065

disp([output2.funcCount,output3.funcCount])

 7 5

Both algorithms take a tiny fraction of the number of function evaluations compared to the number
without using the Jacobian. The default algorithm takes a few more function evaluations than the
'trust-region' algorithm, but the default algorithm reaches a more accurate answer.

See whether setting the 'PrecondBandWidth' option to 1 changes the 'trust-region' answer or
efficiency. This setting causes fsolve to use a tridiagonal preconditioner, which should be effective
for this tridiagonal system of equations.

options.PrecondBandWidth = 1;
[x4,fval4,exitflag4,output4] = fsolve(fun,xstart,options);

Equation solved, inaccuracy possible.

fsolve stopped because the vector of function values is near zero, as measured by the value
of the function tolerance. However, the last step was ineffective.

disp(norm(fval4))

 3.1185e-05

disp(output4.funcCount)

 6

disp(output4.cgiterations)

 8

The 'PrecondBandWidth' option setting causes fsolve to give a slightly less accurate answer, as
measured by the norm of the residual. The number of function evaluations increases slightly, from 5
to 6. The solver has fewer than ten conjugate gradient iterations as part of its solution process.

See how well fsolve performs with a diagonal preconditioner.

options.PrecondBandWidth = 0;
[x5,fval5,exitflag5,output5] = fsolve(fun,xstart,options);

Equation solved, inaccuracy possible.

fsolve stopped because the vector of function values is near zero, as measured by the value
of the function tolerance. However, the last step was ineffective.

 Large Sparse System of Nonlinear Equations with Jacobian

12-11

disp(norm(fval5))

 2.0057e-05

disp(output5.funcCount)

 6

disp(output5.cgiterations)

 19

The residual norm is slightly lower this time, and the number of function evaluations is unchanged.
The number of conjugate gradient iterations increases from 8 to 19, indicating that this
'PrecondBandWidth' setting causes the solver to do more work.

Solve the equations using the 'levenberg-marquardt' algorithm.

options = optimoptions('fsolve','SpecifyObjectiveGradient',true,'Algorithm','levenberg-marquardt');
[x6,fval6,exitflag6,output6] = fsolve(fun,xstart,options);

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.

disp(norm(fval6))

 7.4905e-15

disp(output6.funcCount)

 6

This algorithm gives the lowest residual norm and uses only one more than the lowest number of
function evaluations.

Summarize the results.

t = table([norm(fval);norm(fval2);norm(fval3);norm(fval4);norm(fval5);norm(fval6)],...
 [output.funcCount;output2.funcCount;output3.funcCount;output4.funcCount;output5.funcCount;output6.funcCount],...
 'VariableNames',["Residual" "Fevals"],...
 'RowNames',["Default" "Default+Jacobian" "Trust-Region+Jacobian" "Trust-Region+Jacobian,BW=1" "Trust-Region+Jacobian,BW=0" "Levenberg-Marquardt+Jacobian"])

t=6×2 table
 Residual Fevals
 __________ ______

 Default 2.8577e-13 7007
 Default+Jacobian 2.5886e-13 7
 Trust-Region+Jacobian 1.0646e-09 5
 Trust-Region+Jacobian,BW=1 3.1185e-05 6
 Trust-Region+Jacobian,BW=0 2.0057e-05 6
 Levenberg-Marquardt+Jacobian 7.4905e-15 6

This code creates the nlsf1 function.

function [F,J] = nlsf1(x)
% Evaluate the vector function

12 Systems of Equations

12-12

n = length(x);
F = zeros(n,1);
i = 2:(n-1);
F(i) = (3-2*x(i)).*x(i)-x(i-1)-2*x(i+1) + 1;
F(n) = (3-2*x(n)).*x(n)-x(n-1) + 1;
F(1) = (3-2*x(1)).*x(1)-2*x(2) + 1;
% Evaluate the Jacobian if nargout > 1
if nargout > 1
 d = -4*x + 3*ones(n,1); D = sparse(1:n,1:n,d,n,n);
 c = -2*ones(n-1,1); C = sparse(1:n-1,2:n,c,n,n);
 e = -ones(n-1,1); E = sparse(2:n,1:n-1,e,n,n);
 J = C + D + E;
end
end

See Also
fsolve

More About
• “Large System of Nonlinear Equations with Jacobian Sparsity Pattern” on page 12-14
• “Systems of Nonlinear Equations”

 Large Sparse System of Nonlinear Equations with Jacobian

12-13

Large System of Nonlinear Equations with Jacobian Sparsity
Pattern

This example shows how to supply a Jacobian sparsity pattern to solve a large sparse system of
equations effectively. The example uses the objective function, defined for a system of n equations,

F(1) = 3x1− 2x1
2− 2x2 + 1,

F(i) = 3xi− 2xi
2− xi− 1− 2xi + 1 + 1,

F(n) = 3xn− 2xn
2− xn− 1 + 1 .

The equations to solve are Fi(x) = 0, 1 ≤ i ≤ n. The example uses n = 1000. The nlsf1a helper
function at the end of this example on page 12-0 implements the objective function F(x).

In the example “Large Sparse System of Nonlinear Equations with Jacobian” on page 12-10, which
solves the same system, the objective function has an explicit Jacobian. However, sometimes you
cannot compute the Jacobian explicitly, but you can determine which elements of the Jacobian are
nonzero. In this example, the Jacobian is tridiagonal, because the only variables that appear in the
definition of F(i) are xi− 1, xi, and xi + 1. So the only nonzero parts of the Jacobian are on the main
diagonal and its two neighboring diagonals. The Jacobian sparsity pattern is a matrix whose nonzero
elements correspond to (potentially) nonzero elements in the Jacobian.

Create a sparse n-by-n tridiagonal matrix of ones representing the Jacobian sparsity pattern. (For an
explanation of this code, see spdiags.)

n = 1000;
e = ones(n,1);
Jstr = spdiags([e e e],-1:1,n,n);

View the structure of Jstr.

spy(Jstr)

12 Systems of Equations

12-14

Set fsolve options to use the 'trust-region' algorithm, which is the only fsolve algorithm that
can use a Jacobian sparsity pattern.

options = optimoptions('fsolve','Algorithm','trust-region','JacobPattern',Jstr);

Set the initial point x0 to a vector of –1 entries.

x0 = -1*ones(n,1);

Solve the problem.

[x,fval,exitflag,output] = fsolve(@nlsf1a,x0,options);

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.

Examine the resulting residual norm and the number of function evaluations that fsolve takes.

disp(norm(fval))

 1.0522e-09

disp(output.funcCount)

 25

 Large System of Nonlinear Equations with Jacobian Sparsity Pattern

12-15

The residual norm is near zero, indicating that fsolve solves the problem correctly. The number of
function evaluations is fairly small, just around two dozen. Compare this number of function
evaluations to the number without a supplied Jacobian sparsity pattern.

options = optimoptions('fsolve','Algorithm','trust-region');
[x,fval,exitflag,output] = fsolve(@nlsf1a,x0,options);

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.

disp(norm(fval))

 1.0659e-09

disp(output.funcCount)

 5005

The solver reaches essentially the same solution as before, but takes thousands of function
evaluations to do so.

This code creates the nlsf1a function.

function F = nlsf1a(x)
% Evaluate the vector function
n = length(x);
F = zeros(n,1);
i = 2:(n-1);
F(i) = (3-2*x(i)).*x(i)-x(i-1)-2*x(i+1) + 1;
F(n) = (3-2*x(n)).*x(n)-x(n-1) + 1;
F(1) = (3-2*x(1)).*x(1)-2*x(2) + 1;
end

See Also
fsolve

More About
• “Large Sparse System of Nonlinear Equations with Jacobian” on page 12-10
• “Systems of Nonlinear Equations”

12 Systems of Equations

12-16

Nonlinear Systems with Constraints
Solve Equations with Inequality Constraints

fsolve solves a system of nonlinear equations. However, it does not allow you to include any
constraints, even bound constraints. So how can you solve a system of nonlinear equations when you
have constraints?

A solution that satisfies your constraints is not guaranteed to exist. In fact, the problem might not
have any solution, even one that does not satisfy your constraints. However, techniques exist to help
you search for solutions that satisfy your constraints.

To illustrate the techniques, consider how to solve the equations

F1(x) = x1 + 1 10− x1
1 + x2

2

1 + x2
2 + x2

F2(x) = x2 + 2 20− x2
1 + x1

2

1 + x1
2 + x1

,

where the components of x must be nonnegative. The equations have four solutions:

x = −1, − 2
x = 10, − 2
x = −1, 20
x = 10, 20 .

Only one solution satisfies the constraints, namely x = (10, 20).

The fbnd helper function at the end of this example on page 12-0 calculates F(x) numerically.

Use Different Start Points

Generally, a system of N equations in N variables has isolated solutions, meaning each solution has
no nearby neighbors that are also solutions. So, one way to search for a solution that satisfies some
constraints is to generate a number of initial points x0, and then run fsolve starting at each x0.

For this example, to look for a solution to the equation system F(x) = 0, take 10 random points that
are normally distributed with mean 0 and standard deviation 100.

rng default % For reproducibility
N = 10; % Try 10 random start points
pts = 100*randn(N,2); % Initial points are rows in pts
soln = zeros(N,2); % Allocate solution
opts = optimoptions('fsolve','Display','off');
for k = 1:N
 soln(k,:) = fsolve(@fbnd,pts(k,:),opts); % Find solutions
end

List solutions that satisfy the constraints.

idx = soln(:,1) >= 0 & soln(:,2) >= 0;
disp(soln(idx,:))

 Nonlinear Systems with Constraints

12-17

 10.0000 20.0000
 10.0000 20.0000
 10.0000 20.0000
 10.0000 20.0000
 10.0000 20.0000

Use Different Algorithms

fsolve has three algorithms. Each can lead to different solutions.

For this example, take x0 = [1,9] and examine the solution each algorithm returns.

x0 = [1,9];
opts = optimoptions(@fsolve,'Display','off',...
 'Algorithm','trust-region-dogleg');
x1 = fsolve(@fbnd,x0,opts)

x1 = 1×2

 -1.0000 -2.0000

opts.Algorithm = 'trust-region';
x2 = fsolve(@fbnd,x0,opts)

x2 = 1×2

 -1.0000 20.0000

opts.Algorithm = 'levenberg-marquardt';
x3 = fsolve(@fbnd,x0,opts)

x3 = 1×2

 0.9523 8.9941

Here, all three algorithms find different solutions for the same initial point. None satisfy the
constraints. The reported "solution" x3 is not even a solution, but is simply a locally stationary point.

Use lsqnonlin with Bounds

lsqnonlin tries to minimize the sum of squares of the components in a vector function F(x).
Therefore, it attempts to solve the equation F(x) = 0. Also, lsqnonlin accepts bound constraints.

Formulate the example problem for lsqnonlin and solve it.

lb = [0,0];
rng default
x0 = 100*randn(2,1);
[x,res] = lsqnonlin(@fbnd,x0,lb)

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

x = 2×1

12 Systems of Equations

12-18

 10.0000
 20.0000

res = 2.4783e-25

In this case, lsqnonlin converges to the solution satisfying the constraints. You can use lsqnonlin
with the Global Optimization Toolbox MultiStart solver to search over many initial points
automatically. See “MultiStart Using lsqcurvefit or lsqnonlin” (Global Optimization Toolbox).

Set Equations and Inequalities as fmincon Constraints

You can reformulate the problem and use fmincon as follows:

• Give a constant objective function, such as @(x)0, which evaluates to 0 for each x.
• Set the fsolve objective function as the nonlinear equality constraints in fmincon.
• Give any other constraints in the usual fmincon syntax.

The fminconstr helper function at the end of this example on page 12-0 implements the
nonlinear constraints. Solve the constrained problem.

lb = [0,0]; % Lower bound constraint
rng default % Reproducible initial point
x0 = 100*randn(2,1);
opts = optimoptions(@fmincon,'Algorithm','interior-point','Display','off');
x = fmincon(@(x)0,x0,[],[],[],[],lb,[],@fminconstr,opts)

x = 2×1

 10.0000
 20.0000

In this case, fmincon solves the problem from the start point.

Helper Functions

This code creates the fbnd helper function.

function F = fbnd(x)

F(1) = (x(1)+1)*(10-x(1))*(1+x(2)^2)/(1+x(2)^2+x(2));
F(2) = (x(2)+2)*(20-x(2))*(1+x(1)^2)/(1+x(1)^2+x(1));
end

This code creates the fminconstr helper function.

function [c,ceq] = fminconstr(x)

c = []; % No nonlinear inequality
ceq = fbnd(x); % fsolve objective is fmincon nonlinear equality constraints
end

See Also
fsolve | lsqnonlin | fmincon

 Nonlinear Systems with Constraints

12-19

More About
• “Nonlinear System of Equations with Constraints, Problem-Based” on page 12-32
• “Systems of Nonlinear Equations”
• “When the Solver Fails” on page 4-3

12 Systems of Equations

12-20

Solve Nonlinear System of Equations, Problem-Based
To solve the nonlinear system of equations

exp(− exp(− (x1 + x2))) = x2 1 + x1
2

x1cos(x2) + x2sin(x1) = 1
2

using the problem-based approach, first define x as a two-element optimization variable.

x = optimvar('x',2);

Create the first equation as an optimization equality expression.

eq1 = exp(-exp(-(x(1) + x(2)))) == x(2)*(1 + x(1)^2);

Similarly, create the second equation as an optimization equality expression.

eq2 = x(1)*cos(x(2)) + x(2)*sin(x(1)) == 1/2;

Create an equation problem, and place the equations in the problem.

prob = eqnproblem;
prob.Equations.eq1 = eq1;
prob.Equations.eq2 = eq2;

Review the problem.

show(prob)

 EquationProblem :

 Solve for:
 x

 eq1:
 exp((-exp((-(x(1) + x(2)))))) == (x(2) .* (1 + x(1).^2))

 eq2:
 ((x(1) .* cos(x(2))) + (x(2) .* sin(x(1)))) == 0.5

Solve the problem starting from the point [0,0]. For the problem-based approach, specify the initial
point as a structure, with the variable names as the fields of the structure. For this problem, there is
only one variable, x.

x0.x = [0 0];
[sol,fval,exitflag] = solve(prob,x0)

Solving problem using fsolve.

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.

 Solve Nonlinear System of Equations, Problem-Based

12-21

sol = struct with fields:
 x: [2x1 double]

fval = struct with fields:
 eq1: -2.4070e-07
 eq2: -3.8255e-08

exitflag =
 EquationSolved

View the solution point.

disp(sol.x)

 0.3532
 0.6061

Unsupported Functions Require fcn2optimexpr

If your equation functions are not composed of elementary functions, you must convert the functions
to optimization expressions using fcn2optimexpr. For the present example:

ls1 = fcn2optimexpr(@(x)exp(-exp(-(x(1)+x(2)))),x);
eq1 = ls1 == x(2)*(1 + x(1)^2);
ls2 = fcn2optimexpr(@(x)x(1)*cos(x(2))+x(2)*sin(x(1)),x);
eq2 = ls2 == 1/2;

See “Supported Operations for Optimization Variables and Expressions” on page 9-43 and “Convert
Nonlinear Function to Optimization Expression” on page 6-8.

See Also
solve | fcn2optimexpr

More About
• “Convert Nonlinear Function to Optimization Expression” on page 6-8
• “Systems of Nonlinear Equations”
• “Problem-Based Workflow for Solving Equations” on page 9-4

12 Systems of Equations

12-22

Solve Nonlinear System of Polynomials, Problem-Based
When x is a 2-by-2 matrix, the equation

x3 =
1 2
3 4

is a system of polynomial equations. Here, x3 means x * x * x using matrix multiplication. You can
easily formulate and solve this system using the problem-based approach.

First, define the variable x as a 2-by-2 matrix variable.

x = optimvar('x',2,2);

Define the equation to be solved in terms of x.

eqn = x^3 == [1 2;3 4];

Create an equation problem with this equation.

prob = eqnproblem('Equations',eqn);

Solve the problem starting from the point [1 1;1 1].

x0.x = ones(2);
sol = solve(prob,x0)

Solving problem using fsolve.

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.

sol = struct with fields:
 x: [2x2 double]

Examine the solution.

disp(sol.x)

 -0.1291 0.8602
 1.2903 1.1612

Display the cube of the solution.

sol.x^3

ans = 2×2

 1.0000 2.0000
 3.0000 4.0000

 Solve Nonlinear System of Polynomials, Problem-Based

12-23

See Also
solve

More About
• “Systems of Nonlinear Equations”
• “Problem-Based Workflow for Solving Equations” on page 9-4

12 Systems of Equations

12-24

Follow Equation Solution as a Parameter Changes
This example shows how to solve an equation repeatedly as a parameter changes by starting
subsequent solutions from the previous solution point. Often, this process leads to efficient solutions.
However, a solution can sometimes disappear, requiring a start from a new point or points.

Parameterized Scalar Equation

The parameterized equation to solve is

sinh(x)− 3x = a,

where a is a numeric parameter that goes from 0 to 5. At a = 0, one solution to this equation is x = 0.
When a is not too large in absolute value, the equation has three solutions. To visualize the equation,
create the left side of the equation as an anonymous function. Plot the function.

fun = @(x)sinh(x) - 3*x;
t = linspace(-3.5,3.5);
plot(t,fun(t),t,zeros(size(t)),'k-')
xlabel('x')
ylabel('fun(x)')

When a is too large or too small, there is only one solution.

 Follow Equation Solution as a Parameter Changes

12-25

Problem-Based Setup

To create an objective function for the problem-based approach, create an optimization expression
expr in an optimization variable x.

x = optimvar('x');
expr = sinh(x) - 3*x;

Create and Plot Solutions

Starting from the initial solution x = 0 at a = 0, find solutions for 100 values of a from 0 through 5.
Because fun is a scalar nonlinear function, solve calls fzero as the solver.

Set up the problem object, options, and data structures for holding solution statistics.

prob = eqnproblem;
options = optimset('Display','off');
sols = zeros(100,1);
fevals = sols;
as = linspace(0,5);

Solve the equation in a loop, starting from the first solution sols(1) = 0.

for i = 2:length(as)
 x0.x = sols(i-1); % Start from previous solution
 prob.Equations = expr == as(i);
 [sol,~,~,output] = solve(prob,x0,'Options',options);
 sols(i) = sol.x;
 fevals(i) = output.funcCount;
end

Plot the solution as a function of the parameter a and the number of function evaluations taken to
reach the solution.

subplot(2,1,1)
plot(as,sols,'ko')
xlabel 'a'
ylabel('Solution(x)')
subplot(2,1,2)
plot(fevals,'k*')
xlabel('Iteration Number')
ylabel('Fevals')

12 Systems of Equations

12-26

A jump in the solution occurs near a = 2 . 5. At the same point, the number of function evaluations to
reach a solution increases from near 15 to near 40. To understand why, examine a more detailed plot
of the function. Plot the function and every seventh solution point.

figure
t = linspace(-3.5,3.5);
plot(t,fun(t));
hold on
plot([-3.5,min(sols)],[2.5,2.5],'k--')
legend('fun','Maximum a','Location','north','autoupdate','off')
for a0 = 7:7:100
 plot(sols(a0),as(a0),'ro')
 if mod(a0,2) == 1
 text(sols(a0) + 0.15,as(a0) + 0.15,num2str(a0/7))
 else
 text(sols(a0) - 0.3,as(a0) + 0.05,num2str(a0/7))
 end
end
plot(t,zeros(size(t)),'k-')
hold off

 Follow Equation Solution as a Parameter Changes

12-27

As a increases, at first the solutions move to the left. However, when a is above 2.5, there is no longer
a solution near the previous solution. fzero requires extra function evaluations to search for a
solution, and finds a solution near x = 3. After that, the solution values move slowly to the right as a
increases further. The solver requires only about 10 function evaluations for each subsequent
solution.

Choose Different Solver

The fsolve solver can be more efficient than fzero. However, fsolve can become stuck in a local
minimum and fail to solve the equation.

Set up the problem object, options, and data structures for holding solution statistics.

probfsolve = eqnproblem;
sols = zeros(100,1);
fevals = sols;
infeas = sols;
asfsolve = linspace(0,5);

Solve the equation in a loop, starting from the first solution sols(1) = 0.

for i = 2:length(as)
 x0.x = sols(i-1); % Start from previous solution
 probfsolve.Equations = expr == asfsolve(i);
 [sol,fval,~,output] = solve(probfsolve,x0,'Options',options,'Solver','fsolve');
 sols(i) = sol.x;
 fevals(i) = output.funcCount;

12 Systems of Equations

12-28

 infeas(i) = fval;
end

Plot the solution as a function of the parameter a and the number of function evaluations taken to
reach the solution.

subplot(2,1,1)
plot(asfsolve,sols,'ko',asfsolve,infeas,'r-')
xlabel 'a'
legend('Solution','Error of Solution','Location','best')
subplot(2,1,2)
plot(fevals,'k*')
xlabel('Iteration Number')
ylabel('Fevals')

fsolve is somewhat more efficient than fzero, requiring about 7 or 8 function evaluations per
iteration. Again, when the solver finds no solution near the previous value, the solver requires many
more function evaluations to search for a solution. This time, the search is unsuccessful. Subsequent
iterations require few function evaluations for the most part, but fail to find a solution. The Error of
Solution plot shows the function value fun(x)− a.

To try to overcome a local minimum not being a solution, search again from a different start point
when fsolve returns with a negative exit flag. Set up the problem object, options, and data
structures for holding solution statistics.

rng default % For reproducibility
sols = zeros(100,1);

 Follow Equation Solution as a Parameter Changes

12-29

fevals = sols;
asfsolve = linspace(0,5);

Solve the equation in a loop, starting from the first solution sols(1) = 0.

for i = 2:length(as)
 x0.x = sols(i-1); % Start from previous solution
 probfsolve.Equations = expr == asfsolve(i);
 [sol,~,exitflag,output] = solve(probfsolve,x0,'Options',options,'Solver','fsolve');

 while exitflag <= 0 % If fsolve fails to find a solution
 x0.x = 5*randn; % Try again from a new start point
 fevals(i) = fevals(i) + output.funcCount;
 [sol,~,exitflag,output] = solve(probfsolve,x0,'Options',options,'Solver','fsolve');
 end

 sols(i) = sol.x;
 fevals(i) = fevals(i) + output.funcCount;
end

Plot the solution as a function of the parameter a and the number of function evaluations taken to
reach the solution.

subplot(2,1,1)
plot(asfsolve,sols,'ko')
xlabel 'a'
ylabel('Solution(x)')
subplot(2,1,2)
plot(fevals,'k*')
xlabel('Iteration Number')
ylabel('Fevals')

12 Systems of Equations

12-30

This time, fsolve recovers from the poor initial point near a = 2 . 5 and obtains a solution similar to
the one obtained by fzero. The number of function evaluations for each iteration is typically 8,
increasing to about 30 at the point where the solution jumps.

Convert Objective Function Using fcn2optimexpr

For some objective functions or software versions, you must convert nonlinear functions to
optimization expressions by using fcn2optimexpr. See “Supported Operations for Optimization
Variables and Expressions” on page 9-43 and “Convert Nonlinear Function to Optimization
Expression” on page 6-8. For this example, convert the original function fun used for plotting to the
optimization expression expr:

expr = fcn2optimexpr(fun,x);

The remainder of the example is exactly the same after this change to the definition of expr.

See Also
fzero | fsolve | solve

More About
• “Systems of Nonlinear Equations”
• “Problem-Based Workflow for Solving Equations” on page 9-4

 Follow Equation Solution as a Parameter Changes

12-31

Nonlinear System of Equations with Constraints, Problem-
Based

This example shows how to attempt to solve a nonlinear system of equations with constraints by
using the problem-based approach.

Bound Constraints

When your problem has only bound constraints, the process for solving the problem is
straightforward. For example, to find the solution with positive components to the system of
equations

x1 + 1 10− x1
1 + x2

2

1 + x2
2 + x2

= 0

x2 + 2 20− x2
1 + x1

2

1 + x1
2 + x1

= 0,

simply create optimization variables with lower bounds of 0. (These equations have four solutions:
where x1 = − 1 or x1 = 10, and where x2 = − 2 or x2 = 20.)

x = optimvar('x',2,"LowerBound",0);
expr1 = (x(1) + 1)*(10 - x(1))*((1 + x(2)^2))/(1 + x(2)^2 + x(2));
expr2 = (x(2) + 2)*(20 - x(2))*((1 + x(1)^2))/(1 + x(1)^2 + x(1));
eqn1 = expr1 == 0;
eqn2 = expr2 == 0;
prob = eqnproblem;
prob.Equations.eqn1 = eqn1;
prob.Equations.eqn2 = eqn2;
x0.x = [15,15];
[sol,fval,exitflag] = solve(prob,x0)

Equation problem has bound constraints. Reformulating as a least squares problem.

Solving problem using lsqnonlin.

Equation solved.

lsqnonlin completed because the vector of function values is near zero
as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.

sol = struct with fields:
 x: [2x1 double]

fval = struct with fields:
 eqn1: 0
 eqn2: 0

exitflag =
 EquationSolved

View the solution.

12 Systems of Equations

12-32

sol.x

ans = 2×1

 10
 20

General Constraints

When your problem has general constraints, formulate the problem as an optimization problem, not
an equation problem. Set the equations as equality constraints. For example, to solve the preceding
equations subject to the nonlinear inequality constraint ‖x‖2 ≤ 10, remove the bounds on x and
formulate the problem as an optimization problem with no objective function.

x.LowerBound = [];
circlecons = x(1)^2 + x(2)^2 <= 10;
prob2 = optimproblem;
prob2.Constraints.circlecons = circlecons;
prob2.Constraints.eqn1 = eqn1;
prob2.Constraints.eqn2 = eqn2;
[sol2,fval2,exitflag2] = solve(prob2,x0)

Solving problem using fmincon.

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

sol2 = struct with fields:
 x: [2x1 double]

fval2 = 0

exitflag2 =
 OptimalSolution

View the solution.

sol2.x

ans = 2×1

 -1.0000
 -2.0000

General Constraints Using Least Squares Objective

You can also formulate the problem by setting the objective function as a sum of squares, and the
general constraints as a constraint. This alternative formulation gives a mathematically equivalent
problem, but can result in a different solution because the change in formulation leads the solver to
different iterations.

 Nonlinear System of Equations with Constraints, Problem-Based

12-33

prob3 = optimproblem;
prob3.Objective = expr1^2 + expr2^2;
prob3.Constraints.circlecons = circlecons;
[sol3,fval3,exitflag3] = solve(prob3,x0)

Solving problem using fmincon.

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

sol3 = struct with fields:
 x: [2x1 double]

fval3 = 8.0569e-16

exitflag3 =
 OptimalSolution

View the solution.

sol3.x

ans = 2×1

 -1.0000
 -2.0000

In this case, the least squares objective leads to the same solution as the previous formulation, which
uses only constraints.

More About Solving Equations with Constraints

Generally, solve attempts to solve a nonlinear system of equations by minimizing the sum of squares
of the equation components. In other words, if LHS(i) is the left-side expression for equation i, and
RHS(i) is the right-side expression, then solve attempts to minimize sum((LHS – RHS).^2).

In contrast, when attempting to satisfy nonlinear constraint expressions, solve generally uses
fmincon, and tries to satisfy the constraints by using different strategies.

In both cases, the solver can fail to solve the equations. For strategies you can use to attempt to find
a solution when the solver fails, see “fsolve Could Not Solve Equation” on page 4-8.

See Also
solve

More About
• “Nonlinear Systems with Constraints” on page 12-17
• “When the Solver Fails” on page 4-3

12 Systems of Equations

12-34

• “Problem-Based Workflow for Solving Equations” on page 9-4

 Nonlinear System of Equations with Constraints, Problem-Based

12-35

Code Generation in Nonlinear Equation Solving: Background

What Is Code Generation?
Code generation is the conversion of MATLAB code to C code using MATLAB Coder. Code generation
requires a MATLAB Coder license.

Typically, you use code generation to deploy code on hardware that is not running MATLAB. For
example, you can deploy code on a robot, using fsolve for optimizing movement or planning.

For an example, see “Generate Code for fsolve” on page 12-38. For code generation in other
optimization solvers, see “Generate Code for fmincon” on page 5-138, “Generate Code for quadprog”
on page 10-62, or “Generate Code for lsqcurvefit or lsqnonlin” on page 11-105.

Requirements for Code Generation
• fsolve supports code generation using either the codegen function or the MATLAB Coder app.

You must have a MATLAB Coder license to generate code.
• The target hardware must support standard double-precision floating-point computations. You

cannot generate code for single-precision or fixed-point computations.
• Code generation targets do not use the same math kernel libraries as MATLAB solvers. Therefore,

code generation solutions can vary from solver solutions, especially for poorly conditioned
problems.

• All code for generation must be MATLAB code. In particular, you cannot use a custom black-box
function as an objective function for fsolve. You can use coder.ceval to evaluate a custom
function coded in C or C++. However, the custom function must be called in a MATLAB function.

• fsolve does not support the problem argument for code generation.

[x,fval] = fsolve(problem) % Not supported

• You must specify the objective function by using function handles, not strings or character names.

x = fsolve(@fun,x0,options) % Supported
% Not supported: fsolve('fun',...) or fsolve("fun",...)

• For advanced code optimization involving embedded processors, you also need an Embedded
Coder license.

• You must include options for fsolve and specify them using optimoptions. The options must
include the Algorithm option, set to 'levenberg-marquardt'.

options = optimoptions('fsolve','Algorithm','levenberg-marquardt');
[x,fval,exitflag] = fsolve(fun,x0,options);

• Code generation supports these options:

• Algorithm — Must be 'levenberg-marquardt'
• FiniteDifferenceStepSize
• FiniteDifferenceType
• FunctionTolerance
• MaxFunctionEvaluations
• MaxIterations

12 Systems of Equations

12-36

• SpecifyObjectiveGradient
• StepTolerance
• TypicalX

• Generated code has limited error checking for options. The recommended way to update an option
is to use optimoptions, not dot notation.

opts = optimoptions('fsolve','Algorithm','levenberg-marquardt');
opts = optimoptions(opts,'MaxIterations',1e4); % Recommended
opts.MaxIterations = 1e4; % Not recommended

• Do not load options from a file. Doing so can cause code generation to fail. Instead, create options
in your code.

• Usually, if you specify an option that is not supported, the option is silently ignored during code
generation. However, if you specify a plot function or output function by using dot notation, code
generation can issue an error. For reliability, specify only supported options.

• Because output functions and plot functions are not supported, solvers do not return the exit flag –
1.

Generated Code Not Multithreaded
By default, generated code for use outside the MATLAB environment uses linear algebra libraries that
are not multithreaded. Therefore, this code can run significantly slower than code in the MATLAB
environment.

If your target hardware has multiple cores, you can achieve better performance by using custom
multithreaded LAPACK and BLAS libraries. To incorporate these libraries in your generated code, see
“Speed Up Linear Algebra in Generated Standalone Code by Using LAPACK Calls” (MATLAB Coder).

See Also
fsolve | codegen | optimoptions

More About
• “Generate Code for fsolve” on page 12-38
• “Static Memory Allocation for fmincon Code Generation” on page 5-142
• “Optimization Code Generation for Real-Time Applications” on page 5-144

 Code Generation in Nonlinear Equation Solving: Background

12-37

Generate Code for fsolve
This example shows how to generate C code for solving systems of nonlinear equations with fsolve.

Equation to Solve
The system of nonlinear equations to solve is

e−e−(x1 + x2)
= x2 1 + x1

2

x1cos x2 + x2sin x1 = 1
2 .

Convert the equations to the form F(x) = 0.

e−e−(x1 + x2)
− x2 1 + x1

2 = 0

x1cos x2 + x2sin x1 − 1
2 = 0.

Code Generation Steps
1 Write a function that computes the left side of the two equations. For code generation, your

program must allocate all arrays when they are created, and must not change their sizes after
creation.

function F = root2d(x)
F = zeros(2,1); % Allocate return array
F(1) = exp(-exp(-(x(1)+x(2)))) - x(2)*(1+x(1)^2);
F(2) = x(1)*cos(x(2)) + x(2)*sin(x(1)) - 0.5;
end

2 Write a function that sets up the problem and calls fsolve. The function must refer to root2d
as a function handle, not as a name.

function [x,fval] = solveroot
options = optimoptions('fsolve','Algorithm','levenberg-marquardt','Display','off');
fun = @root2d;
rng default
x0 = rand(2,1);
[x,fval] = fsolve(fun,x0,options);
end

3 Create a configuration for code generation. In this case, use 'mex'.

cfg = coder.config('mex');
4 Generate code for the solveroot function.

codegen -config cfg solveroot
5 Test the generated code by running the generated file, which is named solveroot_mex.mexw64

or similar.

[x,fval] = solveroot_mex

x =

 0.3532

12 Systems of Equations

12-38

 0.6061

fval =

 1.0e-14 *

 -0.1998
 -0.1887

See Also
fsolve | codegen | optimoptions

More About
• “Code Generation in Nonlinear Equation Solving: Background” on page 12-36
• “Static Memory Allocation for fmincon Code Generation” on page 5-142
• “Optimization Code Generation for Real-Time Applications” on page 5-144

 Generate Code for fsolve

12-39

Parallel Computing for Optimization

• “What Is Parallel Computing in Optimization Toolbox?” on page 13-2
• “Using Parallel Computing in Optimization Toolbox” on page 13-5
• “Minimizing an Expensive Optimization Problem Using Parallel Computing Toolbox”

on page 13-8
• “Improving Performance with Parallel Computing” on page 13-13

13

What Is Parallel Computing in Optimization Toolbox?
In this section...
“Parallel Optimization Functionality” on page 13-2
“Parallel Estimation of Gradients” on page 13-2
“Nested Parallel Functions” on page 13-3

Parallel Optimization Functionality
Parallel computing is the technique of using multiple processors on a single problem. The reason to
use parallel computing is to speed computations.

The following Optimization Toolbox solvers can automatically distribute the numerical estimation of
gradients of objective functions and nonlinear constraint functions to multiple processors:

• fmincon
• fminunc
• fgoalattain
• fminimax
• fsolve
• lsqcurvefit
• lsqnonlin

These solvers use parallel gradient estimation under the following conditions:

• You have a license for Parallel Computing Toolbox software.
• The option SpecifyObjectiveGradient is set to false, or, if there is a nonlinear constraint

function, the option SpecifyConstraintGradient is set to false. Since false is the default
value of these options, you don't have to set them; just don't set them both to true.

• Parallel computing is enabled with parpool, a Parallel Computing Toolbox function.
• The option UseParallel is set to true. The default value of this option is false.

When these conditions hold, the solvers compute estimated gradients in parallel.

Note Even when running in parallel, a solver occasionally calls the objective and nonlinear
constraint functions serially on the host machine. Therefore, ensure that your functions have no
assumptions about whether they are evaluated in serial or parallel.

Parallel Estimation of Gradients
One solver subroutine can compute in parallel automatically: the subroutine that estimates the
gradient of the objective function and constraint functions. This calculation involves computing
function values at points near the current location x. Essentially, the calculation is

∇ f (x) ≈
f (x + Δ1e1)− f (x)

Δ1
,

f (x + Δ2e2)− f (x)
Δ2

, …,
f (x + Δnen)− f (x)

Δn
,

13 Parallel Computing for Optimization

13-2

where

• f represents objective or constraint functions
• ei are the unit direction vectors
• Δi is the size of a step in the ei direction

To estimate ∇f(x) in parallel, Optimization Toolbox solvers distribute the evaluation of (f(x + Δiei) –
f(x))/Δi to extra processors.

Parallel Central Differences

You can choose to have gradients estimated by central finite differences instead of the default
forward finite differences. The basic central finite difference formula is

∇ f (x) ≈
f (x + Δ1e1)− f (x− Δ1e1)

2Δ1
, …,

f (x + Δnen)− f (x− Δnen)
2Δn

.

This takes twice as many function evaluations as forward finite differences, but is usually much more
accurate. Central finite differences work in parallel exactly the same as forward finite differences.

Enable central finite differences by using optimoptions to set the FiniteDifferenceType option
to 'central'. To use forward finite differences, set the FiniteDifferenceType option to
'forward'.

Nested Parallel Functions
Solvers employ the Parallel Computing Toolbox function parfor to perform parallel estimation of
gradients. parfor does not work in parallel when called from within another parfor loop.
Therefore, you cannot simultaneously use parallel gradient estimation and parallel functionality
within your objective or constraint functions.

Note The documentation recommends not to use parfor or parfeval when calling Simulink; see
“Using sim function within parfor” (Simulink). Therefore, you might encounter issues when
optimizing a Simulink simulation in parallel using a solver's built-in parallel functionality.

Suppose, for example, your objective function userfcn calls parfor, and you wish to call fmincon
in a loop. Suppose also that the conditions for parallel gradient evaluation of fmincon, as given in
“Parallel Optimization Functionality” on page 13-2, are satisfied. “When parfor Runs In Parallel” on
page 13-4 shows three cases:

1 The outermost loop is parfor. Only that loop runs in parallel.
2 The outermost parfor loop is in fmincon. Only fmincon runs in parallel.
3 The outermost parfor loop is in userfcn. userfcn can use parfor in parallel.

 What Is Parallel Computing in Optimization Toolbox?

13-3

When parfor Runs In Parallel

See Also
“Using Parallel Computing in Optimization Toolbox” on page 13-5 | “Improving Performance with
Parallel Computing” on page 13-13 | “Minimizing an Expensive Optimization Problem Using Parallel
Computing Toolbox” on page 13-8

13 Parallel Computing for Optimization

13-4

Using Parallel Computing in Optimization Toolbox
In this section...
“Using Parallel Computing with Multicore Processors” on page 13-5
“Using Parallel Computing with a Multiprocessor Network” on page 13-5
“Testing Parallel Computations” on page 13-6

Using Parallel Computing with Multicore Processors
If you have a multicore processor, you can increase processing speed by using parallel processing.
You can establish a parallel pool of several workers with a Parallel Computing Toolbox license. For a
description of Parallel Computing Toolbox software, see “Get Started with Parallel Computing
Toolbox” (Parallel Computing Toolbox).

Suppose you have a dual-core processor, and want to use parallel computing. Enter this code at the
command line.

parpool

MATLAB starts a pool of workers using the multicore processor. If you previously set a nondefault
cluster profile, you can enforce multicore (local) computing by entering this code.

parpool('local')

Note Depending on your preferences, MATLAB can start a parallel pool automatically. To enable this
feature, select Parallel > Parallel Preferences in the Environment group on the Home tab, and
then select Automatically create a parallel pool.

Set solver options to use parallel computing.

options = optimoptions('solvername','UseParallel',true);

When you run an applicable solver with options, applicable solvers automatically use parallel
computing.

To stop computing optimizations in parallel, set UseParallel to false. To halt all parallel
computation, enter this code.

delete(gcp)

Note The documentation recommends not to use parfor or parfeval when calling Simulink; see
“Using sim function within parfor” (Simulink). Therefore, you might encounter issues when
optimizing a Simulink simulation in parallel using a solver's built-in parallel functionality.

Using Parallel Computing with a Multiprocessor Network
If you have multiple processors on a network, use Parallel Computing Toolbox functions and MATLAB
Parallel Server™ software to establish parallel computation.

 Using Parallel Computing in Optimization Toolbox

13-5

Make sure your system is configured properly for parallel computing. Check with your systems
administrator, or refer to the Parallel Computing Toolbox documentation.

1 Perform a basic check by entering this code, where prof is your cluster profile.

parpool(prof)
2 Workers must be able to access your objective function file and, if applicable, your nonlinear

constraint function file. Complete one of these steps to ensure access:

• Distribute the files to the workers using the parpool AttachedFiles argument. In this
example, objfun.m is your objective function file, and constrfun.m is your nonlinear
constraint function file.

parpool('AttachedFiles',{'objfun.m','constrfun.m'});

Workers access their own copies of the files.
• Give a network file path to your objective or constraint function files.

pctRunOnAll('addpath network_file_path')

Workers access the function files over the network.
3 Check whether a file is on the path of every worker.

pctRunOnAll('which filename')

If any worker does not have a path to the file, it reports

filename not found.

Set solver options to specify using parallel computing. The argument 'solvername' represents a
nonlinear solver that supports parallel evaluation.

options = optimoptions('solvername','UseParallel',true);

After you establish your parallel computing environment, applicable solvers automatically use parallel
computing whenever you call them with options.

To stop computing optimizations in parallel, set UseParallel to false. To halt all parallel
computation, enter this code.

delete(gcp)

Note The documentation recommends not to use parfor or parfeval when calling Simulink; see
“Using sim function within parfor” (Simulink). Therefore, you might encounter issues when
optimizing a Simulink simulation in parallel using a solver's built-in parallel functionality.

Testing Parallel Computations
Follow these steps to test whether your problem runs correctly in parallel.

1 Try your problem without parallel computation to ensure that it runs serially. Make sure this test
is successful (gives correct results) before going to the next test.

2 Set UseParallel to true, and ensure that no parallel pool exists by entering delete(gcp). To
make sure that MATLAB does not create a parallel pool, select Parallel > Parallel Preferences

13 Parallel Computing for Optimization

13-6

in the Environment group on the Home tab, and then clear Automatically create a parallel
pool. Your problem runs parfor serially, with loop iterations in reverse order from a for loop.
Make sure this test is successful (gives correct results) before going to the next test.

3 Set UseParallel to true, and create a parallel pool using parpool. Unless you have a
multicore processor or a network set up, this test does not increase processing speed. This
testing is simply to verify the correctness of the computations.

Remember to call your solver using an options argument to test or use parallel functionality.

See Also

More About
• “What Is Parallel Computing in Optimization Toolbox?” on page 13-2
• “Improving Performance with Parallel Computing” on page 13-13
• “Minimizing an Expensive Optimization Problem Using Parallel Computing Toolbox” on page 13-

8

 Using Parallel Computing in Optimization Toolbox

13-7

Minimizing an Expensive Optimization Problem Using Parallel
Computing Toolbox

This example shows how to speed up the minimization of an expensive optimization problem using
functions in Optimization Toolbox™ and Global Optimization Toolbox. In the first part of the example
we solve the optimization problem by evaluating functions in a serial fashion, and in the second part
of the example we solve the same problem using the parallel for loop (parfor) feature by evaluating
functions in parallel. We compare the time taken by the optimization function in both cases.

Expensive Optimization Problem

For the purpose of this example, we solve a problem in four variables, where the objective and
constraint functions are made artificially expensive by pausing.

function f = expensive_objfun(x)
%EXPENSIVE_OBJFUN An expensive objective function used in optimparfor example.

% Copyright 2007-2013 The MathWorks, Inc.

% Simulate an expensive function by pausing
pause(0.1)
% Evaluate objective function
f = exp(x(1)) * (4*x(3)^2 + 2*x(4)^2 + 4*x(1)*x(2) + 2*x(2) + 1);

function [c,ceq] = expensive_confun(x)
%EXPENSIVE_CONFUN An expensive constraint function used in optimparfor example.

% Copyright 2007-2013 The MathWorks, Inc.

% Simulate an expensive function by pausing
pause(0.1);
% Evaluate constraints
c = [1.5 + x(1)*x(2)*x(3) - x(1) - x(2) - x(4);
 -x(1)*x(2) + x(4) - 10];
% No nonlinear equality constraints:
ceq = [];

Minimizing Using fmincon

We are interested in measuring the time taken by fmincon in serial so that we can compare it to the
parallel time.

startPoint = [-1 1 1 -1];
options = optimoptions('fmincon','Display','iter','Algorithm','interior-point');
startTime = tic;
xsol = fmincon(@expensive_objfun,startPoint,[],[],[],[],[],[],@expensive_confun,options);
time_fmincon_sequential = toc(startTime);
fprintf('Serial FMINCON optimization takes %g seconds.\n',time_fmincon_sequential);

 First-order Norm of
 Iter F-count f(x) Feasibility optimality step
 0 5 1.839397e+00 1.500e+00 3.211e+00

13 Parallel Computing for Optimization

13-8

 1 11 -9.760099e-01 3.708e+00 7.902e-01 2.362e+00
 2 16 -1.480976e+00 0.000e+00 8.344e-01 1.069e+00
 3 21 -2.601599e+00 0.000e+00 8.390e-01 1.218e+00
 4 29 -2.823630e+00 0.000e+00 2.598e+00 1.118e+00
 5 34 -3.905339e+00 0.000e+00 1.210e+00 7.302e-01
 6 39 -6.212992e+00 3.934e-01 7.372e-01 2.405e+00
 7 44 -5.948762e+00 0.000e+00 1.784e+00 1.905e+00
 8 49 -6.940062e+00 1.233e-02 7.668e-01 7.553e-01
 9 54 -6.973887e+00 0.000e+00 2.549e-01 3.920e-01
 10 59 -7.142993e+00 0.000e+00 1.903e-01 4.735e-01
 11 64 -7.155325e+00 0.000e+00 1.365e-01 2.626e-01
 12 69 -7.179122e+00 0.000e+00 6.336e-02 9.115e-02
 13 74 -7.180116e+00 0.000e+00 1.069e-03 4.670e-02
 14 79 -7.180409e+00 0.000e+00 7.799e-04 2.815e-03
 15 84 -7.180410e+00 0.000e+00 6.189e-06 3.122e-04

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

Serial FMINCON optimization takes 17.0722 seconds.

Minimizing Using Genetic Algorithm

Since ga usually takes many more function evaluations than fmincon, we remove the expensive
constraint from this problem and perform unconstrained optimization instead. Pass empty matrices
[] for constraints. In addition, we limit the maximum number of generations to 15 for ga so that ga
can terminate in a reasonable amount of time. We are interested in measuring the time taken by ga
so that we can compare it to the parallel ga evaluation. Note that running ga requires Global
Optimization Toolbox.

rng default % for reproducibility
try
 gaAvailable = false;
 nvar = 4;
 gaoptions = optimoptions('ga','MaxGenerations',15,'Display','iter');
 startTime = tic;
 gasol = ga(@expensive_objfun,nvar,[],[],[],[],[],[],[],gaoptions);
 time_ga_sequential = toc(startTime);
 fprintf('Serial GA optimization takes %g seconds.\n',time_ga_sequential);
 gaAvailable = true;
catch ME
 warning(message('optimdemos:optimparfor:gaNotFound'));
end

 Best Mean Stall
Generation Func-count f(x) f(x) Generations
 1 100 -5.546e+05 1.483e+15 0
 2 150 -5.581e+17 -1.116e+16 0
 3 200 -7.556e+17 6.679e+22 0
 4 250 -7.556e+17 -7.195e+16 1
 5 300 -9.381e+27 -1.876e+26 0
 6 350 -9.673e+27 -7.497e+26 0
 7 400 -4.511e+36 -9.403e+34 0
 8 450 -5.111e+36 -3.011e+35 0

 Minimizing an Expensive Optimization Problem Using Parallel Computing Toolbox

13-9

 9 500 -7.671e+36 9.346e+37 0
 10 550 -1.52e+43 -3.113e+41 0
 11 600 -2.273e+45 -4.67e+43 0
 12 650 -2.589e+47 -6.281e+45 0
 13 700 -2.589e+47 -1.015e+46 1
 14 750 -8.149e+47 -5.855e+46 0
 15 800 -9.503e+47 -1.29e+47 0
Optimization terminated: maximum number of generations exceeded.
Serial GA optimization takes 80.2351 seconds.

Setting Parallel Computing Toolbox

The finite differencing used by the functions in Optimization Toolbox to approximate derivatives is
done in parallel using the parfor feature if Parallel Computing Toolbox™ is available and there is a
parallel pool of workers. Similarly, ga, gamultiobj, and patternsearch solvers in Global
Optimization Toolbox evaluate functions in parallel. To use the parfor feature, we use the parpool
function to set up the parallel environment. The computer on which this example is published has
four cores, so parpool starts four MATLAB® workers. If there is already a parallel pool when you
run this example, we use that pool; see the documentation for parpool for more information.

if max(size(gcp)) == 0 % parallel pool needed
 parpool % create the parallel pool
end

Minimizing Using Parallel fmincon

To minimize our expensive optimization problem using the parallel fmincon function, we need to
explicitly indicate that our objective and constraint functions can be evaluated in parallel and that we
want fmincon to use its parallel functionality wherever possible. Currently, finite differencing can be
done in parallel. We are interested in measuring the time taken by fmincon so that we can compare
it to the serial fmincon run.

options = optimoptions(options,'UseParallel',true);
startTime = tic;
xsol = fmincon(@expensive_objfun,startPoint,[],[],[],[],[],[],@expensive_confun,options);
time_fmincon_parallel = toc(startTime);
fprintf('Parallel FMINCON optimization takes %g seconds.\n',time_fmincon_parallel);

 First-order Norm of
 Iter F-count f(x) Feasibility optimality step
 0 5 1.839397e+00 1.500e+00 3.211e+00
 1 11 -9.760099e-01 3.708e+00 7.902e-01 2.362e+00
 2 16 -1.480976e+00 0.000e+00 8.344e-01 1.069e+00
 3 21 -2.601599e+00 0.000e+00 8.390e-01 1.218e+00
 4 29 -2.823630e+00 0.000e+00 2.598e+00 1.118e+00
 5 34 -3.905339e+00 0.000e+00 1.210e+00 7.302e-01
 6 39 -6.212992e+00 3.934e-01 7.372e-01 2.405e+00
 7 44 -5.948762e+00 0.000e+00 1.784e+00 1.905e+00
 8 49 -6.940062e+00 1.233e-02 7.668e-01 7.553e-01
 9 54 -6.973887e+00 0.000e+00 2.549e-01 3.920e-01
 10 59 -7.142993e+00 0.000e+00 1.903e-01 4.735e-01
 11 64 -7.155325e+00 0.000e+00 1.365e-01 2.626e-01
 12 69 -7.179122e+00 0.000e+00 6.336e-02 9.115e-02
 13 74 -7.180116e+00 0.000e+00 1.069e-03 4.670e-02
 14 79 -7.180409e+00 0.000e+00 7.799e-04 2.815e-03
 15 84 -7.180410e+00 0.000e+00 6.189e-06 3.122e-04

13 Parallel Computing for Optimization

13-10

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

Parallel FMINCON optimization takes 8.11945 seconds.

Minimizing Using Parallel Genetic Algorithm

To minimize our expensive optimization problem using the ga function, we need to explicitly indicate
that our objective function can be evaluated in parallel and that we want ga to use its parallel
functionality wherever possible. To use the parallel ga we also require that the 'Vectorized' option be
set to the default (i.e., 'off'). We are again interested in measuring the time taken by ga so that we
can compare it to the serial ga run. Though this run may be different from the serial one because ga
uses a random number generator, the number of expensive function evaluations is the same in both
runs. Note that running ga requires Global Optimization Toolbox.

rng default % to get the same evaluations as the previous run
if gaAvailable
 gaoptions = optimoptions(gaoptions,'UseParallel',true);
 startTime = tic;
 gasol = ga(@expensive_objfun,nvar,[],[],[],[],[],[],[],gaoptions);
 time_ga_parallel = toc(startTime);
 fprintf('Parallel GA optimization takes %g seconds.\n',time_ga_parallel);
end

 Best Mean Stall
Generation Func-count f(x) f(x) Generations
 1 100 -5.546e+05 1.483e+15 0
 2 150 -5.581e+17 -1.116e+16 0
 3 200 -7.556e+17 6.679e+22 0
 4 250 -7.556e+17 -7.195e+16 1
 5 300 -9.381e+27 -1.876e+26 0
 6 350 -9.673e+27 -7.497e+26 0
 7 400 -4.511e+36 -9.403e+34 0
 8 450 -5.111e+36 -3.011e+35 0
 9 500 -7.671e+36 9.346e+37 0
 10 550 -1.52e+43 -3.113e+41 0
 11 600 -2.273e+45 -4.67e+43 0
 12 650 -2.589e+47 -6.281e+45 0
 13 700 -2.589e+47 -1.015e+46 1
 14 750 -8.149e+47 -5.855e+46 0
 15 800 -9.503e+47 -1.29e+47 0
Optimization terminated: maximum number of generations exceeded.
Parallel GA optimization takes 15.6984 seconds.

Compare Serial and Parallel Time

X = [time_fmincon_sequential time_fmincon_parallel];
Y = [time_ga_sequential time_ga_parallel];
t = [0 1];
plot(t,X,'r--',t,Y,'k-')
ylabel('Time in seconds')
legend('fmincon','ga')
ax = gca;
ax.XTick = [0 1];

 Minimizing an Expensive Optimization Problem Using Parallel Computing Toolbox

13-11

ax.XTickLabel = {'Serial' 'Parallel'};
axis([0 1 0 ceil(max([X Y]))])
title('Serial Vs. Parallel Times')

Utilizing parallel function evaluation via parfor improved the efficiency of both fmincon and ga.
The improvement is typically better for expensive objective and constraint functions.

See Also

More About
• “What Is Parallel Computing in Optimization Toolbox?” on page 13-2
• “Using Parallel Computing in Optimization Toolbox” on page 13-5
• “Improving Performance with Parallel Computing” on page 13-13

13 Parallel Computing for Optimization

13-12

Improving Performance with Parallel Computing
In this section...
“Factors That Affect Speed” on page 13-13
“Factors That Affect Results” on page 13-13
“Searching for Global Optima” on page 13-14

Factors That Affect Speed
Some factors may affect the speed of execution of parallel processing:

• Parallel overhead. There is overhead in calling parfor instead of for. If function evaluations are
fast, this overhead could become appreciable. In particular, solving a problem in parallel can be
slower than solving the problem serially.

• No nested parfor loops. This is described in “Nested Parallel Functions” on page 13-3. parfor
does not work in parallel when called from within another parfor loop. If you have programmed
your objective or constraint functions to take advantage of parallel processing, the limitation of no
nested parfor loops may cause a solver to run more slowly than you expect. In particular, the
parallel computation of finite differences takes precedence, since that is an outer loop. This causes
any parallel code within the objective or constraint functions to execute serially.

• When executing serially, parfor loops run slower than for loops. Therefore, for best
performance, ensure that only your outermost parallel loop calls parfor. For example, suppose
your code calls fmincon within a parfor loop. For best performance in this case, set the
fmincon UseParallel option to false.

• Passing parameters. Parameters are automatically passed to worker machines during the
execution of parallel computations. If there are a large number of parameters, or they take a large
amount of memory, passing them may slow the execution of your computation.

• Contention for resources: network and computing. If the network of worker machines has low
bandwidth or high latency, computation could be slowed.

Factors That Affect Results
Some factors may affect numerical results when using parallel processing. There are more caveats
related to parfor listed in “Parallel for-Loops (parfor)” (Parallel Computing Toolbox).

• Persistent or global variables. If your objective or constraint functions use persistent or global
variables, these variables may take different values on different worker processors. Furthermore,
they may not be cleared properly on the worker processors. Solvers can throw errors such as size
mismatches.

• Accessing external files. External files may be accessed in an unpredictable fashion during a
parallel computation. The order of computations is not guaranteed during parallel processing, so
external files may be accessed in unpredictable order, leading to unpredictable results.

• Accessing external files. If two or more processors try to read an external file simultaneously, the
file may become locked, leading to a read error, and halting the execution of the optimization.

• If your objective function calls Simulink, results may be unreliable with parallel gradient
estimation.

• Noncomputational functions, such as input, plot, and keyboard, might behave badly when
used in objective or constraint functions. When called in a parfor loop, these functions are

 Improving Performance with Parallel Computing

13-13

executed on worker machines. This can cause a worker to become nonresponsive, since it is
waiting for input.

• parfor does not allow break or return statements.

Searching for Global Optima
To search for global optima, one approach is to evaluate a solver from a variety of initial points. If you
distribute those evaluations over a number of processors using the parfor function, you disable
parallel gradient estimation, since parfor loops cannot be nested. Your optimization usually runs
more quickly if you distribute the evaluations over all the processors, rather than running them
serially with parallel gradient estimation, so disabling parallel estimation probably won't slow your
computation. If you have more processors than initial points, though, it is not clear whether it is
better to distribute initial points or to enable parallel gradient estimation.

If you have a Global Optimization Toolbox license, you can use the MultiStart solver to examine
multiple start points in parallel. See “Parallel Computing” (Global Optimization Toolbox) and “Parallel
MultiStart” (Global Optimization Toolbox).

See Also

More About
• “What Is Parallel Computing in Optimization Toolbox?” on page 13-2
• “Using Parallel Computing in Optimization Toolbox” on page 13-5
• “Minimizing an Expensive Optimization Problem Using Parallel Computing Toolbox” on page 13-

8

13 Parallel Computing for Optimization

13-14

Argument and Options Reference

• “Function Input Arguments” on page 14-2
• “Function Output Arguments” on page 14-4
• “Optimization Options Reference” on page 14-6
• “Current and Legacy Option Names” on page 14-23
• “Output Function and Plot Function Syntax” on page 14-28
• “intlinprog Output Function and Plot Function Syntax” on page 14-36

14

Function Input Arguments
Argument Description Used by Functions
A, b The matrix A and vector b are,

respectively, the coefficients of the linear
inequality constraints and the
corresponding right-side vector: A*x ≤
b.

fgoalattain, fmincon, fminimax,
fseminf, linprog, lsqlin, quadprog

Aeq, beq The matrix Aeq and vector beq are,
respectively, the coefficients of the linear
equality constraints and the
corresponding right-side vector: Aeq*x
= beq.

fgoalattain, fmincon, fminimax,
fseminf, linprog, lsqlin, quadprog

C, d The matrix C and vector d are,
respectively, the coefficients of the over
or underdetermined linear system and
the right-side vector to be solved.

lsqlin, lsqnonneg

f The vector of coefficients for the linear
term in the linear equation f'*x or the
quadratic equation x'*H*x+f'*x.

linprog, quadprog

fun The function to be optimized. fun is
either a function handle to a file or is an
anonymous function. See the individual
function reference pages for more
information on fun.

fgoalattain, fminbnd, fmincon,
fminimax, fminsearch, fminunc,
fseminf, fsolve, fzero,
lsqcurvefit, lsqnonlin

goal Vector of values that the objectives
attempt to attain. The vector is the same
length as the number of objectives.

fgoalattain

H The matrix of coefficients for the
quadratic terms in the quadratic
equation x'*H*x+f'*x. H must be
symmetric.

quadprog

lb, ub Lower and upper bound vectors (or
matrices). The arguments are normally
the same size as x. However, if lb has
fewer elements than x, say only m, then
only the first m elements in x are
bounded below; upper bounds in ub can
be defined in the same manner. You can
also specify unbounded variables using -
Inf (for lower bounds) or Inf (for upper
bounds). For example, if lb(i) = -Inf,
the variable x(i) is unbounded below.

fgoalattain, fmincon, fminimax,
fseminf, linprog, lsqcurvefit,
lsqlin, lsqnonlin, quadprog

14 Argument and Options Reference

14-2

Argument Description Used by Functions
nonlcon The function that computes the nonlinear

inequality and equality constraints.
“Passing Extra Parameters” on page 2-57
explains how to parametrize the function
nonlcon, if necessary.

See the individual reference pages for
more information on nonlcon.

fgoalattain, fmincon, fminimax

ntheta The number of semi-infinite constraints. fseminf
options A structure that defines options used by

the optimization functions. For
information about the options, see
“Optimization Options Reference” on
page 14-6 or the individual function
reference pages.

All functions

seminfcon The function that computes the nonlinear
inequality and equality constraints and
the semi-infinite constraints. seminfcon
is the name of a function file or MEX-file.
“Passing Extra Parameters” on page 2-57
explains how to parametrize seminfcon,
if necessary.

See the function reference pages for
fseminf for more information on
seminfcon.

fseminf

weight A weighting vector to control the relative
underattainment or overattainment of the
objectives.

fgoalattain

xdata, ydata The input data xdata and the observed
output data ydata that are to be fitted to
an equation.

lsqcurvefit

x0 Starting point (a scalar, vector or matrix).

(For fzero, x0 can also be a two-element
vector representing a finite interval that
is known to contain a zero.)

All functions except fminbnd and
linprog

x1, x2 The interval over which the function is
minimized.

fminbnd

See Also

More About
• “Function Output Arguments” on page 14-4

 Function Input Arguments

14-3

Function Output Arguments
Argument Description Used by Functions
attainfactor The attainment factor at the solution x. fgoalattain
exitflag An integer identifying the reason the

optimization algorithm terminated. See
the function reference pages for
descriptions of exitflag specific to
each function, and “Exit Flags and Exit
Messages” on page 3-3.

You can also return a message stating
why an optimization terminated by
calling the optimization function with the
output argument output and then
displaying output.message.

All functions

fval The value of the objective function fun at
the solution x.

fgoalattain, fminbnd, fmincon,
fminimax, fminsearch, fminunc,
fseminf, fsolve, fzero, linprog,
quadprog

grad The value of the gradient of fun at the
solution x. If fun does not compute the
gradient, grad is a finite-differencing
approximation of the gradient.

fmincon, fminunc

hessian The value of the Hessian of fun at the
solution x. For large-scale methods, if
fun does not compute the Hessian,
hessian is a finite-differencing
approximation of the Hessian. For the
quasi-newton, active-set, or sqp
methods, hessian is the value of the
Quasi-Newton approximation to the
Hessian at the solution x. See “Hessian
Output” on page 3-24.

fmincon, fminunc

jacobian The value of the Jacobian of fun at the
solution x. If fun does not compute the
Jacobian, jacobian is a finite-
differencing approximation of the
Jacobian.

lsqcurvefit, lsqnonlin, fsolve

lambda The Lagrange multipliers at the solution
x, see “Lagrange Multiplier Structures”
on page 3-22. lambda is a structure
where each field is for a different
constraint type. For structure field
names, see individual function
descriptions. (For lsqnonneg, lambda is
simply a vector, as lsqnonneg only
handles one kind of constraint.)

fgoalattain, fmincon, fminimax,
fseminf, linprog, lsqcurvefit,
lsqlin, lsqnonlin, lsqnonneg,
quadprog

14 Argument and Options Reference

14-4

Argument Description Used by Functions
maxfval max{fun(x)} at the solution x. fminimax
output An output structure that contains

information about the results of the
optimization, see “Output Structures” on
page 3-21. For structure field names, see
individual function descriptions.

All functions

residual The value of the residual at the solution
x.

lsqcurvefit, lsqlin, lsqnonlin,
lsqnonneg

resnorm The value of the squared 2-norm of the
residual at the solution x.

lsqcurvefit, lsqlin, lsqnonlin,
lsqnonneg

x The solution found by the optimization
function. If exitflag > 0, then x is a
solution; otherwise, x is the value of the
optimization routine when it terminated
prematurely.

All functions

See Also

More About
• “Function Input Arguments” on page 14-2

 Function Output Arguments

14-5

Optimization Options Reference
In this section...
“Optimization Options” on page 14-6
“Hidden Options” on page 14-18

Optimization Options
The following table describes optimization options. Create options using the optimoptions function,
or optimset for fminbnd, fminsearch, fzero, or lsqnonneg.

See the individual function reference pages for information about available option values and
defaults.

The default values for the options vary depending on which optimization function you call with
options as an input argument. You can determine the default option values for any of the
optimization functions by entering optimoptions('solvername') or the equivalent
optimoptions(@solvername). For example,

optimoptions('fmincon')

returns a list of the options and the default values for the default 'interior-point' fmincon
algorithm. To find the default values for another fmincon algorithm, set the Algorithm option. For
example,

opts = optimoptions('fmincon','Algorithm','sqp')

optimoptions “hides” some options, meaning it does not display their values. Those options do not
appear in this table. Instead, they appear in “Hidden Options” on page 14-18.

14 Argument and Options Reference

14-6

Optimization Options

Option Name Description Used by Functions Restrictions
AbsoluteGapTolerance Nonnegative real. intlinprog

stops if the difference between the
internally calculated upper (U) and
lower (L) bounds on the objective
function is less than or equal to
AbsoluteGapTolerance:

U – L <=
AbsoluteGapTolerance.

intlinprog optimoption
s only

AbsoluteMaxObjective
Count

Number of F(x) to minimize the
worst case absolute values.

fminimax

Algorithm Chooses the algorithm used by the
solver.

fmincon, fminunc, fsolve,
linprog, lsqcurvefit,
lsqlin, lsqnonlin,
quadprog

BarrierParamUpdate Chooses the algorithm for updating
the barrier parameter in the
'interior-point' algorithm,
either 'monotone' or
'predictor-corrector'.

fmincon

 Optimization Options Reference

14-7

Option Name Description Used by Functions Restrictions
BranchRule Rule for choosing the component for

branching:

• 'maxpscost' — The fractional
component with maximum
pseudocost. See “Branch and
Bound” on page 8-48.

• 'strongpscost' — The
fractional component with
maximum pseudocost, with a
careful estimate of pseudocost.
See “Branch and Bound” on page
8-48.

• 'reliability' — The
fractional component with
maximum pseudocost, with an
even more careful estimate of
pseudocost than in
'strongpscost'. See “Branch
and Bound” on page 8-48.

• 'mostfractional' — The
component whose fractional part
is closest to 1/2.

• 'maxfun' — The fractional
component with maximal
corresponding component in the
absolute value of objective vector
f.

intlinprog optimoption
s only

CheckGradients Compare user-supplied analytic
derivatives (gradients or Jacobian,
depending on the selected solver) to
finite differencing derivatives.

fgoalattain, fmincon,
fminimax, fminunc,
fseminf, fsolve,
lsqcurvefit, lsqnonlin

optimoption
s only. For
optimset,
use
DerivativeC
heck

ConstraintTolerance Tolerance on the constraint violation. coneprog, fgoalattain,
fmincon, fminimax,
fseminf, intlinprog,
linprog, lsqlin,
quadprog

optimoption
s only. For
optimset,
use TolCon

14 Argument and Options Reference

14-8

Option Name Description Used by Functions Restrictions
CutGeneration Level of cut generation (see “Cut

Generation” on page 8-45):

• 'none' — No cuts. Makes
CutMaxIterations irrelevant.

• 'basic' — Normal cut
generation.

• 'intermediate' — Use more
cut types.

• 'advanced' — Use most cut
types.

intlinprog optimoption
s only

CutMaxIterations Number of passes through all cut
generation methods before entering
the branch-and-bound phase, an
integer from 1 through 50. Disable
cut generation by setting the
CutGeneration option to 'none'.

intlinprog optimoption
s only

Display Level of display.

• 'off' displays no output.
• 'iter' displays output at each

iteration, and gives the default
exit message.

• 'iter-detailed' displays
output at each iteration, and
gives the technical exit message.

• 'notify' displays output only if
the function does not converge,
and gives the default exit
message.

• 'notify-detailed' displays
output only if the function does
not converge, and gives the
technical exit message.

• 'final' displays just the final
output, and gives the default exit
message.

• 'final-detailed' displays just
the final output, and gives the
technical exit message.

All. See the individual
function reference pages for
the values that apply.

EnableFeasibilityMod
e

Chooses the algorithm for achieving
feasibility in the 'interior-
point' algorithm. true uses a
different algorithm than the default
false.

fmincon

 Optimization Options Reference

14-9

Option Name Description Used by Functions Restrictions
EqualityGoalCount Specify the number of objectives

required for the objective fun to
equal the set goal. Reorder your
objectives, if necessary, to have
fgoalattain achieve the first
EqualityGoalCount objectives
exactly.

fgoalattain optimoption
s only. For
optimset,
use
GoalsExactA
chieve

FiniteDifferenceStep
Size

Scalar or vector step size factor for
finite differences. When you set
FiniteDifferenceStepSize to a
vector v, the forward finite
differences delta are

delta = v.*sign′
(x).*max(abs(x),TypicalX);

where sign′(x) = sign(x)
except sign′(0) = 1. Central
finite differences are

delta =
v.*max(abs(x),TypicalX);

Scalar
FiniteDifferenceStepSize
expands to a vector. The default is
sqrt(eps) for forward finite
differences, and eps^(1/3) for
central finite differences.

fgoalattain, fmincon,
fminimax, fminunc,
fseminf, fsolve,
lsqcurvefit, lsqnonlin

optimoption
s only. For
optimset,
use
FinDiffRelS
tep

FiniteDifferenceType Finite differences, used to estimate
gradients, are either 'forward'
(the default), or 'central'
(centered), which takes twice as
many function evaluations but
should be more accurate.
'central' differences might violate
bounds during their evaluation in
fmincon interior-point evaluations if
the HonorBounds option is set to
false.

fgoalattain, fmincon,
fminimax, fminunc,
fseminf, fsolve,
lsqcurvefit, lsqnonlin

optimoption
s only. For
optimset,
use
FinDiffType

FunctionTolerance Termination tolerance on the
function value.

fgoalattain, fmincon,
fminimax, fminsearch,
fminunc, fseminf, fsolve,
lsqcurvefit, lsqlin,
lsqnonlin, quadprog

optimoption
s only. For
optimset,
use TolFun

14 Argument and Options Reference

14-10

Option Name Description Used by Functions Restrictions
HessianApproximation Method of Hessian approximation:

'bfgs', 'lbfgs',
{'lbfgs',Positive Integer},
or 'finite-difference'.

Ignored when HessianFcn or
HessianMultiplyFcn is nonempty.

fmincon optimoption
s only. For
optimset,
use Hessian

HessianFcn User-supplied Hessian, specified as a
function handle (see “Including
Hessians” on page 2-21).

fmincon, fminunc optimoption
s only. For
optimset,
use HessFcn

HessianMultiplyFcn User-supplied Hessian multiply
function, specified as a function
handle.

Ignored when HessianFcn is
nonempty.

fmincon, fminunc,
quadprog

optimoption
s only. For
optimset,
use HessMult

Heuristics Algorithm for searching for feasible
points (see “Heuristics for Finding
Feasible Solutions” on page 8-46):

• 'basic'
• 'intermediate'
• 'advanced'
• 'rss'
• 'rins'
• 'round'
• 'diving'
• 'rss-diving'
• 'rins-diving'
• 'round-diving'
• 'none'

intlinprog optimoption
s only

HeuristicsMaxNodes Strictly positive integer that bounds
the number of nodes intlinprog
can explore in its branch-and-bound
search for feasible points. See
“Heuristics for Finding Feasible
Solutions” on page 8-46.

intlinprog optimoption
s only

HonorBounds The default true ensures that bound
constraints are satisfied at every
iteration. Turn off by setting to
false.

fmincon optimoption
s only. For
optimset,
use
AlwaysHonor
Constraints

 Optimization Options Reference

14-11

Option Name Description Used by Functions Restrictions
IntegerPreprocess Types of integer preprocessing (see

“Mixed-Integer Program
Preprocessing” on page 8-44):

• 'none' — Use very few integer
preprocessing steps.

• 'basic' — Use a moderate
number of integer preprocessing
steps.

• 'advanced' — Use all available
integer preprocessing steps.

intlinprog optimoption
s only

IntegerTolerance Real from 1e-6 through 1e-3,
where the maximum deviation from
integer that a component of the
solution x can have and still be
considered an integer.
IntegerTolerance is not a
stopping criterion.

intlinprog optimoption
s only

JacobianMultiplyFcn User-defined Jacobian multiply
function, specified as a function
handle. Ignored unless
SpecifyObjectiveGradient is
true for fsolve, lsqcurvefit,
and lsqnonlin.

fsolve, lsqcurvefit,
lsqlin, lsqnonlin

14 Argument and Options Reference

14-12

Option Name Description Used by Functions Restrictions
LinearSolver Type of internal linear solver in

algorithm. For lsqlin and
quadprog:

• 'auto' — Use 'sparse' if the
passed quadratic matrix is sparse
(H for quadprog, C for lsqlin),
'dense' otherwise.

• 'sparse' — Use sparse linear
algebra.

• 'dense' — Use dense linear
algebra.

For coneprog:

• 'auto' (default) — coneprog
chooses the step solver.

• If the problem is sparse, the
step solver is 'prodchol'.

• Otherwise, the step solver is
'augmented'.

• 'augmented' — Augmented
form step solver. See [1].

• 'normal' — Normal form step
solver. See [1].

• 'prodchol' — Product form
Cholesky step solver. See [4] and
[5].

• 'schur' — Schur complement
method step solver. See [2].

coneprog, lsqlin
'interior-point'
algorithm and quadprog
'interior-point-
convex' algorithm

LPMaxIterations Strictly positive integer, the
maximum number of simplex
algorithm iterations per node during
the branch-and-bound process.

intlinprog optimoption
s only

LPOptimalityToleranc
e

Nonnegative real where reduced
costs must exceed
LPOptimalityTolerance for a
variable to be taken into the basis.

intlinprog optimoption
s only

MaxFunctionEvaluatio
ns

Maximum number of function
evaluations allowed.

fgoalattain, fminbnd,
fmincon, fminimax,
fminsearch, fminunc,
fseminf, fsolve,
lsqcurvefit, lsqnonlin

optimoption
s only. For
optimset,
use
MaxFunEvals

 Optimization Options Reference

14-13

Option Name Description Used by Functions Restrictions
MaxIterations Maximum number of iterations

allowed.
All but fzero and
lsqnonneg

optimoption
s only. For
optimset,
use MaxIter

MaxFeasiblePoints Strictly positive integer.
intlinprog stops if it finds
MaxFeasiblePoints integer
feasible points.

intlinprog optimoption
s only

MaxNodes Strictly positive integer that is the
maximum number of nodes the
solver explores in its branch-and-
bound process.

intlinprog

MaxTime Maximum amount of time in seconds
allowed for the algorithm.

coneprog, intlinprog,
linprog

NodeSelection Choose the node to explore next.

• 'simplebestproj' — Best
projection. See “Branch and
Bound” on page 8-48.

• 'minobj' — Explore the node
with the minimum objective
function.

• 'mininfeas' — Explore the
node with the minimal sum of
integer infeasibilities. See
“Branch and Bound” on page 8-
48.

intlinprog optimoption
s only

ObjectiveCutOff Real greater than -Inf. The default
is Inf.

intlinprog optimoption
s only

ObjectiveImprovement
Threshold

Nonnegative real. intlinprog
changes the current feasible solution
only when it locates another with an
objective function value that is at
least
ObjectiveImprovementThreshol
d lower: (fold – fnew)/(1 + |fold|) >
ObjectiveImprovementThreshold.

intlinprog optimoption
s only

ObjectiveLimit If the objective function value goes
below ObjectiveLimit and the
iterate is feasible, then the iterations
halt.

fmincon, fminunc, lsqlin,
quadprog

14 Argument and Options Reference

14-14

Option Name Description Used by Functions Restrictions
OptimalityTolerance Termination tolerance on the first-

order optimality.
coneprog, fgoalattain,
fmincon, fminimax,
fminunc, fseminf, fsolve,
linprog (interior-point
only), lsqcurvefit,
lsqlin, lsqnonlin,
quadprog

optimoption
s only. For
optimset,
use TolFun

OutputFcn Specify one or more user-defined
functions that the optimization
function calls at each iteration. Pass
a function handle or a cell array of
function handles. See “Output
Function and Plot Function Syntax”
on page 14-28 or “intlinprog Output
Function and Plot Function Syntax”
on page 14-36.

fgoalattain, fminbnd,
fmincon, fminimax,
fminsearch, fminunc,
fseminf, fsolve, fzero,
intlinprog,
lsqcurvefit, lsqnonlin

 Optimization Options Reference

14-15

Option Name Description Used by Functions Restrictions
PlotFcn Plots various measures of progress

while the algorithm executes. Select
from predefined plots or write your
own. Give the function name as
listed, or as a function handle such
as @optimplotx. Pass a built-in plot
function name, a function handle, or
a cell array of built-in names or
function handles. For custom plot
functions, pass function handles.

• 'optimplotx' plots the current
point

• 'optimplotfunccount' plots
the function count

• 'optimplotfval' plots the
function value

• 'optimplotfvalconstr' plots
the best feasible objective
function value found as a line
plot. The plot shows infeasible
points as red and feasible points
as blue, using a feasibility
tolerance of 1e-6.

• 'optimplotconstrviolation
' plots the maximum constraint
violation

• 'optimplotresnorm' plots the
norm of the residuals

• 'optimplotfirstorderopt'
plots the first-order of optimality

• 'optimplotstepsize' plots
the step size

• 'optimplotmilp' plots the gap
for mixed-integer linear programs

See “Plot Functions” on page 3-27 or
“intlinprog Output Function and Plot
Function Syntax” on page 14-36.

fgoalattain, fminbnd,
fmincon, fminimax,
fminsearch, fminunc,
fseminf, fsolve, fzero,
intlinprog,
lsqcurvefit, lsqnonlin.
See the individual function
reference pages for the
values that apply.

optimoption
s only. For
optimset,
use PlotFcns

14 Argument and Options Reference

14-16

Option Name Description Used by Functions Restrictions
RelativeGapTolerance Real from 0 through 1. intlinprog

stops if the relative difference
between the internally calculated
upper (U) and lower (L) bounds on
the objective function is less than or
equal to RelativeGapTolerance:

(U – L) / (abs(U) + 1) <=
RelativeGapTolerance.

intlinprog optimoption
s only

RootLPAlgorithm Algorithm for solving linear
programs:

• 'dual-simplex' — Dual
simplex algorithm

• 'primal-simplex' — Primal
simplex algorithm

intlinprog optimoption
s only

RootLPMaxIterations Nonnegative integer that is the
maximum number of simplex
algorithm iterations to solve the
initial linear programming problem.

intlinprog optimoption
s only

ScaleProblem For fmincon interior-point and
sqp algorithms, true causes the
algorithm to normalize all
constraints and the objective
function by their initial values.
Disable by setting to the default
false.

fmincon

SpecifyConstraintGra
dient

User-defined gradients for the
nonlinear constraints.

fgoalattain, fmincon,
fminimax

optimoption
s only. For
optimset,
use
GradConstr

SpecifyObjectiveGrad
ient

User-defined gradients or Jacobians
for the objective functions.

fgoalattain, fmincon,
fminimax, fminunc,
fseminf, fsolve,
lsqcurvefit, lsqnonlin

optimoption
s only. For
optimset,
use GradObj
or Jacobian

StepTolerance Termination tolerance on x. All functions except
linprog and coneprog

SubproblemAlgorithm Determines how the iteration step is
calculated.

fmincon, fminunc, fsolve,
lsqcurvefit, lsqlin,
lsqnonlin

 Optimization Options Reference

14-17

Option Name Description Used by Functions Restrictions
TypicalX Array that specifies typical

magnitude of array of parameters x.
The size of the array is equal to the
size of x0, the starting point.
Primarily for scaling finite
differences for gradient estimation.

fgoalattain, fmincon,
fminimax, fminunc,
fseminf, fsolve,
lsqcurvefit, lsqlin,
lsqnonlin, quadprog

UseParallel When true, applicable solvers
estimate gradients in parallel.
Disable by setting to false.

fgoalattain, fmincon,
fminimax, fminunc,
fsolve, lsqcurvefit,
lsqnonlin.

Hidden Options
optimoptions “hides” some options, meaning it does not display their values. To learn how to view
these options, and why they are hidden, see “View Options” on page 2-66.

Function reference pages list these options in italics.

• “Hidden Optimization Toolbox Options” on page 14-18
• “Hidden Global Optimization Toolbox Options” on page 14-22

Hidden Optimization Toolbox Options

This table lists the hidden Optimization Toolbox options.

14 Argument and Options Reference

14-18

Options that optimoptions Hides

Option Name Description Used by Functions Restrictions
Diagnostics Display diagnostic

information about the
function to be
minimized or solved.

All but fminbnd,
fminsearch, fzero,
and lsqnonneg

DiffMaxChange Maximum change in
variables for finite
differencing.

fgoalattain,
fmincon, fminimax,
fminunc, fseminf,
fsolve, lsqcurvefit,
lsqnonlin

DiffMinChange Minimum change in
variables for finite
differencing.

fgoalattain,
fmincon, fminimax,
fminunc, fseminf,
fsolve, lsqcurvefit,
lsqnonlin

FunValCheck Check whether
objective function and
constraints values are
valid. 'on' displays an
error when the
objective function or
constraints return a
value that is complex,
NaN, or Inf.

Note FunValCheck
does not return an error
for Inf when used with
fminbnd, fminsearch,
or fzero, which handle
Inf appropriately.

'off' displays no error.

fgoalattain,
fminbnd, fmincon,
fminimax,
fminsearch, fminunc,
fseminf, fsolve,
fzero, lsqcurvefit,
lsqnonlin

HessPattern Sparsity pattern of the
Hessian for finite
differencing. The size of
the matrix is n-by-n,
where n is the number
of elements in x0, the
starting point.

fmincon, fminunc

HessUpdate Quasi-Newton updating
scheme.

fminunc

InitBarrierParam Initial barrier value. fmincon
InitDamping Initial Levenberg-

Marquardt parameter.
fsolve, lsqcurvefit,
lsqnonlin

optimoptions only

 Optimization Options Reference

14-19

Option Name Description Used by Functions Restrictions
InitTrustRegionRadius Initial radius of the trust

region.
fmincon

JacobPattern Sparsity pattern of the
Jacobian for finite
differencing. The size of
the matrix is m-by-n,
where m is the number
of values in the first
argument returned by
the user-specified
function fun, and n is
the number of elements
in x0, the starting point.

fsolve, lsqcurvefit,
lsqnonlin

LPPreprocess Type of preprocessing
for the solution to the
relaxed linear program
(see “Linear Program
Preprocessing” on page
8-44):

• 'none' — No
preprocessing.

• 'basic' — Use
preprocessing.

intlinprog optimoptions only

MaxPCGIter Maximum number of
iterations of
preconditioned
conjugate gradients
method allowed.

fmincon, fminunc,
fsolve, lsqcurvefit,
lsqlin, lsqnonlin,
quadprog

MaxProjCGIter A tolerance for the
number of projected
conjugate gradient
iterations; this is an
inner iteration, not the
number of iterations of
the algorithm.

fmincon

MaxSQPIter Maximum number of
iterations of sequential
quadratic programming
method allowed.

fgoalattain,
fmincon, fminimax

MeritFunction Use goal attainment/
minimax merit function
(multiobjective) vs.
fmincon (single
objective).

fgoalattain,
fminimax

14 Argument and Options Reference

14-20

Option Name Description Used by Functions Restrictions
PrecondBandWidth Upper bandwidth of

preconditioner for PCG.
Setting to 'Inf' uses a
direct factorization
instead of CG.

fmincon, fminunc,
fsolve, lsqcurvefit,
lsqlin, lsqnonlin,
quadprog

Preprocess Level of LP
preprocessing prior to
simplex or dual simplex
algorithm iterations.

linprog optimoptions only

RelLineSrchBnd Relative bound on line
search step length.

fgoalattain,
fmincon, fminimax,
fseminf

RelLineSrchBndDuratio
n

Number of iterations for
which the bound
specified in
RelLineSrchBnd
should be active.

fgoalattain,
fmincon, fminimax,
fseminf

ScaleProblem When using the
Algorithm option
'levenberg-
marquardt', setting
the ScaleProblem
option to 'jacobian'
sometimes helps the
solver on badly-scaled
problems.

fsolve, lsqcurvefit,
lsqnonlin

TolConSQP Constraint violation
tolerance for the inner
SQP iteration.

fgoalattain,
fmincon, fminimax,
fseminf

TolPCG Termination tolerance
on the PCG iteration.

fmincon, fminunc,
fsolve, lsqcurvefit,
lsqlin, lsqnonlin,
quadprog

TolProjCG A relative tolerance for
projected conjugate
gradient algorithm; this
is for an inner iteration,
not the algorithm
iteration.

fmincon

TolProjCGAbs Absolute tolerance for
projected conjugate
gradient algorithm; this
is for an inner iteration,
not the algorithm
iteration.

fmincon

 Optimization Options Reference

14-21

Hidden Global Optimization Toolbox Options

For the reasons these options are hidden, see “Options that optimoptions Hides” (Global Optimization
Toolbox).

Options that optimoptions Hides

Option Name Used by Functions
Cache patternsearch
CacheSize patternsearch
CacheTol patternsearch
DisplayInterval particleswarm, simulannealbnd
FunValCheck particleswarm
HybridInterval simulannealbnd
InitialPenalty ga, patternsearch
MaxMeshSize patternsearch
MeshRotate patternsearch
MigrationDirection ga
MigrationFraction ga
MigrationInterval ga
PenaltyFactor ga, patternsearch
PlotInterval ga, patternsearch, simulannealbnd
StallTest ga
TolBind patternsearch

See Also

More About
• “Current and Legacy Option Names” on page 14-23

14 Argument and Options Reference

14-22

Current and Legacy Option Names
Many option names changed in R2016a. optimset uses only legacy option names. optimoptions
accepts both legacy and current names. However, when you set an option using a legacy name-value
pair, optimoptions displays the current equivalent value. For example, the legacy TolX option is
equivalent to the current StepTolerance option.

options = optimoptions('fsolve','TolX',1e-4)

options =

 fsolve options:

 Options used by current Algorithm ('trust-region-dogleg'):
 (Other available algorithms: 'levenberg-marquardt', 'trust-region-reflective')

 Set properties:
 StepTolerance: 1.0000e-04

 Default properties:
 Algorithm: 'trust-region-dogleg'
 CheckGradients: 0
 Display: 'final'
 FiniteDifferenceStepSize: 'sqrt(eps)'
 FiniteDifferenceType: 'forward'
 FunctionTolerance: 1.0000e-06
 MaxFunctionEvaluations: '100*numberOfVariables'
 MaxIterations: 400
 OptimalityTolerance: 1.0000e-06
 OutputFcn: []
 PlotFcn: []
 SpecifyObjectiveGradient: 0
 TypicalX: 'ones(numberOfVariables,1)'
 UseParallel: 0

 Show options not used by current Algorithm ('trust-region-dogleg')

The following tables provide the same information. The first table lists options in alphabetical order
by legacy option name, and the second table lists options in alphabetical order by current option
name. The tables include only those names that differ or have different values, and show values only
when they differ between legacy and current. For changes in Global Optimization Toolbox solvers, see
“Options Changes in R2016a” (Global Optimization Toolbox).

 Current and Legacy Option Names

14-23

Option Names in Legacy Order

Legacy Name Current Name Legacy Values Current Values
AlwaysHonorConstra
ints

HonorBounds 'bounds', 'none' true, false

BranchingRule BranchRule
CutGenMaxIter CutMaxIterations
DerivativeCheck CheckGradients 'on', 'off' true, false
FinDiffRelStep FiniteDifferenceSt

epSize

FinDiffType FiniteDifferenceTy
pe

GoalsExactAchieve EqualityGoalCount
GradConstr SpecifyConstraintG

radient
'on', 'off' true, false

GradObj SpecifyObjectiveGr
adient

'on', 'off' true, false

Hessian HessianApproximati
on

'user-supplied',
'bfgs', 'lbfgs',
'fin-diff-grads',
'on', 'off'

'bfgs', 'lbfgs',
'finite-
difference'

Ignored when
HessianFcn or
HessianMultiplyFcn
is nonempty

HessFcn HessianFcn
HessMult HessianMultiplyFcn
HessUpdate (changed
in R2022a for fminunc)

HessianApproximati
on

"bfgs", "lbfgs",
{"lbfgs",Positive
Integer}, "dfp",
"steepdesc"

"bfgs", "lbfgs",
{"lbfgs",Positive
Integer}

IPPreprocess IntegerPreprocess
Jacobian SpecifyObjectiveGr

adient

JacobMult JacobianMultiplyFc
n

LPMaxIter LPMaxIterations
MaxFunEvals MaxFunctionEvaluat

ions

MaxIter MaxIterations
MaxNumFeasPoints MaxFeasiblePoints
MinAbsMax AbsoluteMaxObjecti

veCount

PlotFcns PlotFcn

14 Argument and Options Reference

14-24

Legacy Name Current Name Legacy Values Current Values
RelObjThreshold ObjectiveImproveme

ntThreshold

RootLPMaxIter RootLPMaxIteration
s

ScaleProblem ScaleProblem 'obj-and-constr',
'none'

true, false

TolCon ConstraintToleranc
e

TolFun (usage 1) OptimalityToleranc
e

TolFun (usage 2) FunctionTolerance
TolFunLP LPOptimalityTolera

nce

TolGapAbs AbsoluteGapToleran
ce

TolGapRel RelativeGapToleran
ce

TolInteger IntegerTolerance
TolX StepTolerance

 Current and Legacy Option Names

14-25

Option Names in Current Order

Current Name Legacy Name Current Values Legacy Values
AbsoluteGapToleran
ce

TolGapAbs

AbsoluteMaxObjecti
veCount

MinAbsMax

BranchRule BranchingRule
CheckGradients DerivativeCheck true, false 'on', 'off'
ConstraintToleranc
e

TolCon

CutMaxIterations CutGenMaxIter
EqualityGoalCount GoalsExactAchieve
FiniteDifferenceSt
epSize

FinDiffRelStep

FiniteDifferenceTy
pe

FinDiffType

FunctionTolerance TolFun (usage 2)
HessianApproximati
on for fmincon

Hessian 'bfgs', 'lbfgs',
'finite-
difference'

Ignored when
HessianFcn or
HessianMultiplyFcn
is nonempty

'user-supplied',
'bfgs', 'lbfgs',
'fin-diff-grads',
'on', 'off'

HessianApproximati
on for fminunc
(changed in R2022a for
fminunc)

HessUpdate "bfgs", "lbfgs",
{"lbfgs",Positive
Integer}

"bfgs", "lbfgs",
{"lbfgs",Positive
Integer}, "dfp",
"steepdesc"

HessianFcn HessFcn
HessianMultiplyFcn HessMult
HonorBounds AlwaysHonorConstra

ints
true, false 'bounds', 'none'

IntegerPreprocess IPPreprocess
IntegerTolerance TolInteger
JacobianMultiplyFc
n

JacobMult

LPMaxIterations LPMaxIter
LPOptimalityTolera
nce

TolFunLP

MaxFeasiblePoints MaxNumFeasPoints
MaxFunctionEvaluat
ions

MaxFunEvals

14 Argument and Options Reference

14-26

Current Name Legacy Name Current Values Legacy Values
MaxIterations MaxIter
ObjectiveImproveme
ntThreshold

RelObjThreshold

OptimalityToleranc
e

TolFun (usage 1)

PlotFcn PlotFcns
RelativeGapToleran
ce

TolGapRel

RootLPMaxIteration
s

RootLPMaxIter

ScaleProblem ScaleProblem true, false 'obj-and-constr',
'none'

SpecifyConstraintG
radient

GradConstr true, false 'on', 'off'

SpecifyObjectiveGr
adient

GradObj or Jacobian true, false 'on', 'off'

StepTolerance TolX

See Also

More About
• “Optimization Options Reference” on page 14-6

 Current and Legacy Option Names

14-27

Output Function and Plot Function Syntax

In this section...
“What Are Output Functions and Plot Functions?” on page 14-28
“Structure of the Output Function or Plot Function” on page 14-29
“Fields in optimValues” on page 14-29
“States of the Algorithm” on page 14-34
“Stop Flag” on page 14-34

What Are Output Functions and Plot Functions?
For examples of output functions and plot functions, see “Output Functions for Optimization Toolbox”
on page 3-30 and “Plot Functions” on page 3-27.

The OutputFcn option specifies one or more functions that an optimization function calls at each
iteration. Typically, you might use an output function to plot points at each iteration or to display
optimization quantities from the algorithm. Using an output function you can view, but not set,
optimization quantities. You can also halt the execution of a solver according to conditions you set;
see “Structure of the Output Function or Plot Function” on page 14-29.

Similarly, the PlotFcn option specifies one or more functions that an optimization function calls at
each iteration, and can halt the solver. The difference between a plot function and an output function
is twofold:

• Predefined plot functions exist for most solvers, enabling you to obtain typical plots easily.
• A plot function sends output to a window having Pause and Stop buttons, enabling you to halt the

solver early without losing information.

Caution intlinprog output functions and plot functions differ from those in other solvers. See
“intlinprog Output Function and Plot Function Syntax” on page 14-36.

To set up an output function or plot function, do the following:

1 Write the function as a function file or local function.
2 Use optimoptions to set the value of OutputFcn or PlotFcn to be a function handle, that is,

the name of the function preceded by the @ sign. For example, if the output function is
outfun.m, the command

 options = optimoptions(@solvername,'OutputFcn',@outfun);

specifies OutputFcn to be the handle to outfun. To specify more than one output function or
plot function, use the syntax

 options = optimoptions('solvername','OutputFcn',{@outfun, @outfun2});

To use tab-completion to help select a built-in plot function name, use quotes rather than a
function handle.

14 Argument and Options Reference

14-28

3 Call the optimization function with options as an input argument.

“Passing Extra Parameters” on page 2-57 explains how to pass parameters or data to your output
function or plot function, if necessary.

Structure of the Output Function or Plot Function
The function definition line of the output function or plot function has the following form:

stop = outfun(x,optimValues,state)

where

• x is the point computed by the algorithm at the current iteration.
• optimValues is a structure containing data from the current iteration. “Fields in optimValues” on

page 14-29 describes the structure in detail.
• state is the current state of the algorithm. “States of the Algorithm” on page 14-34 lists the

possible values.
• stop is a flag that is true or false depending on whether the optimization routine should stop

(true) or continue (false). For details, see “Stop Flag” on page 14-34.

The optimization function passes the values of the input arguments to outfun at each iteration.

Fields in optimValues
The following table lists the fields of the optimValues structure. A particular optimization function
returns values for only some of these fields. For each field, the Returned by Functions column of the
table lists the functions that return the field.

Corresponding Output Arguments

Some of the fields of optimValues correspond to output arguments of the optimization function.
After the final iteration of the optimization algorithm, the value of such a field equals the
corresponding output argument. For example, optimValues.fval corresponds to the output
argument fval. So, if you call fmincon with an output function and return fval, the final value of
optimValues.fval equals fval. The Description column of the following table indicates the fields
that have a corresponding output argument.

Command-Line Display

The values of some fields of optimValues are displayed at the command line when you call the
optimization function with the Display field of options set to 'iter', as described in “Iterative

 Output Function and Plot Function Syntax

14-29

Display” on page 3-14. For example, optimValues.fval is displayed in the f(x) column. The
Command-Line Display column of the following table indicates the fields that you can display at the
command line.

Some optimValues fields apply only to specific algorithms:

• AS — active-set
• D — trust-region-dogleg
• IP — interior-point
• LM — levenberg-marquardt
• Q — quasi-newton
• SQP — sqp
• TR — trust-region
• TRR — trust-region-reflective

Some optimValues fields exist in certain solvers or algorithms, but are always filled with empty or
zero values, so are meaningless. These fields include:

• constrviolation for fminunc TR and fsolve TRR.
• procedure for fmincon TRR and SQP, and for fminunc.

14 Argument and Options Reference

14-30

optimValues Fields

OptimValues Field
(optimValues.field)

Description Returned by Functions Command-Line
Display

attainfactor Attainment factor for
multiobjective problem. For
details, see “Goal Attainment
Method” on page 7-3.

fgoalattain None

cgiterations Number of conjugate
gradient iterations at current
optimization iteration.

fmincon (IP, TRR),
fminunc (TR), fsolve
(TRR), lsqcurvefit (TRR),
lsqnonlin (TRR)

CG-iterations

See “Iterative
Display” on page 3-
14.

constrviolation Maximum constraint
violation.

fgoalattain, fmincon,
fminimax, fseminf

fminunc TR and fsolve
TRR provide blank field
values.

Max constraint
or Feasibility

See “Iterative
Display” on page 3-
14.

degenerate Measure of degeneracy. A
point is degenerate if:

• The partial derivative
with respect to one of the
variables is 0 at the point,
and

• A bound constraint is
active for that variable at
the point.

See “Degeneracy” on page
14-34.

fmincon (TRR),
lsqcurvefit (TRR),
lsqnonlin (TRR)

None

directionalderivative Directional derivative in the
search direction.

fgoalattain, fmincon
(AS), fminimax, fminunc
(Q), fseminf, fsolve
(LM), lsqcurvefit (LM),
lsqnonlin (LM)

Directional
derivative

See “Iterative
Display” on page 3-
14.

firstorderopt First-order optimality
(depends on algorithm). Final
value equals optimization
function output
output.firstorderopt.

fgoalattain, fmincon,
fminimax, fminunc,
fseminf, fsolve,
lsqcurvefit, lsqnonlin

First-order
optimality

See “Iterative
Display” on page 3-
14.

funccount Cumulative number of
function evaluations. Final
value equals optimization
function output
output.funcCount.

fgoalattain, fminbnd,
fmincon, fminimax,
fminsearch, fminunc,
fsolve, fzero, fseminf,
lsqcurvefit, lsqnonlin

F-count or Func-
count

See “Iterative
Display” on page 3-
14.

 Output Function and Plot Function Syntax

14-31

OptimValues Field
(optimValues.field)

Description Returned by Functions Command-Line
Display

fval Function value at current
point. Final value equals
optimization function output
fval.

For fsolve, fval is the
vector function value, and
iterative display f(x) is the
squared norm of this vector.

fgoalattain, fminbnd,
fmincon, fminimax,
fminsearch, fminunc,
fseminf, fsolve, fzero

f(x)

See “Iterative
Display” on page 3-
14.

gradient Current gradient of objective
function — either analytic
gradient if you provide it or
finite-differencing
approximation. Final value
equals optimization function
output grad.

fgoalattain, fmincon,
fminimax, fminunc,
fseminf, fsolve,
lsqcurvefit, lsqnonlin

None

iteration Iteration number — starts at
0. Final value equals
optimization function output
output.iterations.

fgoalattain, fminbnd,
fmincon, fminimax,
fminsearch, fminunc,
fsolve, fseminf, fzero,
lsqcurvefit, lsqnonlin

Iteration

See “Iterative
Display” on page 3-
14.

lambda The Levenberg-Marquardt
parameter, lambda, at the
current iteration. See
“Levenberg-Marquardt
Method” on page 11-6.

fsolve (LM),
lsqcurvefit (LM),
lsqnonlin (LM)

Lambda

lssteplength Actual step length divided by
initially predicted step length

fmincon (AS, SQP),
fminunc (Q)

Steplength or
Line search
steplength or
Step-size

See “Iterative
Display” on page 3-
14.

maxfval Maximum function value fminimax None
positivedefinite 0 if algorithm detects

negative curvature while
computing Newton step.

1 otherwise.

fmincon (TRR), fminunc
(TR), fsolve (TRR),
lsqcurvefit (TRR),
lsqnonlin (TRR)

None

14 Argument and Options Reference

14-32

OptimValues Field
(optimValues.field)

Description Returned by Functions Command-Line
Display

procedure Procedure messages. fgoalattain, fminbnd,
fmincon (AS), fminimax,
fminsearch, fseminf,
fzero

fmincon TRR and SQP, and
fminunc provide blank field
values.

Procedure

See “Iterative
Display” on page 3-
14.

ratio Ratio of change in the
objective function to change
in the quadratic
approximation.

fmincon (TRR), fminunc
(TR), fsolve (TRR),
lsqcurvefit (TRR),
lsqnonlin (TRR)

None

residual The residual vector. lsqcurvefit, lsqnonlin, Residual

See “Iterative
Display” on page 3-
14.

resnorm 2-norm of the residual
squared.

lsqcurvefit, lsqnonlin Resnorm

See “Iterative
Display” on page 3-
14.

searchdirection Search direction. fgoalattain, fmincon
(AS, SQP), fminimax,
fminunc (Q), fseminf,
fsolve (LM),
lsqcurvefit (LM),
lsqnonlin (LM)

None

stepaccept Status of the current trust-
region step. Returns true if
the current trust-region step
was successful, and false if
the trust-region step was
unsuccessful.

fsolve (D) None

stepsize Current step size
(displacement in x). Final
value equals optimization
function output
output.stepsize.

fgoalattain, fmincon,
fminimax, fminunc,
fseminf, fsolve,
lsqcurvefit, lsqnonlin

Step-size or Norm
of Step

See “Iterative
Display” on page 3-
14.

trustregionradius Radius of trust region. fmincon (IP, TRR),
fminunc (TR), fsolve (D,
TRR), lsqcurvefit (TRR),
lsqnonlin (TRR)

Trust-region
radius

See “Iterative
Display” on page 3-
14.

 Output Function and Plot Function Syntax

14-33

Degeneracy

The value of the field degenerate, which measures the degeneracy of the current optimization point
x, is defined as follows. First, define a vector r, of the same size as x, for which r(i) is the minimum
distance from x(i) to the ith entries of the lower and upper bounds, lb and ub. That is,

r = min(abs(ub-x, x-lb))

Then the value of degenerate is the minimum entry of the vector r + abs(grad), where grad is
the gradient of the objective function. The value of degenerate is 0 if there is an index i for which
both of the following are true:

• grad(i) = 0
• x(i) equals the ith entry of either the lower or upper bound.

States of the Algorithm
The following table lists the possible values for state:

State Description
'init' The algorithm is in the initial state before the first iteration.
'interrupt' The algorithm is in some computationally expensive part of the iteration. In

this state, the output function can interrupt the current iteration of the
optimization. At this time, the values of x and optimValues are the same
as at the last call to the output function in which state=='iter'.

'iter' The algorithm is at the end of an iteration.
'done' The algorithm is in the final state after the last iteration.

The 'interrupt' state occurs only in the fmincon 'active-set' algorithm and the
fgoalattain, fminimax, and fseminf solvers. There, the state can occur before a quadratic
programming subproblem solution or a line search.

The following code illustrates how the output function might use the value of state to decide which
tasks to perform at the current iteration:

switch state
 case 'iter'
 % Make updates to plot or guis as needed
 case 'interrupt'
 % Probably no action here. Check conditions to see
 % whether optimization should quit.
 case 'init'
 % Setup for plots or guis
 case 'done'
 % Cleanup of plots, guis, or final plot
otherwise
end

Stop Flag
The output argument stop is a flag that is true or false. The flag tells the optimization function
whether the optimization should stop (true) or continue (false). The following examples show
typical ways to use the stop flag.

14 Argument and Options Reference

14-34

Stopping an Optimization Based on Data in optimValues

The output function or plot function can stop an optimization at any iteration based on the current
data in optimValues. For example, the following code sets stop to true, stopping the optimization,
when the size of the directional derivative is less than .01:

function stop = outfun(x,optimValues,state)
stop = false;
% Check whether directional derivative norm is less than .01.
if norm(optimValues.directionalderivative) < .01
 stop = true;
end

Stopping an Optimization Based on GUI Input

If you design a GUI to perform optimizations, you can make the output function stop an optimization
when a user clicks a Stop button on the GUI. The following code shows how to do this, assuming that
the Stop button callback stores the value true in the optimstop field of a handles structure called
hObject:

function stop = outfun(x,optimValues,state)
stop = false;
% Check if user has requested to stop the optimization.
stop = getappdata(hObject,'optimstop');

See Also

More About
• “Output Functions for Optimization Toolbox” on page 3-30
• “Plot Functions” on page 3-27

 Output Function and Plot Function Syntax

14-35

intlinprog Output Function and Plot Function Syntax
In this section...
“What Are Output Functions and Plot Functions?” on page 14-36
“Custom Function Syntax” on page 14-36
“optimValues Structure” on page 14-37

What Are Output Functions and Plot Functions?
intlinprog can call an output function or plot function after certain events occur in the algorithm.
These events include completing a phase of the algorithm such as solving the root LP problem,
adding cuts, completing a heuristic successfully, finding a new integer feasible solution during
branch-and-bound, appreciably improving the relative gap, or exploring a number of nodes in a
branch-and-bound tree.

Caution intlinprog output functions and plot functions differ from those in other solvers. For
output functions or plot functions in other Optimization Toolbox solvers, see “Output Function and
Plot Function Syntax” on page 14-28 and “Plot Functions” on page 3-27.

• There is one built-in output function: savemilpsolutions. This function collects the integer
feasible points that the algorithm finds at event times. It puts the feasible points in a matrix
named xIntSol in your base workspace, where each column is one integer feasible point. It saves
the objective function values in a vector named fIntSol, where each entry is the objective
function of the corresponding column in xIntSol.

• There is one built-in plot function: optimplotmilp. This function plots the internally-calculated
bounds on the best objective function value. For an example of its use, see “Factory, Warehouse,
Sales Allocation Model: Solver-Based” on page 8-57.

Call output functions or plot functions by passing the OutputFcn or PlotFcn name-value pairs,
including the handle to the output function or plot function. For example,

options = optimoptions(@intlinprog,'OutputFcn',@savemilpsolutions,'PlotFcn',@optimplotmilp);
x = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub,options);

If you have several output functions or plot functions, pass them as a cell array.

options = optimoptions(@intlinprog,'OutputFcn',{@savemilpsolutions,@customFcn});

Custom Function Syntax
Write your own output function or plot function using this syntax:

function stop = customFcn(x,optimValues,state)

intlinprog passes the data x, optimValues, and state to your function.

• stop — Set to true to halt intlinprog. Set to false to allow intlinprog to continue.
• x — Either an empty matrix [] or an N-by-1 vector that is a feasible point. x is nonempty only

when intlinprog finds a new integer feasible solution. x can be nonempty when phase is
'heuristics' or 'branching'.

14 Argument and Options Reference

14-36

• optimValues — A structure whose details are in “optimValues Structure” on page 14-37.
• state — One of these values:

• 'init' — intlinprog is starting. Use this state to set up any plots or data structures that
you need.

• 'iter' — intlinprog is solving the problem. Access data related to the solver’s progress.
For example, plot or perform file operations.

• 'done' — intlinprog has finished solving the problem. Close any files, finish annotating
plots, etc.

For examples of writing output or plot functions, see the built-in functions savemilpsolutions.m
or optimplotmilp.m.

optimValues Structure
optimValues Field Meaning
phase Phase of the algorithm. Possible values:

• 'rootlp' — intlinprog solved the root LP problem.
• 'cutgen' — intlinprog added cuts and improved the lower bound.
• 'heuristics' — intlinprog found new feasible points using

heuristics.
• 'branching' — intlinprog is creating and exploring nodes in a

branch-and-bound tree.
fval Best objective function found so far at an integer feasible point. When

phase = 'rootlp', fval is the objective function value at the root
node, which is not necessarily an integer feasible point.

lowerbound Global lower bound of the objective function value. Empty when phase =
'rootlp'.

relativegap Relative gap between lowerbound and fval. The relative gap is a
percentage from 0 to 100, exactly as in the output argument. Empty
when phase = 'rootlp' or numfeaspoints = 0.

numnodes Number of explored nodes. Nonzero only when phase = 'branching'.
numfeaspoints Number of integer feasible solutions found.
time Time in seconds spent so far, measured with tic and toc from the time

when state = 'init'.

 intlinprog Output Function and Plot Function Syntax

14-37

Functions

optimizationvalues.xml

15

coneprog
Second-order cone programming solver

Syntax
x = coneprog(f,socConstraints)
x = coneprog(f,socConstraints,A,b,Aeq,beq)
x = coneprog(f,socConstraints,A,b,Aeq,beq,lb,ub)
x = coneprog(f,socConstraints,A,b,Aeq,beq,lb,ub,options)
x = coneprog(problem)
[x,fval] = coneprog(___)
[x,fval,exitflag,output] = coneprog(___)
[x,fval,exitflag,output,lambda] = coneprog(___)

Description
The coneprog function is a second-order cone programming solver that finds the minimum of a
problem specified by

min
x

f Tx

subject to the constraints

Asc(i) ⋅ x− bsc(i) ≤ dsc
T (i) ⋅ x− γ(i)

A ⋅ x ≤ b
Aeq ⋅ x = beq
lb ≤ x ≤ ub .

f, x, b, beq, lb, and ub are vectors, and A and Aeq are matrices. For each i, the matrix Asc(i), vectors
dsc(i) and bsc(i), and scalar γ(i) are in a second-order cone constraint that you create using
secondordercone.

For more details about cone constraints, see “Second-Order Cone Constraint” on page 15-15.

x = coneprog(f,socConstraints) solves the second-order cone programming problem with the
constraints in socConstraints encoded as

• Asc(i) = socConstraints(i).A
• bsc(i) = socConstraints(i).b
• dsc(i) = socConstraints(i).d
• γ(i) = socConstraints(i).gamma

x = coneprog(f,socConstraints,A,b,Aeq,beq) solves the problem subject to the inequality
constraints A*x ≤ b and equality constraints Aeq*x = beq. Set A = [] and b = [] if no
inequalities exist.

15 Functions

15-2

x = coneprog(f,socConstraints,A,b,Aeq,beq,lb,ub) defines a set of lower and upper
bounds on the design variables, x so that the solution is always in the range lb ≤ x ≤ ub. Set
Aeq = [] and beq = [] if no equalities exist.

x = coneprog(f,socConstraints,A,b,Aeq,beq,lb,ub,options) minimizes using the
optimization options specified by options. Use optimoptions to set these options.

x = coneprog(problem) finds the minimum for problem, a structure described in problem.

[x,fval] = coneprog(___) also returns the objective function value at the solution fval =
f'*x, using any of the input argument combinations in previous syntaxes.

[x,fval,exitflag,output] = coneprog(___) additionally returns a value exitflag that
describes the exit condition, and a structure output that contains information about the optimization
process.

[x,fval,exitflag,output,lambda] = coneprog(___) additionally returns a structure
lambda whose fields contain the dual variables at the solution x.

Examples

Single Cone Constraint

To set up a problem with a second-order cone constraint, create a second-order cone constraint
object.

A = diag([1,1/2,0]);
b = zeros(3,1);
d = [0;0;1];
gamma = 0;
socConstraints = secondordercone(A,b,d,gamma);

Create an objective function vector.

f = [-1,-2,0];

The problem has no linear constraints. Create empty matrices for these constraints.

Aineq = [];
bineq = [];
Aeq = [];
beq = [];

Set upper and lower bounds on x(3).

lb = [-Inf,-Inf,0];
ub = [Inf,Inf,2];

Solve the problem by using the coneprog function.

[x,fval] = coneprog(f,socConstraints,Aineq,bineq,Aeq,beq,lb,ub)

Optimal solution found.

x = 3×1

 coneprog

15-3

 0.4851
 3.8806
 2.0000

fval = -8.2462

The solution component x(3) is at its upper bound. The cone constraint is active at the solution:

norm(A*x-b) - d'*x % Near 0 when the constraint is active

ans = -2.5677e-08

Several Cone Constraints

To set up a problem with several second-order cone constraints, create an array of constraint objects.
To save time and memory, create the highest-index constraint first.

A = diag([1,2,0]);
b = zeros(3,1);
d = [0;0;1];
gamma = -1;
socConstraints(3) = secondordercone(A,b,d,gamma);

A = diag([3,0,1]);
d = [0;1;0];
socConstraints(2) = secondordercone(A,b,d,gamma);

A = diag([0;1/2;1/2]);
d = [1;0;0];
socConstraints(1) = secondordercone(A,b,d,gamma);

Create the linear objective function vector.

f = [-1;-2;-4];

Solve the problem by using the coneprog function.

[x,fval] = coneprog(f,socConstraints)

Optimal solution found.

x = 3×1

 0.4238
 1.6477
 2.3225

fval = -13.0089

Cone Programming with Linear Constraints

Specify an objective function vector and a single second-order cone constraint.

15 Functions

15-4

f = [-4;-9;-2];
Asc = diag([1,4,0]);
b = [0;0;0];
d = [0;0;1];
gamma = 0;
socConstraints = secondordercone(Asc,b,d,gamma);

Specify a linear inequality constraint.

A = [1/4,1/9,1];
b = 5;

Solve the problem.

[x,fval] = coneprog(f,socConstraints,A,b)

Optimal solution found.

x = 3×1

 3.2304
 0.6398
 4.1213

fval = -26.9225

Cone Programming with Nondefault Options

To observe the iterations of the coneprog solver, set the Display option to 'iter'.

options = optimoptions('coneprog','Display','iter');

Create a second-order cone programming problem and solve it using options.

Asc = diag([1,1/2,0]);
b = zeros(3,1);
d = [0;0;1];
gamma = 0;
socConstraints = secondordercone(Asc,b,d,gamma);
f = [-1,-2,0];
Aineq = [];
bineq = [];
Aeq = [];
beq = [];
lb = [-Inf,-Inf,0];
ub = [Inf,Inf,2];
[x,fval] = coneprog(f,socConstraints,Aineq,bineq,Aeq,beq,lb,ub,options)

Iter Fval Primal Infeas Dual Infeas Duality Gap Time
 1 0.000000e+00 0.000000e+00 5.714286e-01 1.250000e-01 0.02
 2 -7.558066e+00 0.000000e+00 7.151114e-02 1.564306e-02 0.06
 3 -7.366973e+00 0.000000e+00 1.075440e-02 2.352525e-03 0.07
 4 -8.243432e+00 0.000000e+00 5.191882e-05 1.135724e-05 0.08
 5 -8.246067e+00 0.000000e+00 2.430813e-06 5.317403e-07 0.22
 6 -8.246211e+00 0.000000e+00 6.154504e-09 1.346298e-09 0.24
Optimal solution found.

 coneprog

15-5

x = 3×1

 0.4851
 3.8806
 2.0000

fval = -8.2462

Cone Programming with Problem Structure

Create the elements of a second-order cone programming problem. To save time and memory, create
the highest-index constraint first.

A = diag([1,2,0]);
b = zeros(3,1);
d = [0;0;1];
gamma = -1;
socConstraints(3) = secondordercone(A,b,d,gamma);
A = diag([3,0,1]);
d = [0;1;0];
socConstraints(2) = secondordercone(A,b,d,gamma);
A = diag([0;1/2;1/2]);
d = [1;0;0];
socConstraints(1) = secondordercone(A,b,d,gamma);
f = [-1;-2;-4];
options = optimoptions('coneprog','Display','iter');

Create a problem structure with the required fields, as described in “problem” on page 15-0 .

problem = struct('f',f,...
 'socConstraints',socConstraints,...
 'Aineq',[],'bineq',[],...
 'Aeq',[],'beq',[],...
 'lb',[],'ub',[],...
 'solver','coneprog',...
 'options',options);

Solve the problem by calling coneprog.

[x,fval] = coneprog(problem)

Iter Fval Primal Infeas Dual Infeas Duality Gap Time
 1 0.000000e+00 0.000000e+00 5.333333e-01 5.555556e-02 0.18
 2 -9.696012e+00 3.700743e-17 7.631901e-02 7.949897e-03 0.22
 3 -1.178942e+01 0.000000e+00 1.261803e-02 1.314378e-03 0.24
 4 -1.294426e+01 9.251859e-18 1.683078e-03 1.753206e-04 0.26
 5 -1.295217e+01 0.000000e+00 8.994595e-04 9.369370e-05 0.28
 6 -1.295331e+01 9.251859e-18 4.748841e-04 4.946709e-05 0.29
 7 -1.300753e+01 9.251859e-18 2.799942e-05 2.916606e-06 0.50
 8 -1.300671e+01 9.251859e-18 2.366136e-05 2.464725e-06 0.52
 9 -1.300850e+01 2.775558e-17 8.204733e-06 8.546597e-07 0.53
 10 -1.300843e+01 1.850372e-17 7.310497e-06 7.615101e-07 0.55
 11 -1.300864e+01 1.850372e-17 2.640389e-06 2.750405e-07 0.56
 12 -1.300892e+01 9.251859e-18 5.624645e-08 5.859005e-09 0.57
Optimal solution found.

15 Functions

15-6

x = 3×1

 0.4238
 1.6477
 2.3225

fval = -13.0089

Examine coneprog Solution Process

Create a second-order cone programming problem. To save time and memory, create the highest-
index constraint first.

A = diag([1,2,0]);
b = zeros(3,1);
d = [0;0;1];
gamma = -1;
socConstraints(3) = secondordercone(A,b,d,gamma);
A = diag([3,0,1]);
d = [0;1;0];
socConstraints(2) = secondordercone(A,b,d,gamma);
A = diag([0;1/2;1/2]);
d = [1;0;0];
socConstraints(1) = secondordercone(A,b,d,gamma);
f = [-1;-2;-4];
options = optimoptions('coneprog','Display','iter');
A = [];
b = [];
Aeq = [];
beq = [];
lb = [];
ub = [];

Solve the problem, requesting information about the solution process.

[x,fval,exitflag,output] = coneprog(f,socConstraints,A,b,Aeq,beq,lb,ub,options)

Iter Fval Primal Infeas Dual Infeas Duality Gap Time
 1 0.000000e+00 0.000000e+00 5.333333e-01 5.555556e-02 0.02
 2 -9.696012e+00 3.700743e-17 7.631901e-02 7.949897e-03 0.04
 3 -1.178942e+01 0.000000e+00 1.261803e-02 1.314378e-03 0.06
 4 -1.294426e+01 9.251859e-18 1.683078e-03 1.753206e-04 0.20
 5 -1.295217e+01 0.000000e+00 8.994595e-04 9.369370e-05 0.21
 6 -1.295331e+01 9.251859e-18 4.748841e-04 4.946709e-05 0.23
 7 -1.300753e+01 9.251859e-18 2.799942e-05 2.916606e-06 0.25
 8 -1.300671e+01 9.251859e-18 2.366136e-05 2.464725e-06 0.26
 9 -1.300850e+01 2.775558e-17 8.204733e-06 8.546597e-07 0.27
 10 -1.300843e+01 1.850372e-17 7.310497e-06 7.615101e-07 0.29
 11 -1.300864e+01 1.850372e-17 2.640389e-06 2.750405e-07 0.45
 12 -1.300892e+01 9.251859e-18 5.624645e-08 5.859005e-09 0.46
Optimal solution found.

x = 3×1

 0.4238

 coneprog

15-7

 1.6477
 2.3225

fval = -13.0089

exitflag = 1

output = struct with fields:
 iterations: 12
 primalfeasibility: 9.2519e-18
 dualfeasibility: 5.6246e-08
 dualitygap: 5.8590e-09
 algorithm: 'interior-point'
 linearsolver: 'augmented'
 message: 'Optimal solution found.'

• Both the iterative display and the output structure show that coneprog used 12 iterations to
arrive at the solution.

• The exit flag value 1 and the output.message value 'Optimal solution found.' indicate
that the solution is reliable.

• The output structure shows that the infeasibilities tend to decrease through the solution process,
as does the duality gap.

• You can reproduce the fval output by multiplying f'*x.

f'*x

ans = -13.0089

Obtain coneprog Dual Variables

Create a second-order cone programming problem. To save time and memory, create the highest-
index constraint first.

A = diag([1,2,0]);
b = zeros(3,1);
d = [0;0;1];
gamma = -1;
socConstraints(3) = secondordercone(A,b,d,gamma);
A = diag([3,0,1]);
d = [0;1;0];
socConstraints(2) = secondordercone(A,b,d,gamma);
A = diag([0;1/2;1/2]);
d = [1;0;0];
socConstraints(1) = secondordercone(A,b,d,gamma);
f = [-1;-2;-4];

Solve the problem, requesting dual variables at the solution along with all other coneprog output..

[x,fval,exitflag,output,lambda] = coneprog(f,socConstraints);

Optimal solution found.

15 Functions

15-8

Examine the returned lambda structure. Because the only problem constraints are cone constraints,
examine only the soc field in the lambda structure.

disp(lambda.soc)

 1.0e-05 *

 0.0348
 0.1189
 0.0508

The constraints have nonzero dual values, indicating the constraints are active at the solution.

Input Arguments
f — Coefficient vector
real vector | real array

Coefficient vector, specified as a real vector or real array. The coefficient vector represents the
objective function f'*x. The notation assumes that f is a column vector, but you can use a row vector
or array. Internally, coneprog converts f to the column vector f(:).
Example: f = [1,3,5,-6]
Data Types: double

socConstraints — Second-order cone constraints
vector of SecondOrderConeConstraint objects

Second-order cone constraints, specified as vector of SecondOrderConeConstraint objects. Create
these objects using the secondordercone function.

socConstraints encodes the constraints

Asc(i) ⋅ x− bsc(i) ≤ dsc
T (i) ⋅ x− γ(i)

where the mapping between the array and the equation is as follows:

• Asc(i) = socConstraints.A(i)
• bsc(i) = socConstraints.b(i)
• dsc(i) = socConstraints.d(i)
• γ(i) = socConstraints.gamma(i)

Example: Asc = diag([1 1/2 0]); bsc = zeros(3,1); dsc = [0;0;1]; gamma = -1;
socConstraints = secondordercone(Asc,bsc,dsc,gamma);

Data Types: struct

A — Linear inequality constraints
real matrix

Linear inequality constraints, specified as a real matrix. A is an M-by-N matrix, where M is the number
of inequalities, and N is the number of variables (length of f). For large problems, pass A as a sparse
matrix.

 coneprog

15-9

A encodes the M linear inequalities

A*x <= b,

where x is the column vector of N variables x(:), and b is a column vector with M elements.

For example, consider these inequalities:

x1 + 2x2 ≤ 10
3x1 + 4x2 ≤ 20
5x1 + 6x2 ≤ 30.

Specify the inequalities by entering the following constraints.

A = [1,2;3,4;5,6];
b = [10;20;30];

Example: To specify that the x-components add up to 1 or less, take A = ones(1,N) and b = 1.
Data Types: double

b — Linear inequality constraints
real vector

Linear inequality constraints, specified as a real vector. b is an M-element vector related to the A
matrix. If you pass b as a row vector, solvers internally convert b to the column vector b(:). For
large problems, pass b as a sparse vector.

b encodes the M linear inequalities

A*x <= b,

where x is the column vector of N variables x(:), and A is a matrix of size M-by-N.

For example, consider these inequalities:

x1 + 2x2 ≤ 10
3x1 + 4x2 ≤ 20
5x1 + 6x2 ≤ 30.

Specify the inequalities by entering the following constraints.

A = [1,2;3,4;5,6];
b = [10;20;30];

Example: To specify that the x components sum to 1 or less, use A = ones(1,N) and b = 1.
Data Types: double

Aeq — Linear equality constraints
real matrix

Linear equality constraints, specified as a real matrix. Aeq is an Me-by-N matrix, where Me is the
number of equalities, and N is the number of variables (length of f). For large problems, pass Aeq as
a sparse matrix.

Aeq encodes the Me linear equalities

15 Functions

15-10

Aeq*x = beq,

where x is the column vector of N variables x(:), and beq is a column vector with Me elements.

For example, consider these equalities:

x1 + 2x2 + 3x3 = 10
2x1 + 4x2 + x3 = 20.

Specify the equalities by entering the following constraints.

Aeq = [1,2,3;2,4,1];
beq = [10;20];

Example: To specify that the x-components sum to 1, take Aeq = ones(1,N) and beq = 1.
Data Types: double

beq — Linear equality constraints
real vector

Linear equality constraints, specified as a real vector. beq is an Me-element vector related to the Aeq
matrix. If you pass beq as a row vector, solvers internally convert beq to the column vector beq(:).
For large problems, pass beq as a sparse vector.

beq encodes the Me linear equalities

Aeq*x = beq,

where x is the column vector of N variables x(:), and Aeq is a matrix of size Me-by-N.

For example, consider these equalities:

x1 + 2x2 + 3x3 = 10
2x1 + 4x2 + x3 = 20.

Specify the equalities by entering the following constraints.

Aeq = [1,2,3;2,4,1];
beq = [10;20];

Example: To specify that the x components sum to 1, use Aeq = ones(1,N) and beq = 1.
Data Types: double

lb — Lower bounds
real vector | real array

Lower bounds, specified as a real vector or real array. If the length of f is equal to the length of lb,
then lb specifies that

x(i) >= lb(i) for all i.

If numel(lb) < numel(f), then lb specifies that

x(i) >= lb(i) for 1 <= i <= numel(lb).

In this case, solvers issue a warning.

 coneprog

15-11

Example: To specify that all x-components are positive, use lb = zeros(size(f)).
Data Types: double

ub — Upper bounds
real vector | real array

Upper bounds, specified as a real vector or real array. If the length of f is equal to the length of ub,
then ub specifies that

x(i) <= ub(i) for all i.

If numel(ub) < numel(f), then ub specifies that

x(i) <= ub(i) for 1 <= i <= numel(ub).

In this case, solvers issue a warning.
Example: To specify that all x-components are less than 1, use ub = ones(size(f)).
Data Types: double

options — Optimization options
output of optimoptions

Optimization options, specified as the output of optimoptions.

Option Description
ConstraintTolerance Feasibility tolerance for constraints, a scalar from 0 through 1. ConstraintTolerance measures

primal feasibility tolerance. The default is 1e-6.
Display Level of display (see “Iterative Display” on page 3-14):

• 'final' (default) displays only the final output.
• 'iter' displays output at each iteration.
• 'off' or 'none' displays no output.

15 Functions

15-12

Option Description
LinearSolver Algorithm for solving one step in the iteration:

• 'auto' (default) — coneprog chooses the step solver.

• If the problem is sparse, the step solver is 'prodchol'.
• Otherwise, the step solver is 'augmented'.

• 'augmented' — Augmented form step solver. See [1].
• 'normal' — Normal form step solver. See [1].
• 'prodchol' — Product form Cholesky step solver. See [4] and [5].
• 'schur' — Schur complement method step solver. See [2].

If 'auto' does not perform well, try these suggestions for LinearSolver:

• If the problem is sparse, try 'normal'.
• If the problem is sparse with some dense columns or large cones, try 'prodchol' or 'schur'.
• If the problem is dense, use 'augmented'.

For a sparse example, see “Compare Speeds of coneprog Algorithms” on page 10-90.
MaxIterations Maximum number of iterations allowed, a positive integer. The default is 200.

See “Tolerances and Stopping Criteria” on page 2-68 and “Iterations and Function Counts” on
page 3-9.

MaxTime Maximum amount of time in seconds that the algorithm runs, a positive number or Inf. The
default is Inf, which disables this stopping criterion.

OptimalityTolerance Termination tolerance on the dual feasibility, a positive scalar. The default is 1e-6.

Example: optimoptions('coneprog','Display','iter','MaxIterations',100)

problem — Problem structure
structure

Problem structure, specified as a structure with the following fields.

Field Name Entry
f Linear objective function vector f
socConstraints Structure array of second-order cone constraints
Aineq Matrix of linear inequality constraints
bineq Vector of linear inequality constraints
Aeq Matrix of linear equality constraints
beq Vector of linear equality constraints
lb Vector of lower bounds
ub Vector of upper bounds
solver 'coneprog'
options Options created with optimoptions

 coneprog

15-13

Data Types: struct

Output Arguments
x — Solution
real vector | real array

Solution, returned as a real vector or real array. The size of x is the same as the size of f. The x
output is empty when the exitflag value is –2, –3, or –10.

fval — Objective function value at the solution
real number

Objective function value at the solution, returned as a real number. Generally, fval = f'*x. The
fval output is empty when the exitflag value is –2, –3, or –10.

exitflag — Reason coneprog stopped
integer

Reason coneprog stopped, returned as an integer.

Value Description
1 The function converged to a solution x.
0 The number of iterations exceeded options.MaxIterations, or the solution time in seconds exceeded

options.MaxTime.
-2 No feasible point was found.
-3 The problem is unbounded.
-7 The search direction became too small. No further progress could be made.
-10 The problem is numerically unstable.

Tip If you get exit flag 0, -7, or -10, try using a different value of the LinearSolver option.

output — Information about optimization process
structure

Information about the optimization process, returned as a structure with these fields.

Field Description
algorithm Optimization algorithm used
dualfeasibility Maximum of dual constraint violations
dualitygap Duality gap
iterations Number of iterations
message Exit message
primalfeasibility Maximum of constraint violations
linearsolver Internal step solver algorithm used

15 Functions

15-14

The output fields dualfeasibility, dualitygap, and primalfeasibility are empty when the
exitflag value is –2, –3, or –10.

lambda — Dual variables at the solution
structure

Dual variables at the solution, returned as a structure with these fields.

Field Description
lower Lower bounds corresponding to lb
upper Upper bounds corresponding to ub
ineqlin Linear inequalities corresponding to A and b
eqlin Linear equalities corresponding to Aeq and beq
soc Second-order cone constraints corresponding to socConstraints

lambda is empty ([]) when the exitflag value is –2, –3, or –10.

The Lagrange multipliers (dual variables) are part of the following Lagrangian, which is stationary
(zero gradient) at a solution:

f Tx + ∑
i

λsoc(i) dsoc
T (i)x− gamma(i)− Asoc(i)x− bsoc(i)

 +λineqlin
T b− Ax + λeqlin

T Aeq x− beq + λupper
T ub−x + λlower

T x− lb .

The inequality terms that multiply the lambda fields are nonnegative.

More About
Second-Order Cone Constraint

Why is the constraint

A ⋅ x− b ≤ dT ⋅ x− γ

called a second-order cone constraint? Consider a cone in 3-D space with elliptical cross-sections in
the x-y plane, and a diameter proportional to the z coordinate. The y coordinate has scale ½, and the
x coordinate has scale 1. The inequality defining the inside of this cone with its point at [0,0,0] is

x2 + y2

4 ≤ z .

In the coneprog syntax, this cone has the following arguments.

A = diag([1 1/2 0]);
b = [0;0;0];
d = [0;0;1];
gamma = 0;

Plot the boundary of the cone.

[X,Y] = meshgrid(-2:0.1:2);
Z = sqrt(X.^2 + Y.^2/4);

 coneprog

15-15

surf(X,Y,Z)
view(8,2)
xlabel 'x'
ylabel 'y'
zlabel 'z'

The b and gamma arguments move the cone. The A and d arguments rotate the cone and change its
shape.

Algorithms
The algorithm uses an interior-point method. For details, see “Second-Order Cone Programming
Algorithm” on page 10-16.

Alternative Functionality
App

The Optimize Live Editor task provides a visual interface for coneprog.

Compatibility Considerations
Two coneprog lambda Structures Renamed
Behavior changed in R2021a

15 Functions

15-16

The coneprog lambda output argument fields lambda.eq and lambda.ineq have been renamed to
lambda.eqlin and lambda.ineqlin, respectively. This change causes the coneprog lambda
structure fields to have the same names as the corresponding fields in other solvers.

See Also
linprog | quadprog | secondordercone | SecondOrderConeConstraint | Optimize

Topics
“Minimize Energy of Piecewise Linear Mass-Spring System Using Cone Programming, Solver-Based”
on page 10-81
“Convert Quadratic Constraints to Second-Order Cone Constraints” on page 10-73
“Convert Quadratic Programming Problem to Second-Order Cone Program” on page 10-75
“Compare Speeds of coneprog Algorithms” on page 10-90
“Solver-Based Optimization Problem Setup”

Introduced in R2020b

 coneprog

15-17

EquationProblem
System of nonlinear equations

Description
Specify a system of equations using optimization variables, and solve the system using solve.

Tip For the full workflow, see “Problem-Based Workflow for Solving Equations” on page 9-4.

Creation
Create an EquationProblem object by using the eqnproblem function. Add equations to the
problem by creating OptimizationEquality objects and setting them as Equations properties of
the EquationProblem object.

prob = eqnproblem;
x = optimvar('x');
eqn = x^5 - x^4 + 3*x == 1/2;
prob.Equations.eqn = eqn;

Warning The problem-based approach does not support complex values in an objective function,
nonlinear equalities, or nonlinear inequalities. If a function calculation has a complex value, even as
an intermediate value, the final result can be incorrect.

Properties
Equations — Problem equations
[] (default) | OptimizationEquality array | structure with OptimizationEquality arrays as
fields

Problem equations, specified as an OptimizationEquality array or structure with
OptimizationEquality arrays as fields.
Example: sum(x.^2,2) == 4

Description — Problem label
'' (default) | string | character vector

Problem label, specified as a string or character vector. The software does not use Description for
computation. Description is an arbitrary label that you can use for any reason. For example, you
can share, archive, or present a model or problem, and store descriptive information about the model
or problem in Description.
Example: "An iterative approach to the Traveling Salesman problem"
Data Types: char | string

15 Functions

15-18

Variables — Optimization variables in object
structure of OptimizationVariable objects

This property is read-only.

Optimization variables in the object, specified as a structure of OptimizationVariable objects.
Data Types: struct

Object Functions
optimoptions Create optimization options
prob2struct Convert optimization problem or equation problem to solver form
show Display information about optimization object
solve Solve optimization problem or equation problem
varindex Map problem variables to solver-based variable index
write Save optimization object description

Examples

Solve Nonlinear System of Equations, Problem-Based

To solve the nonlinear system of equations

exp(− exp(− (x1 + x2))) = x2 1 + x1
2

x1cos(x2) + x2sin(x1) = 1
2

using the problem-based approach, first define x as a two-element optimization variable.

x = optimvar('x',2);

Create the first equation as an optimization equality expression.

eq1 = exp(-exp(-(x(1) + x(2)))) == x(2)*(1 + x(1)^2);

Similarly, create the second equation as an optimization equality expression.

eq2 = x(1)*cos(x(2)) + x(2)*sin(x(1)) == 1/2;

Create an equation problem, and place the equations in the problem.

prob = eqnproblem;
prob.Equations.eq1 = eq1;
prob.Equations.eq2 = eq2;

Review the problem.

show(prob)

 EquationProblem :

 Solve for:
 x

 EquationProblem

15-19

 eq1:
 exp((-exp((-(x(1) + x(2)))))) == (x(2) .* (1 + x(1).^2))

 eq2:
 ((x(1) .* cos(x(2))) + (x(2) .* sin(x(1)))) == 0.5

Solve the problem starting from the point [0,0]. For the problem-based approach, specify the initial
point as a structure, with the variable names as the fields of the structure. For this problem, there is
only one variable, x.

x0.x = [0 0];
[sol,fval,exitflag] = solve(prob,x0)

Solving problem using fsolve.

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.

sol = struct with fields:
 x: [2x1 double]

fval = struct with fields:
 eq1: -2.4070e-07
 eq2: -3.8255e-08

exitflag =
 EquationSolved

View the solution point.

disp(sol.x)

 0.3532
 0.6061

Unsupported Functions Require fcn2optimexpr

If your equation functions are not composed of elementary functions, you must convert the functions
to optimization expressions using fcn2optimexpr. For the present example:

ls1 = fcn2optimexpr(@(x)exp(-exp(-(x(1)+x(2)))),x);
eq1 = ls1 == x(2)*(1 + x(1)^2);
ls2 = fcn2optimexpr(@(x)x(1)*cos(x(2))+x(2)*sin(x(1)),x);
eq2 = ls2 == 1/2;

See “Supported Operations for Optimization Variables and Expressions” on page 9-43 and “Convert
Nonlinear Function to Optimization Expression” on page 6-8.

See Also
eqnproblem | optimvar | fcn2optimexpr | OptimizationEquality | show | write

15 Functions

15-20

Topics
“Systems of Nonlinear Equations”
“Problem-Based Optimization Setup”
“Problem-Based Optimization Workflow” on page 9-2

Introduced in R2019b

 EquationProblem

15-21

eqnproblem
Create equation problem

Syntax
prob = eqnproblem
prob = eqnproblem(Name,Value)

Description
Use eqnproblem to create an equation problem.

Tip For the full workflow, see “Problem-Based Workflow for Solving Equations” on page 9-4.

prob = eqnproblem creates an equation problem with default properties.

prob = eqnproblem(Name,Value) specifies additional options using one or more name-value pair
arguments. For example, you can specify equations when constructing the problem by using the
Equations name.

Examples

Solve Nonlinear System of Equations, Problem-Based

To solve the nonlinear system of equations

exp(− exp(− (x1 + x2))) = x2 1 + x1
2

x1cos(x2) + x2sin(x1) = 1
2

using the problem-based approach, first define x as a two-element optimization variable.

x = optimvar('x',2);

Create the first equation as an optimization equality expression.

eq1 = exp(-exp(-(x(1) + x(2)))) == x(2)*(1 + x(1)^2);

Similarly, create the second equation as an optimization equality expression.

eq2 = x(1)*cos(x(2)) + x(2)*sin(x(1)) == 1/2;

Create an equation problem, and place the equations in the problem.

prob = eqnproblem;
prob.Equations.eq1 = eq1;
prob.Equations.eq2 = eq2;

Review the problem.

15 Functions

15-22

show(prob)

 EquationProblem :

 Solve for:
 x

 eq1:
 exp((-exp((-(x(1) + x(2)))))) == (x(2) .* (1 + x(1).^2))

 eq2:
 ((x(1) .* cos(x(2))) + (x(2) .* sin(x(1)))) == 0.5

Solve the problem starting from the point [0,0]. For the problem-based approach, specify the initial
point as a structure, with the variable names as the fields of the structure. For this problem, there is
only one variable, x.

x0.x = [0 0];
[sol,fval,exitflag] = solve(prob,x0)

Solving problem using fsolve.

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.

sol = struct with fields:
 x: [2x1 double]

fval = struct with fields:
 eq1: -2.4070e-07
 eq2: -3.8255e-08

exitflag =
 EquationSolved

View the solution point.

disp(sol.x)

 0.3532
 0.6061

Unsupported Functions Require fcn2optimexpr

If your equation functions are not composed of elementary functions, you must convert the functions
to optimization expressions using fcn2optimexpr. For the present example:

ls1 = fcn2optimexpr(@(x)exp(-exp(-(x(1)+x(2)))),x);
eq1 = ls1 == x(2)*(1 + x(1)^2);
ls2 = fcn2optimexpr(@(x)x(1)*cos(x(2))+x(2)*sin(x(1)),x);
eq2 = ls2 == 1/2;

 eqnproblem

15-23

See “Supported Operations for Optimization Variables and Expressions” on page 9-43 and “Convert
Nonlinear Function to Optimization Expression” on page 6-8.

Solve Nonlinear System of Polynomials, Problem-Based

When x is a 2-by-2 matrix, the equation

x3 =
1 2
3 4

is a system of polynomial equations. Here, x3 means x * x * x using matrix multiplication. You can
easily formulate and solve this system using the problem-based approach.

First, define the variable x as a 2-by-2 matrix variable.

x = optimvar('x',2,2);

Define the equation to be solved in terms of x.

eqn = x^3 == [1 2;3 4];

Create an equation problem with this equation.

prob = eqnproblem('Equations',eqn);

Solve the problem starting from the point [1 1;1 1].

x0.x = ones(2);
sol = solve(prob,x0)

Solving problem using fsolve.

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.

sol = struct with fields:
 x: [2x2 double]

Examine the solution.

disp(sol.x)

 -0.1291 0.8602
 1.2903 1.1612

Display the cube of the solution.

sol.x^3

ans = 2×2

 1.0000 2.0000

15 Functions

15-24

 3.0000 4.0000

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: prob = eqnproblem('Equations',eqn)

Equations — Problem equations
[] (default) | OptimizationEquality array | structure with OptimizationEquality arrays as
fields

Problem equations, specified as an OptimizationEquality array or structure with
OptimizationEquality arrays as fields.
Example: sum(x.^2,2) == 4

Description — Problem label
'' (default) | string | character vector

Problem label, specified as a string or character vector. The software does not use Description for
computation. Description is an arbitrary label that you can use for any reason. For example, you
can share, archive, or present a model or problem, and store descriptive information about the model
or problem in Description.
Example: "An iterative approach to the Traveling Salesman problem"
Data Types: char | string

Output Arguments
prob — Equation problem
EquationProblem object

Equation problem, returned as an EquationProblem object. Typically, to complete the problem
description, you specify prob.Equations and, for nonlinear equations, an initial point structure.
Solve a complete problem by calling solve.

Warning The problem-based approach does not support complex values in an objective function,
nonlinear equalities, or nonlinear inequalities. If a function calculation has a complex value, even as
an intermediate value, the final result can be incorrect.

See Also
optimvar | OptimizationEquality | EquationProblem | solve

 eqnproblem

15-25

Topics
“Systems of Nonlinear Equations”
“Problem-Based Optimization Setup”
“Problem-Based Optimization Workflow” on page 9-2

Introduced in R2019b

15 Functions

15-26

evaluate
Package: optim.problemdef

Evaluate optimization expression

Syntax
val = evaluate(expr,pt)

Description
Use evaluate to find the numeric value of an optimization expression at a point.

Tip For the full workflow, see “Problem-Based Optimization Workflow” on page 9-2 or “Problem-
Based Workflow for Solving Equations” on page 9-4.

val = evaluate(expr,pt) returns the value of the optimization expression expr at the value pt.

Examples

Evaluate Optimization Expression At Point

Create an optimization expression in two variables.

x = optimvar('x',3,2);
y = optimvar('y',1,2);
expr = sum(x,1) - 2*y;

Evaluate the expression at a point.

xmat = [3,-1;
 0,1;
 2,6];
sol.x = xmat;
sol.y = [4,-3];
val = evaluate(expr,sol)

val = 1×2

 -3 12

Evaluate Objective Function At Solution

Solve a linear programming problem.

 evaluate

15-27

x = optimvar('x');
y = optimvar('y');
prob = optimproblem;
prob.Objective = -x -y/3;
prob.Constraints.cons1 = x + y <= 2;
prob.Constraints.cons2 = x + y/4 <= 1;
prob.Constraints.cons3 = x - y <= 2;
prob.Constraints.cons4 = x/4 + y >= -1;
prob.Constraints.cons5 = x + y >= 1;
prob.Constraints.cons6 = -x + y <= 2;

sol = solve(prob)

Solving problem using linprog.

Optimal solution found.

sol = struct with fields:
 x: 0.6667
 y: 1.3333

Find the value of the objective function at the solution.

val = evaluate(prob.Objective,sol)

val = -1.1111

Input Arguments
expr — Optimization expression
OptimizationExpression object

Optimization expression, specified as an OptimizationExpression object.
Example: expr = 5*x+3, where x is an OptimizationVariable

pt — Values of variables in expression
structure

Values of variables in expression, specified as a structure. The structure pt has the following
requirements:

• All variables in expr match field names in pt.
• The values of the matching field names are numeric.

For example, pt can be the solution to an optimization problem, as returned by solve.
Example: pt.x = 3, pt.y = -5
Data Types: struct

Output Arguments
val — Numeric value of expression
double

15 Functions

15-28

Numeric value of expression, returned as a double.

Warning The problem-based approach does not support complex values in an objective function,
nonlinear equalities, or nonlinear inequalities. If a function calculation has a complex value, even as
an intermediate value, the final result can be incorrect.

See Also
solve | infeasibility | OptimizationExpression

Topics
“Problem-Based Optimization Setup”
“Problem-Based Optimization Workflow” on page 9-2

Introduced in R2017b

 evaluate

15-29

fcn2optimexpr
Package: optim.problemdef

Convert function to optimization expression

Syntax
[out1,out2,...,outN] = fcn2optimexpr(fcn,in1,in2,...,inK)
[out1,out2,...,outN] = fcn2optimexpr(fcn,in1,in2,...,inK,Name,Value)

Description
[out1,out2,...,outN] = fcn2optimexpr(fcn,in1,in2,...,inK) converts the function
fcn(in1,in2,...,inK) to an optimization expression with N outputs.

[out1,out2,...,outN] = fcn2optimexpr(fcn,in1,in2,...,inK,Name,Value) specifies
additional options using one or more name-value pair arguments. For example, you can save a
function evaluation by passing OutputSize.

Examples

Convert Objective Function to Expression

To use a MATLAB™ function in the problem-based approach when it is not composed of supported
functions, first convert it to an optimization expression. See “Supported Operations for Optimization
Variables and Expressions” on page 9-43 and “Convert Nonlinear Function to Optimization
Expression” on page 6-8.

To use the objective function gamma (the mathematical function Γ(x), an extension of the factorial
function), create an optimization variable x and use it in a converted anonymous function.

x = optimvar('x');
obj = fcn2optimexpr(@gamma,x);
prob = optimproblem('Objective',obj);
show(prob)

 OptimizationProblem :

 Solve for:
 x

 minimize :
 gamma(x)

To solve the resulting problem, give an initial point structure and call solve.

x0.x = 1/2;
sol = solve(prob,x0)

Solving problem using fminunc.

15 Functions

15-30

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

sol = struct with fields:
 x: 1.4616

For more complex functions, convert a function file. The function file gammabrock.m computes an
objective of two optimization variables.

type gammabrock

function f = gammabrock(x,y)
f = (10*(y - gamma(x)))^2 + (1 - x)^2;

Include this objective in a problem.

x = optimvar('x','LowerBound',0);
y = optimvar('y');
obj = fcn2optimexpr(@gammabrock,x,y);
prob = optimproblem('Objective',obj);
show(prob)

 OptimizationProblem :

 Solve for:
 x, y

 minimize :
 gammabrock(x, y)

 variable bounds:
 0 <= x

The gammabrock function is a sum of squares. You get a more efficient problem formulation by
expressing the function as an explicit sum of squares of optimization expressions.

f = fcn2optimexpr(@(x,y)y - gamma(x),x,y);
obj2 = (10*f)^2 + (1-x)^2;
prob2 = optimproblem('Objective',obj2);

To see the difference in efficiency, solve prob and prob2 and examine the difference in the number of
iterations.

x0.x = 1/2;
x0.y = 1/2;
[sol,fval,~,output] = solve(prob,x0);

Solving problem using fmincon.

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

 fcn2optimexpr

15-31

[sol2,fval2,~,output2] = solve(prob2,x0);

Solving problem using lsqnonlin.

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

fprintf('prob took %d iterations, but prob2 took %d iterations\n',output.iterations,output2.iterations)

prob took 21 iterations, but prob2 took 2 iterations

If your function has several outputs, you can use them as elements of the objective function. In this
case, u is a 2-by-2 variable, v is a 2-by-1 variable, and expfn3 has three outputs.

type expfn3

function [f,g,mineval] = expfn3(u,v)
mineval = min(eig(u));
f = v'*u*v;
f = -exp(-f);
t = u*v;
g = t'*t + sum(t) - 3;

Create appropriately sized optimization variables, and create an objective function from the first two
outputs.

u = optimvar('u',2,2);
v = optimvar('v',2);
[f,g,mineval] = fcn2optimexpr(@expfn3,u,v);
prob = optimproblem;
prob.Objective = f*g/(1 + f^2);
show(prob)

 OptimizationProblem :

 Solve for:
 u, v

 minimize :
 ((arg2 .* arg3) ./ (1 + arg1.^2))

 where:

 [arg1,~,~] = expfn3(u, v);
 [arg2,~,~] = expfn3(u, v);
 [~,arg3,~] = expfn3(u, v);

You can use the mineval output in a subsequent constraint expression.

Create Nonlinear Constraints from Function

In problem-based optimization, constraints are two optimization expressions with a comparison
operator (==, <=, or >=) between them. You can use fcn2optimexpr to create one or both
optimization expressions. See “Convert Nonlinear Function to Optimization Expression” on page 6-8.

15 Functions

15-32

Create the nonlinear constraint that gammafn2 is less than or equal to –1/2. This function of two
variables is in the gammafn2.m file.

type gammafn2

function f = gammafn2(x,y)
f = -gamma(x)*(y/(1+y^2));

Create optimization variables, convert the function file to an optimization expression, and then
express the constraint as confn.

x = optimvar('x','LowerBound',0);
y = optimvar('y','LowerBound',0);
expr1 = fcn2optimexpr(@gammafn2,x,y);
confn = expr1 <= -1/2;
show(confn)

 gammafn2(x, y) <= -0.5

Create another constraint that gammafn2 is greater than or equal to x + y.

confn2 = expr1 >= x + y;

Create an optimization problem and place the constraints in the problem.

prob = optimproblem;
prob.Constraints.confn = confn;
prob.Constraints.confn2 = confn2;
show(prob)

 OptimizationProblem :

 Solve for:
 x, y

 minimize :

 subject to confn:
 gammafn2(x, y) <= -0.5

 subject to confn2:
 gammafn2(x, y) >= (x + y)

 variable bounds:
 0 <= x

 0 <= y

Compute Common Objective and Constraint Efficiently

If your problem involves a common, time-consuming function to compute the objective and nonlinear
constraint, you can save time by using the ReuseEvaluation name-value argument. The
rosenbrocknorm function computes both the Rosenbrock objective function and the norm of the
argument for use in the constraint ‖x‖2 ≤ 4.

type rosenbrocknorm

 fcn2optimexpr

15-33

function [f,c] = rosenbrocknorm(x)
pause(1) % Simulates time-consuming function
c = dot(x,x);
f = 100*(x(2) - x(1)^2)^2 + (1 - x(1))^2;

Create a 2-D optimization variable x. Then convert rosenbrocknorm to an optimization expression
by using fcn2optimexpr and set the ReuseEvaluation name-value argument to true. To ensure
that fcn2optimexpr keeps the pause statement, set the Analysis name-value argument to 'off'.

x = optimvar('x',2);
[f,c] = fcn2optimexpr(@rosenbrocknorm,x,...
 'ReuseEvaluation',true,'Analysis','off');

Create objective and constraint expressions from the returned expressions. Include the objective and
constraint expressions in an optimization problem. Review the problem using show.

prob = optimproblem('Objective',f);
prob.Constraints.cineq = c <= 4;
show(prob)

 OptimizationProblem :

 Solve for:
 x

 minimize :
 [argout,~] = rosenbrocknorm(x)

 subject to cineq:
 arg_LHS <= 4

 where:

 [~,arg_LHS] = rosenbrocknorm(x);

Solve the problem starting from the initial point x0.x = [-1;1], timing the result.

x0.x = [-1;1];
tic
[sol,fval,exitflag,output] = solve(prob,x0)

Solving problem using fmincon.

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>

sol = struct with fields:
 x: [2×1 double]

fval = 4.5793e-11

15 Functions

15-34

exitflag =
 OptimalSolution

output = struct with fields:
 iterations: 44
 funcCount: 164
 constrviolation: 0
 stepsize: 4.3124e-08
 algorithm: 'interior-point'
 firstorderopt: 5.1691e-07
 cgiterations: 10
 message: 'Local minimum found that satisfies the constraints.↵↵Optimization completed because the objective function is non-decreasing in ↵feasible directions, to within the value of the optimality tolerance,↵and constraints are satisfied to within the value of the constraint tolerance.↵↵<stopping criteria details>↵↵Optimization completed: The relative first-order optimality measure, 5.169074e-07,↵is less than options.OptimalityTolerance = 1.000000e-06, and the relative maximum constraint↵violation, 0.000000e+00, is less than options.ConstraintTolerance = 1.000000e-06.'
 bestfeasible: [1×1 struct]
 objectivederivative: "finite-differences"
 constraintderivative: "finite-differences"
 solver: 'fmincon'

toc

Elapsed time is 165.623157 seconds.

The solution time in seconds is nearly the same as the number of function evaluations. This result
indicates that the solver reused function values, and did not waste time by reevaluating the same
point twice.

For a more extensive example, see “Objective and Constraints Having a Common Function in Serial
or Parallel, Problem-Based” on page 2-52. For more information on using fcn2optimexpr, see
“Convert Nonlinear Function to Optimization Expression” on page 6-8.

Input Arguments
fcn — Function to convert
function handle

Function to convert, specified as a function handle.
Example: @sin specifies the sine function.
Data Types: function_handle

in — Input argument
MATLAB variable

Input argument, specified as a MATLAB variable. The input can have any data type and any size. You
can include any problem variables or data in the input argument in; see “Pass Extra Parameters in
Problem-Based Approach” on page 9-11.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string | struct | table | cell | function_handle | categorical | datetime
| duration | calendarDuration | fi
Complex Number Support: Yes

 fcn2optimexpr

15-35

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: [out1,out2] = fcn2optimexpr(@fun,x,y,'OutputSize',
[1,1],'ReuseEvaluation',true) specifies that out1 and out2 are scalars that a solver will
reuse between objective and constraint functions without recalculation.

Analysis — Indication to analyze function
"on" (default) | "off"

Indication to analyze the function fcn to determine whether it consists entirely of supported
operations (see “Supported Operations for Optimization Variables and Expressions” on page 9-43),
specified as "on" or "off".

• If you want fcn2optimexpr to analyze fcn and, if possible, use the supported operations to
implement fcn, specify "on". This specification enables fcn to use automatic differentiation and
to choose an appropriate solver as described in Solver.

• If you do not want fcn2optimexpr to analyze fcn and, therefore, to treat fcn as a black box
without automatic differentiation, specify "off". In this case, solve uses only fmincon,
fminunc, or lsqnonlin as the solver.

For more information about the effects of Analysis, see “Limitations” on page 15-37.
Example: [out1,out2] = fcn2optimexpr(@fun,x,"Analysis","off")
Data Types: char | string

Display — Report function analysis details
"off" (default) | "on"

Report function analysis details, specified as "off" (do not report) or "on" (report). If Analysis is
"off", there is nothing to report.
Example: [out1,out2] = fcn2optimexpr(@fun,x,"Display","on")
Data Types: char | string

OutputSize — Size of output expressions
integer vector | cell array of integer vectors

Size of the output expressions, specified as:

• An integer vector — If the function has one output out1, OutputSize specifies the size of out1.
If the function has multiple outputs out1,…,outN, OutputSize specifies that all outputs have the
same size.

• A cell array of integer vectors — The size of output outj is the jth element of OutputSize.

Note A scalar has size [1,1].

If you do not specify the 'OutputSize' name-value pair argument, then fcn2optimexpr passes
data to fcn in order to determine the size of the outputs (see “Algorithms” on page 15-38). By

15 Functions

15-36

specifying 'OutputSize', you enable fcn2optimexpr to skip this step, which saves time. Also, if
you do not specify 'OutputSize' and the evaluation of fcn fails for any reason, then
fcn2optimexpr fails as well.
Example: [out1,out2,out3] = fcn2optimexpr(@fun,x,'OutputSize',[1,1]) specifies that
the three outputs [out1,out2,out3] are scalars.
Example: [out1,out2] = fcn2optimexpr(@fun,x,'OutputSize',{[4,4],[3,5]}) specifies
that out1 has size 4-by-4 and out2 has size 3-by-5.
Data Types: double | cell

ReuseEvaluation — Indicator to reuse values
false (default) | true

Indicator to reuse values, specified as false (do not reuse) or true (reuse).

Note ReuseEvaluation may not have an effect when Analysis="on".

ReuseEvaluation can make your problem run faster when, for example, the objective and some
nonlinear constraints rely on a common calculation. In this case, the solver stores the value for reuse
wherever needed and avoids recalculating the value.

Reusable values involve some overhead, so it is best to enable reusable values only for expressions
that share a value.
Example: [out1,out2,out3] =
fcn2optimexpr(@fun,x,"ReuseEvaluation",true,"Analysis","off") allows out1, out2,
and out3 to be used in multiple computations, with the outputs being calculated only once per
evaluation point.
Data Types: logical

Output Arguments
out — Output argument
OptimizationExpression

Output argument, returned as an OptimizationExpression. The size of the expression depends on
the input function.

Limitations
Analysis Can Ignore Noncomputational Functions

• The Analysis algorithm might not include noncomputational functions. This aspect of the
algorithm can result in the following:

• pause statements are ignored.
• A global variable that does not affect the results can be ignored. For example, if you use a

global variable, for example, to count how many times the function runs, then you might obtain
a misleading count.

 fcn2optimexpr

15-37

• If the function contains a call to rand or rng, the function might execute the first call only, and
future calls do not set the random number stream.

• A plot call might not update a figure at all iterations.
• Saving data to a mat file or text file might not occur at every iteration.

• To ensure that noncomputational functions operate as you expect, set the Analysis name-value
argument to "off".

Algorithms
To find the output size of each returned expression when you do not specify OutputSize,
fcn2optimexpr evaluates the function at the following point for each element of the problem
variables.

Variable Characteristics Evaluation Point
Finite upper bound ub and finite lower bound lb (lb + ub)/2 + ((ub - lb)/2)*eps
Finite lower bound and no upper bound lb + max(1,abs(lb))*eps
Finite upper bound and no lower bound ub - max(1,abs(ub))*eps
No bounds 1 + eps
Variable is specified as an integer floor of the point given previously

An evaluation point might lead to an error in function evaluation. To avoid this error, specify
'OutputSize'.

See Also
Topics
“Problem-Based Optimization Workflow” on page 9-2
“Convert Nonlinear Function to Optimization Expression” on page 6-8
“Optimization Expressions” on page 9-6
“Pass Extra Parameters in Problem-Based Approach” on page 9-11

Introduced in R2019a

15 Functions

15-38

fgoalattain
Solve multiobjective goal attainment problems

Syntax
x = fgoalattain(fun,x0,goal,weight)
x = fgoalattain(fun,x0,goal,weight,A,b)
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq)
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub)
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon)
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon,options)
x = fgoalattain(problem)
[x,fval] = fgoalattain(___)
[x,fval,attainfactor,exitflag,output] = fgoalattain(___)
[x,fval,attainfactor,exitflag,output,lambda] = fgoalattain(___)

Description
fgoalattain solves the goal attainment problem, a formulation for minimizing a multiobjective
optimization problem.

fgoalattain finds the minimum of a problem specified by

minimize
x, γ

 γ such that

F(x)−weight ⋅ γ ≤ goal
c(x) ≤ 0

ceq(x) = 0
A ⋅ x ≤ b

Aeq ⋅ x = beq
lb ≤ x ≤ ub .

weight, goal, b, and beq are vectors, A and Aeq are matrices, and F(x), c(x), and ceq(x), are
functions that return vectors. F(x), c(x), and ceq(x) can be nonlinear functions.

x, lb, and ub can be passed as vectors or matrices; see “Matrix Arguments” on page 2-31.

x = fgoalattain(fun,x0,goal,weight) tries to make the objective functions supplied by fun
attain the goals specified by goal by varying x, starting at x0, with weight specified by weight.

Note “Passing Extra Parameters” on page 2-57 explains how to pass extra parameters to the
objective functions and nonlinear constraint functions, if necessary.

x = fgoalattain(fun,x0,goal,weight,A,b) solves the goal attainment problem subject to the
inequalities A*x ≤ b.

x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq) solves the goal attainment problem
subject to the equalities Aeq*x = beq. If no inequalities exist, set A = [] and b = [].

 fgoalattain

15-39

x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub) solves the goal attainment
problem subject to the bounds lb ≤ x ≤ ub. If no equalities exist, set Aeq = [] and beq = []. If
x(i) is unbounded below, set lb(i) = -Inf; if x(i) is unbounded above, set ub(i) = Inf.

Note See “Iterations Can Violate Constraints” on page 2-33.

Note If the specified input bounds for a problem are inconsistent, the output x is x0 and the output
fval is [].

x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon) solves the goal
attainment problem subject to the nonlinear inequalities c(x) or equalities ceq(x) defined in
nonlcon. fgoalattain optimizes such that c(x) ≤ 0 and ceq(x) = 0. If no bounds exist, set lb
= [] or ub = [], or both.

x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon,options) solves the
goal attainment problem with the optimization options specified in options. Use optimoptions to
set these options.

x = fgoalattain(problem) solves the goal attainment problem for problem, a structure
described in problem.

[x,fval] = fgoalattain(___), for any syntax, returns the values of the objective functions
computed in fun at the solution x.

[x,fval,attainfactor,exitflag,output] = fgoalattain(___) additionally returns the
attainment factor at the solution x, a value exitflag that describes the exit condition of
fgoalattain, and a structure output with information about the optimization process.

[x,fval,attainfactor,exitflag,output,lambda] = fgoalattain(___) additionally
returns a structure lambda whose fields contain the Lagrange multipliers at the solution x.

Examples

Basic Goal Attainment Problem

Consider the two-objective function

F(x) = 2 + (x− 3)2
5 + x2/4

.

This function clearly minimizes F1(x) at x = 3, attaining the value 2, and minimizes F2(x) at x = 0,
attaining the value 5.

Set the goal [3,6] and weight [1,1], and solve the goal attainment problem starting at x0 = 1.

fun = @(x)[2+(x-3)^2;5+x^2/4];
goal = [3,6];
weight = [1,1];
x0 = 1;
x = fgoalattain(fun,x0,goal,weight)

15 Functions

15-40

Local minimum possible. Constraints satisfied.

fgoalattain stopped because the size of the current search direction is less than
twice the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

x = 2.0000

Find the value of F(x) at the solution.

fun(x)

ans = 2×1

 3.0000
 6.0000

fgoalattain achieves the goals exactly.

Goal Attainment with Linear Constraint

The objective function is

F(x) = 2 + ‖x− p1‖2

5 + ‖x− p2‖2/4
.

Here, p_1 = [2,3] and p_2 = [4,1]. The goal is [3,6], the weight is [1,1], and the linear constraint is
x1 + x2 ≤ 4.

Create the objective function, goal, and weight.

p_1 = [2,3];
p_2 = [4,1];
fun = @(x)[2 + norm(x-p_1)^2;5 + norm(x-p_2)^2/4];
goal = [3,6];
weight = [1,1];

Create the linear constraint matrices A and b representing A*x <= b.

A = [1,1];
b = 4;

Set an initial point [1,1] and solve the goal attainment problem.

x0 = [1,1];
x = fgoalattain(fun,x0,goal,weight,A,b)

Local minimum possible. Constraints satisfied.

fgoalattain stopped because the size of the current search direction is less than
twice the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

x = 1×2

 fgoalattain

15-41

 2.0694 1.9306

Find the value of F(x) at the solution.

fun(x)

ans = 2×1

 3.1484
 6.1484

fgoalattain does not meet the goals. Because the weights are equal, the solver underachieves
each goal by the same amount.

Goal Attainment with Bounds

The objective function is

F(x) = 2 + ‖x− p1‖2

5 + ‖x− p2‖2/4
.

Here, p_1 = [2,3] and p_2 = [4,1]. The goal is [3,6], the weight is [1,1], and the bounds are 0 ≤ x1 ≤ 3,
2 ≤ x2 ≤ 5.

Create the objective function, goal, and weight.

p_1 = [2,3];
p_2 = [4,1];
fun = @(x)[2 + norm(x-p_1)^2;5 + norm(x-p_2)^2/4];
goal = [3,6];
weight = [1,1];

Create the bounds.

lb = [0,2];
ub = [3,5];

Set the initial point to [1,4] and solve the goal attainment problem.

x0 = [1,4];
A = []; % no linear constraints
b = [];
Aeq = [];
beq = [];
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub)

Local minimum possible. Constraints satisfied.

fgoalattain stopped because the size of the current search direction is less than
twice the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

x = 1×2

15 Functions

15-42

 2.6667 2.3333

Find the value of F(x) at the solution.

fun(x)

ans = 2×1

 2.8889
 5.8889

fgoalattain more than meets the goals. Because the weights are equal, the solver overachieves
each goal by the same amount.

Goal Attainment with Nonlinear Constraint

The objective function is

F(x) = 2 + ‖x− p1‖2

5 + ‖x− p2‖2/4
.

Here, p_1 = [2,3] and p_2 = [4,1]. The goal is [3,6], the weight is [1,1], and the nonlinear constraint is
‖x‖2 ≤ 4.

Create the objective function, goal, and weight.

p_1 = [2,3];
p_2 = [4,1];
fun = @(x)[2 + norm(x-p_1)^2;5 + norm(x-p_2)^2/4];
goal = [3,6];
weight = [1,1];

The nonlinear constraint function is in the norm4.m file.

type norm4

function [c,ceq] = norm4(x)
ceq = [];
c = norm(x)^2 - 4;

Create empty input arguments for the linear constraints and bounds.

A = [];
Aeq = [];
b = [];
beq = [];
lb = [];
ub = [];

Set the initial point to [1,1] and solve the goal attainment problem.

x0 = [1,1];
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,@norm4)

 fgoalattain

15-43

Local minimum possible. Constraints satisfied.

fgoalattain stopped because the size of the current search direction is less than
twice the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

x = 1×2

 1.1094 1.6641

Find the value of F(x) at the solution.

fun(x)

ans = 2×1

 4.5778
 7.1991

fgoalattain does not meet the goals. Despite the equal weights, F1(x) is about 1.58 from its goal of
3, and F2(x) is about 1.2 from its goal of 6. The nonlinear constraint prevents the solution x from
achieving the goals equally.

Goal Attainment Using Nondefault Options

Monitor a goal attainment solution process by setting options to return iterative display.

options = optimoptions('fgoalattain','Display','iter');

The objective function is

F(x) = 2 + ‖x− p1‖2

5 + ‖x− p2‖2/4
.

Here, p_1 = [2,3] and p_2 = [4,1]. The goal is [3,6], the weight is [1,1], and the linear constraint is
x1 + x2 ≤ 4.

Create the objective function, goal, and weight.

p_1 = [2,3];
p_2 = [4,1];
fun = @(x)[2 + norm(x-p_1)^2;5 + norm(x-p_2)^2/4];
goal = [3,6];
weight = [1,1];

Create the linear constraint matrices A and b representing A*x <= b.

A = [1,1];
b = 4;

Create empty input arguments for the linear equality constraints, bounds, and nonlinear constraints.

15 Functions

15-44

Aeq = [];
beq = [];
lb = [];
ub = [];
nonlcon = [];

Set an initial point [1,1] and solve the goal attainment problem.

x0 = [1,1];
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon,options)

 Attainment Max Line search Directional
 Iter F-count factor constraint steplength derivative Procedure
 0 4 0 4
 1 9 -1 2.5 1 -0.535
 2 14 -1.115e-08 0.2813 1 0.883
 3 19 0.1452 0.005926 1 0.883
 4 24 0.1484 2.868e-06 1 0.883
 5 29 0.1484 6.748e-13 1 0.883 Hessian modified

Local minimum possible. Constraints satisfied.

fgoalattain stopped because the size of the current search direction is less than
twice the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

x = 1×2

 2.0694 1.9306

The positive value of the reported attainment factor indicates that fgoalattain does not find a
solution satisfying the goals.

Obtain Objective Function Values in Goal Attainment

The objective function is

F(x) = 2 + ‖x− p1‖2

5 + ‖x− p2‖2/4
.

Here, p_1 = [2,3] and p_2 = [4,1]. The goal is [3,6], the weight is [1,1], and the linear constraint is
x1 + x2 ≤ 4.

Create the objective function, goal, and weight.

p_1 = [2,3];
p_2 = [4,1];
fun = @(x)[2 + norm(x-p_1)^2;5 + norm(x-p_2)^2/4];
goal = [3,6];
weight = [1,1];

Create the linear constraint matrices A and b representing A*x <= b.

 fgoalattain

15-45

A = [1,1];
b = 4;

Set an initial point [1,1] and solve the goal attainment problem. Request the value of the objective
function.

x0 = [1,1];
[x,fval] = fgoalattain(fun,x0,goal,weight,A,b)

Local minimum possible. Constraints satisfied.

fgoalattain stopped because the size of the current search direction is less than
twice the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

x = 1×2

 2.0694 1.9306

fval = 2×1

 3.1484
 6.1484

The objective function values are higher than the goal, meaning fgoalattain does not satisfy the
goal.

Obtain All Outputs in Goal Attainment

The objective function is

F(x) = 2 + ‖x− p1‖2

5 + ‖x− p2‖2/4
.

Here, p_1 = [2,3] and p_2 = [4,1]. The goal is [3,6], the weight is [1,1], and the linear constraint is
x1 + x2 ≤ 4.

Create the objective function, goal, and weight.

p_1 = [2,3];
p_2 = [4,1];
fun = @(x)[2 + norm(x-p_1)^2;5 + norm(x-p_2)^2/4];
goal = [3,6];
weight = [1,1];

Create the linear constraint matrices A and b representing A*x <= b.

A = [1,1];
b = 4;

Set an initial point [1,1] and solve the goal attainment problem. Request the value of the objective
function, attainment factor, exit flag, output structure, and Lagrange multipliers.

15 Functions

15-46

x0 = [1,1];
[x,fval,attainfactor,exitflag,output,lambda] = fgoalattain(fun,x0,goal,weight,A,b)

Local minimum possible. Constraints satisfied.

fgoalattain stopped because the size of the current search direction is less than
twice the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

x = 1×2

 2.0694 1.9306

fval = 2×1

 3.1484
 6.1484

attainfactor = 0.1484

exitflag = 4

output = struct with fields:
 iterations: 6
 funcCount: 29
 lssteplength: 1
 stepsize: 4.1454e-13
 algorithm: 'active-set'
 firstorderopt: []
 constrviolation: 6.7482e-13
 message: 'Local minimum possible. Constraints satisfied....'

lambda = struct with fields:
 lower: [2x1 double]
 upper: [2x1 double]
 eqlin: [0x1 double]
 eqnonlin: [0x1 double]
 ineqlin: 0.5394
 ineqnonlin: [0x1 double]

The positive value of attainfactor indicates that the goals are not attained; you can also see this
by comparing fval with goal.

The lambda.ineqlin value is nonzero, indicating that the linear inequality constrains the solution.

Effects of Weights, Goals, and Constraints in Goal Attainment

The objective function is

F(x) = 2 + ‖x− p1‖2

5 + ‖x− p2‖2/4
.

 fgoalattain

15-47

Here, p_1 = [2,3] and p_2 = [4,1]. The goal is [3,6], and the initial weight is [1,1].

Create the objective function, goal, and initial weight.

p_1 = [2,3];
p_2 = [4,1];
fun = @(x)[2 + norm(x-p_1)^2;5 + norm(x-p_2)^2/4];
goal = [3,6];
weight = [1,1];

Set the linear constraint x1 + x2 ≤ 4.

A = [1 1];
b = 4;

Solve the goal attainment problem starting from the point x0 = [1 1].

x0 = [1 1];
[x,fval] = fgoalattain(fun,x0,goal,weight,A,b)

Local minimum possible. Constraints satisfied.

fgoalattain stopped because the size of the current search direction is less than
twice the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

x = 1×2

 2.0694 1.9306

fval = 2×1

 3.1484
 6.1484

Each component of fval is above the corresponding component of goal, indicating that the goals
are not attained.

Increase the importance of satisfying the first goal by setting weight(1) to a smaller value.

weight(1) = 1/10;
[x,fval] = fgoalattain(fun,x0,goal,weight,A,b)

Local minimum possible. Constraints satisfied.

fgoalattain stopped because the size of the current search direction is less than
twice the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

x = 1×2

 2.0115 1.9885

fval = 2×1

 3.0233

15 Functions

15-48

 6.2328

Now the value of fval(1) is much closer to goal(1), whereas fval(2) is farther from goal(2).

Change goal(2) to 7, which is above the current solution. The solution changes.

goal(2) = 7;
[x,fval] = fgoalattain(fun,x0,goal,weight,A,b)

Local minimum possible. Constraints satisfied.

fgoalattain stopped because the size of the current search direction is less than
twice the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

x = 1×2

 1.9639 2.0361

fval = 2×1

 2.9305
 6.3047

Both components of fval are less than the corresponding components of goal. But fval(1) is
much closer to goal(1) than fval(2) is to goal(2). A smaller weight is more likely to make its
component nearly satisfied when the goals cannot be achieved, but makes the degree of
overachievement less when the goal can be achieved.

Change the weights to be equal. The fval results have equal distance from their goals.

weight(2) = 1/10;
[x,fval] = fgoalattain(fun,x0,goal,weight,A,b)

Local minimum possible. Constraints satisfied.

fgoalattain stopped because the size of the current search direction is less than
twice the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

x = 1×2

 1.7613 2.2387

fval = 2×1

 2.6365
 6.6365

Constraints can keep the resulting fval from being equally close to the goals. For example, set an
upper bound of 2 on x(2).

ub = [Inf,2];
lb = [];

 fgoalattain

15-49

Aeq = [];
beq = [];
[x,fval] = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub)

Local minimum possible. Constraints satisfied.

fgoalattain stopped because the size of the current search direction is less than
twice the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

x = 1×2

 2.0000 2.0000

fval = 2×1

 3.0000
 6.2500

In this case, fval(1) meets its goal exactly, but fval(2) is less than its goal.

Input Arguments
fun — Objective functions
function handle | function name

Objective functions, specified as a function handle or function name. fun is a function that accepts a
vector x and returns a vector F, the objective functions evaluated at x. You can specify the function
fun as a function handle for a function file:

x = fgoalattain(@myfun,x0,goal,weight)

where myfun is a MATLAB function such as

function F = myfun(x)
F = ... % Compute function values at x.

fun can also be a function handle for an anonymous function:

x = fgoalattain(@(x)sin(x.*x),x0,goal,weight);

fgoalattain passes x to your objective function and any nonlinear constraint functions in the shape
of the x0 argument. For example, if x0 is a 5-by-3 array, then fgoalattain passes x to fun as a 5-
by-3 array. However, fgoalattain multiplies linear constraint matrices A or Aeq with x after
converting x to the column vector x(:).

To make an objective function as near as possible to a goal value (that is, neither greater than nor
less than), use optimoptions to set the EqualityGoalCount option to the number of objectives
required to be in the neighborhood of the goal values. Such objectives must be partitioned into the
first elements of the vector F returned by fun.

Suppose that the gradient of the objective function can also be computed and the
SpecifyObjectiveGradient option is true, as set by:

15 Functions

15-50

options = optimoptions('fgoalattain','SpecifyObjectiveGradient',true)

In this case, the function fun must return, in the second output argument, the gradient value G (a
matrix) at x. The gradient consists of the partial derivative dF/dx of each F at the point x. If F is a
vector of length m and x has length n, where n is the length of x0, then the gradient G of F(x) is an
n-by-m matrix where G(i,j) is the partial derivative of F(j) with respect to x(i) (that is, the jth
column of G is the gradient of the jth objective function F(j)).

Note Setting SpecifyObjectiveGradient to true is effective only when the problem has no
nonlinear constraints, or the problem has a nonlinear constraint with
SpecifyConstraintGradient set to true. Internally, the objective is folded into the constraints,
so the solver needs both gradients (objective and constraint) supplied in order to avoid estimating a
gradient.

Data Types: char | string | function_handle

x0 — Initial point
real vector | real array

Initial point, specified as a real vector or real array. Solvers use the number of elements in x0 and the
size of x0 to determine the number and size of variables that fun accepts.
Example: x0 = [1,2,3,4]
Data Types: double

goal — Goal to attain
real vector

Goal to attain, specified as a real vector. fgoalattain attempts to find the smallest multiplier γ that
makes these inequalities hold for all values of i at the solution x:

Fi(x)− goali ≤ weighti γ .

Assuming that weight is a positive vector:

• If the solver finds a point x that simultaneously achieves all the goals, then the attainment factor γ
is negative, and the goals are overachieved.

• If the solver cannot find a point x that simultaneously achieves all the goals, then the attainment
factor γ is positive, and the goals are underachieved.

Example: [1 3 6]
Data Types: double

weight — Relative attainment factor
real vector

Relative attainment factor, specified as a real vector. fgoalattain attempts to find the smallest
multiplier γ that makes these inequalities hold for all values of i at the solution x:

Fi(x)− goali ≤ weighti γ .

 fgoalattain

15-51

When the values of goal are all nonzero, to ensure the same percentage of underachievement or
overattainment of the active objectives, set weight to abs(goal). (The active objectives are the set
of objectives that are barriers to further improvement of the goals at the solution.)

Note Setting a component of the weight vector to zero causes the corresponding goal constraint to
be treated as a hard constraint rather than a goal constraint. An alternative method to setting a hard
constraint is to use the input argument nonlcon.

When weight is positive, fgoalattain attempts to make the objective functions less than the goal
values. To make the objective functions greater than the goal values, set weight to be negative
rather than positive. To see some effects of weights on a solution, see “Effects of Weights, Goals, and
Constraints in Goal Attainment” on page 15-47.

To make an objective function as near as possible to a goal value, use the EqualityGoalCount
option and specify the objective as the first element of the vector returned by fun (see fun and
options). For an example, see “Multi-Objective Goal Attainment Optimization” on page 7-19.
Example: abs(goal)
Data Types: double

A — Linear inequality constraints
real matrix

Linear inequality constraints, specified as a real matrix. A is an M-by-N matrix, where M is the number
of inequalities, and N is the number of variables (number of elements in x0). For large problems, pass
A as a sparse matrix.

A encodes the M linear inequalities

A*x <= b,

where x is the column vector of N variables x(:), and b is a column vector with M elements.

For example, consider these inequalities:

x1 + 2x2 ≤ 10
3x1 + 4x2 ≤ 20
5x1 + 6x2 ≤ 30,

Specify the inequalities by entering the following constraints.

A = [1,2;3,4;5,6];
b = [10;20;30];

Example: To specify that the x components sum to 1 or less, use A = ones(1,N) and b = 1.
Data Types: double

b — Linear inequality constraints
real vector

Linear inequality constraints, specified as a real vector. b is an M-element vector related to the A
matrix. If you pass b as a row vector, solvers internally convert b to the column vector b(:). For
large problems, pass b as a sparse vector.

15 Functions

15-52

b encodes the M linear inequalities

A*x <= b,

where x is the column vector of N variables x(:), and A is a matrix of size M-by-N.

For example, consider these inequalities:

x1 + 2x2 ≤ 10
3x1 + 4x2 ≤ 20
5x1 + 6x2 ≤ 30.

Specify the inequalities by entering the following constraints.

A = [1,2;3,4;5,6];
b = [10;20;30];

Example: To specify that the x components sum to 1 or less, use A = ones(1,N) and b = 1.
Data Types: double

Aeq — Linear equality constraints
real matrix

Linear equality constraints, specified as a real matrix. Aeq is an Me-by-N matrix, where Me is the
number of equalities, and N is the number of variables (number of elements in x0). For large
problems, pass Aeq as a sparse matrix.

Aeq encodes the Me linear equalities

Aeq*x = beq,

where x is the column vector of N variables x(:), and beq is a column vector with Me elements.

For example, consider these inequalities:

x1 + 2x2 + 3x3 = 10
2x1 + 4x2 + x3 = 20,

Specify the inequalities by entering the following constraints.

Aeq = [1,2,3;2,4,1];
beq = [10;20];

Example: To specify that the x components sum to 1, use Aeq = ones(1,N) and beq = 1.
Data Types: double

beq — Linear equality constraints
real vector

Linear equality constraints, specified as a real vector. beq is an Me-element vector related to the Aeq
matrix. If you pass beq as a row vector, solvers internally convert beq to the column vector beq(:).
For large problems, pass beq as a sparse vector.

beq encodes the Me linear equalities

Aeq*x = beq,

 fgoalattain

15-53

where x is the column vector of N variables x(:), and Aeq is a matrix of size Me-by-N.

For example, consider these equalities:

x1 + 2x2 + 3x3 = 10
2x1 + 4x2 + x3 = 20.

Specify the equalities by entering the following constraints.

Aeq = [1,2,3;2,4,1];
beq = [10;20];

Example: To specify that the x components sum to 1, use Aeq = ones(1,N) and beq = 1.
Data Types: double

lb — Lower bounds
real vector | real array

Lower bounds, specified as a real vector or real array. If the number of elements in x0 is equal to the
number of elements in lb, then lb specifies that

x(i) >= lb(i) for all i.

If numel(lb) < numel(x0), then lb specifies that

x(i) >= lb(i) for 1 <= i <= numel(lb).

If lb has fewer elements than x0, solvers issue a warning.
Example: To specify that all x components are positive, use lb = zeros(size(x0)).
Data Types: double

ub — Upper bounds
real vector | real array

Upper bounds, specified as a real vector or real array. If the number of elements in x0 is equal to the
number of elements in ub, then ub specifies that

x(i) <= ub(i) for all i.

If numel(ub) < numel(x0), then ub specifies that

x(i) <= ub(i) for 1 <= i <= numel(ub).

If ub has fewer elements than x0, solvers issue a warning.
Example: To specify that all x components are less than 1, use ub = ones(size(x0)).
Data Types: double

nonlcon — Nonlinear constraints
function handle | function name

Nonlinear constraints, specified as a function handle or function name. nonlcon is a function that
accepts a vector or array x and returns two arrays, c(x) and ceq(x).

15 Functions

15-54

• c(x) is the array of nonlinear inequality constraints at x. fgoalattain attempts to satisfy
c(x) <= 0 for all entries of c.

• ceq(x) is the array of nonlinear equality constraints at x. fgoalattain attempts to satisfy
ceq(x) = 0 for all entries of ceq.

For example,

x = fgoalattain(@myfun,x0,...,@mycon)

where mycon is a MATLAB function such as the following:

function [c,ceq] = mycon(x)
c = ... % Compute nonlinear inequalities at x.
ceq = ... % Compute nonlinear equalities at x.

Suppose that the gradients of the constraints can also be computed and the
SpecifyConstraintGradient option is true, as set by:

options = optimoptions('fgoalattain','SpecifyConstraintGradient',true)

In this case, the function nonlcon must also return, in the third and fourth output arguments, GC, the
gradient of c(x), and GCeq, the gradient of ceq(x). See “Nonlinear Constraints” on page 2-37 for an
explanation of how to “conditionalize” the gradients for use in solvers that do not accept supplied
gradients.

If nonlcon returns a vector c of m components and x has length n, where n is the length of x0, then
the gradient GC of c(x) is an n-by-m matrix, where GC(i,j) is the partial derivative of c(j) with
respect to x(i) (that is, the jth column of GC is the gradient of the jth inequality constraint c(j)).
Likewise, if ceq has p components, the gradient GCeq of ceq(x) is an n-by-p matrix, where
GCeq(i,j) is the partial derivative of ceq(j) with respect to x(i) (that is, the jth column of GCeq
is the gradient of the jth equality constraint ceq(j)).

Note Setting SpecifyConstraintGradient to true is effective only when
SpecifyObjectiveGradient is set to true. Internally, the objective is folded into the constraint,
so the solver needs both gradients (objective and constraint) supplied in order to avoid estimating a
gradient.

Note Because Optimization Toolbox functions accept only inputs of type double, user-supplied
objective and nonlinear constraint functions must return outputs of type double.

See “Passing Extra Parameters” on page 2-57 for an explanation of how to parameterize the nonlinear
constraint function nonlcon, if necessary.
Data Types: char | function_handle | string

options — Optimization options
output of optimoptions | structure such as optimset returns

Optimization options, specified as the output of optimoptions or a structure such as optimset
returns.

Some options are absent from the optimoptions display. These options appear in italics in the
following table. For details, see “View Options” on page 2-66.

 fgoalattain

15-55

For details about options that have different names for optimset, see “Current and Legacy Option
Names” on page 14-23.

Option Description
ConstraintTolerance Termination tolerance on the constraint violation,

a positive scalar. The default is 1e-6. See
“Tolerances and Stopping Criteria” on page 2-68.

For optimset, the name is TolCon.
Diagnostics Display of diagnostic information about the

function to be minimized or solved. The choices
are 'on' or 'off' (the default).

DiffMaxChange Maximum change in variables for finite-difference
gradients (a positive scalar). The default is Inf.

DiffMinChange Minimum change in variables for finite-difference
gradients (a positive scalar). The default is 0.

Display Level of display (see “Iterative Display” on page
3-14):

• 'off' or 'none' displays no output.
• 'iter' displays output at each iteration, and

gives the default exit message.
• 'iter-detailed' displays output at each

iteration, and gives the technical exit
message.

• 'notify' displays output only if the function
does not converge, and gives the default exit
message.

• 'notify-detailed' displays output only if
the function does not converge, and gives the
technical exit message.

• 'final' (default) displays only the final
output, and gives the default exit message.

• 'final-detailed' displays only the final
output, and gives the technical exit message.

EqualityGoalCount Number of objectives required for the objective
fun to equal the goal goal (a nonnegative
integer). The objectives must be partitioned into
the first few elements of F. The default is 0. For
an example, see “Multi-Objective Goal Attainment
Optimization” on page 7-19.

For optimset, the name is
GoalsExactAchieve.

15 Functions

15-56

Option Description
FiniteDifferenceStepSize Scalar or vector step size factor for finite

differences. When you set
FiniteDifferenceStepSize to a vector v, the
forward finite differences delta are

delta = v.*sign′
(x).*max(abs(x),TypicalX);

where sign′(x) = sign(x) except sign′(0)
= 1. Central finite differences are

delta = v.*max(abs(x),TypicalX);

Scalar FiniteDifferenceStepSize expands to
a vector. The default is sqrt(eps) for forward
finite differences, and eps^(1/3) for central
finite differences.

For optimset, the name is FinDiffRelStep.
FiniteDifferenceType Type of finite differences used to estimate

gradients, either 'forward' (default), or
'central' (centered). 'central' takes twice
as many function evaluations, but is generally
more accurate.

The algorithm is careful to obey bounds when
estimating both types of finite differences. For
example, it might take a backward step, rather
than a forward step, to avoid evaluating at a point
outside the bounds.

For optimset, the name is FinDiffType.
FunctionTolerance Termination tolerance on the function value (a

positive scalar). The default is 1e-6. See
“Tolerances and Stopping Criteria” on page 2-68.

For optimset, the name is TolFun.
FunValCheck Check that signifies whether the objective

function and constraint values are valid. 'on'
displays an error when the objective function or
constraints return a value that is complex, Inf,
or NaN. The default 'off' displays no error.

MaxFunctionEvaluations Maximum number of function evaluations allowed
(a positive integer). The default is
100*numberOfVariables. See “Tolerances and
Stopping Criteria” on page 2-68 and “Iterations
and Function Counts” on page 3-9.

For optimset, the name is MaxFunEvals.

 fgoalattain

15-57

Option Description
MaxIterations Maximum number of iterations allowed (a

positive integer). The default is 400. See
“Tolerances and Stopping Criteria” on page 2-68
and “Iterations and Function Counts” on page 3-
9.

For optimset, the name is MaxIter.
MaxSQPIter Maximum number of SQP iterations allowed (a

positive integer). The default is
10*max(numberOfVariables,
numberOfInequalities +
numberOfBounds).

MeritFunction If this option is set to 'multiobj' (the default),
use goal attainment merit function. If this option
is set to 'singleobj', use the fmincon merit
function.

OptimalityTolerance Termination tolerance on the first-order
optimality (a positive scalar). The default is 1e-6.
See “First-Order Optimality Measure” on page 3-
11.

For optimset, the name is TolFun.
OutputFcn One or more user-defined functions that an

optimization function calls at each iteration. Pass
a function handle or a cell array of function
handles. The default is none ([]). See “Output
Function and Plot Function Syntax” on page 14-
28.

15 Functions

15-58

Option Description
PlotFcn Plots showing various measures of progress while

the algorithm executes. Select from predefined
plots or write your own. Pass a name, function
handle, or cell array of names or function
handles. For custom plot functions, pass function
handles. The default is none ([]).

• 'optimplotx' plots the current point.
• 'optimplotfunccount' plots the function

count.
• 'optimplotfval' plots the objective

function values.
• 'optimplotconstrviolation' plots the

maximum constraint violation.
• 'optimplotstepsize' plots the step size.

Custom plot functions use the same syntax as
output functions. See “Output Functions for
Optimization Toolbox” on page 3-30 and “Output
Function and Plot Function Syntax” on page 14-
28.

For optimset, the name is PlotFcns.
RelLineSrchBnd Relative bound (a real nonnegative scalar value)

on the line search step length such that the total
displacement in x satisfies |Δx(i)|
 ≤ relLineSrchBnd· max(|x(i)|,|typicalx(i)|). This
option provides control over the magnitude of the
displacements in x when the solver takes steps
that are too large. The default is none ([]).

RelLineSrchBndDuration Number of iterations for which the bound
specified in RelLineSrchBnd should be active.
The default is 1.

SpecifyConstraintGradient Gradient for nonlinear constraint functions
defined by the user. When this option is set to
true, fgoalattain expects the constraint
function to have four outputs, as described in
nonlcon. When this option is set to false (the
default), fgoalattain estimates gradients of
the nonlinear constraints using finite differences.

For optimset, the name is GradConstr and the
values are 'on' or 'off'.

 fgoalattain

15-59

Option Description
SpecifyObjectiveGradient Gradient for the objective function defined by the

user. Refer to the description of fun to see how
to define the gradient. Set this option to true to
have fgoalattain use a user-defined gradient
of the objective function. The default, false,
causes fgoalattain to estimate gradients using
finite differences.

For optimset, the name is GradObj and the
values are 'on' or 'off'.

StepTolerance Termination tolerance on x (a positive scalar).
The default is 1e-6. See “Tolerances and
Stopping Criteria” on page 2-68.

For optimset, the name is TolX.
TolConSQP Termination tolerance on the inner iteration SQP

constraint violation (a positive scalar). The
default is 1e-6.

TypicalX Typical x values. The number of elements in
TypicalX is equal to the number of elements in
x0, the starting point. The default value is
ones(numberofvariables,1). The
fgoalattain function uses TypicalX for
scaling finite differences for gradient estimation.

UseParallel Indication of parallel computing. When true,
fgoalattain estimates gradients in parallel.
The default is false. See “Parallel Computing”.

Example: optimoptions('fgoalattain','PlotFcn','optimplotfval')

problem — Problem structure
structure

Problem structure, specified as a structure with the fields in this table.

Field Name Entry
objective Objective function fun
x0 Initial point for x
goal Goals to attain
weight Relative importance factors of goals
Aineq Matrix for linear inequality constraints
bineq Vector for linear inequality constraints
Aeq Matrix for linear equality constraints
beq Vector for linear equality constraints
lb Vector of lower bounds

15 Functions

15-60

Field Name Entry
ub Vector of upper bounds
nonlcon Nonlinear constraint function
solver 'fgoalattain'
options Options created with optimoptions

You must supply at least the objective, x0, goal, weight, solver, and options fields in the
problem structure.
Data Types: struct

Output Arguments
x — Solution
real vector | real array

Solution, returned as a real vector or real array. The size of x is the same as the size of x0. Typically,
x is a local solution to the problem when exitflag is positive. For information on the quality of the
solution, see “When the Solver Succeeds” on page 4-18.

fval — Objective function values at solution
real array

Objective function values at the solution, returned as a real array. Generally, fval = fun(x).

attainfactor — Attainment factor
real number

Attainment factor, returned as a real number. attainfactor contains the value of γ at the solution.
If attainfactor is negative, the goals have been overachieved; if attainfactor is positive, the
goals have been underachieved. See goal.

exitflag — Reason fgoalattain stopped
integer

Reason fgoalattain stopped, returned as an integer.

1 Function converged to a solution x
4 Magnitude of the search direction was less than the specified

tolerance, and the constraint violation was less than
options.ConstraintTolerance

5 Magnitude of the directional derivative was less than the
specified tolerance, and the constraint violation was less than
options.ConstraintTolerance

0 Number of iterations exceeded options.MaxIterations or
the number of function evaluations exceeded
options.MaxFunctionEvaluations

-1 Stopped by an output function or plot function
-2 No feasible point was found.

 fgoalattain

15-61

output — Information about optimization process
structure

Information about the optimization process, returned as a structure with the fields in this table.

iterations Number of iterations taken
funcCount Number of function evaluations
lssteplength Size of the line search step relative to the search direction
constrviolation Maximum of the constraint functions
stepsize Length of the last displacement in x
algorithm Optimization algorithm used
firstorderopt Measure of first-order optimality
message Exit message

lambda — Lagrange multipliers at solution
structure

Lagrange multipliers at the solution, returned as a structure with the fields in this table.

lower Lower bounds corresponding to lb
upper Upper bounds corresponding to ub
ineqlin Linear inequalities corresponding to A and b
eqlin Linear equalities corresponding to Aeq and beq
ineqnonlin Nonlinear inequalities corresponding to the c in nonlcon
eqnonlin Nonlinear equalities corresponding to the ceq in nonlcon

Algorithms
For a description of the fgoalattain algorithm and a discussion of goal attainment concepts, see
“Algorithms” on page 7-3.

Alternative Functionality
App

The Optimize Live Editor task provides a visual interface for fgoalattain.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

options = optimoptions('solvername','UseParallel',true)

For more information, see “Using Parallel Computing in Optimization Toolbox” on page 13-5.

15 Functions

15-62

See Also
fmincon | fminimax | optimoptions | Optimize

Topics
“Multi-Objective Goal Attainment Optimization” on page 7-19
“Generate and Plot Pareto Front” on page 7-16
“Create Function Handle”
“Multiobjective Optimization”

Introduced before R2006a

 fgoalattain

15-63

findindex
Package: optim.problemdef

Find numeric index equivalents of named index variables

Syntax
[numindex1,numindex2,...,numindexk] = findindex(var,strindex1,strindex2,...,
strindexk)
numindex = findindex(var,strindex1,strindex2,...,strindexk)

Description
[numindex1,numindex2,...,numindexk] = findindex(var,strindex1,strindex2,...,
strindexk) finds the numeric index equivalents of the named index variables in the optimization
variable var.

numindex = findindex(var,strindex1,strindex2,...,strindexk) finds the linear index
equivalents of the named index variables.

Examples

Find Numeric Equivalents of Named Index Variables

Create an optimization variable named colors that is indexed by the primary additive color names
and the primary subtractive color names. Include 'black' and 'white' as additive color names and
'black' as a subtractive color name.

colors = optimvar('colors',["black","white","red","green","blue"],["cyan","magenta","yellow","black"]);

Find the index numbers for the additive colors 'red' and 'black' and for the subtractive color
'black'.

[idxadd,idxsub] = findindex(colors,{'red','black'},{'black'})

idxadd = 1×2

 3 1

idxsub = 4

Find Linear Index Equivalents of Named Index Variables

Create an optimization variable named colors that is indexed by the primary additive color names
and the primary subtractive color names. Include 'black' and 'white' as additive color names and
'black' as a subtractive color name.

15 Functions

15-64

colors = optimvar('colors',["black","white","red","green","blue"],["cyan","magenta","yellow","black"]);

Find the linear index equivalents to the combinations ["white","black"], ["red","cyan"],
["green","magenta"], and ["blue","yellow"].

idx = findindex(colors,["white","red","green","blue"],["black","cyan","magenta","yellow"])

idx = 1×4

 17 3 9 15

View Solution with Index Variables

Create and solve an optimization problem using named index variables. The problem is to maximize
the profit-weighted flow of fruit to various airports, subject to constraints on the weighted flows.

rng(0) % For reproducibility
p = optimproblem('ObjectiveSense', 'maximize');
flow = optimvar('flow', ...
 {'apples', 'oranges', 'bananas', 'berries'}, {'NYC', 'BOS', 'LAX'}, ...
 'LowerBound',0,'Type','integer');
p.Objective = sum(sum(rand(4,3).*flow));
p.Constraints.NYC = rand(1,4)*flow(:,'NYC') <= 10;
p.Constraints.BOS = rand(1,4)*flow(:,'BOS') <= 12;
p.Constraints.LAX = rand(1,4)*flow(:,'LAX') <= 35;
sol = solve(p);

Solving problem using intlinprog.
LP: Optimal objective value is -1027.472366.

Heuristics: Found 1 solution using ZI round.
 Upper bound is -1027.233133.
 Relative gap is 0.00%.

Optimal solution found.

Intlinprog stopped at the root node because the objective value is within a gap
tolerance of the optimal value, options.AbsoluteGapTolerance = 0 (the default
value). The intcon variables are integer within tolerance,
options.IntegerTolerance = 1e-05 (the default value).

Find the optimal flow of oranges and berries to New York and Los Angeles.

[idxFruit,idxAirports] = findindex(flow, {'oranges','berries'}, {'NYC', 'LAX'})

idxFruit = 1×2

 2 4

idxAirports = 1×2

 1 3

 findindex

15-65

orangeBerries = sol.flow(idxFruit, idxAirports)

orangeBerries = 2×2

 0 980.0000
 70.0000 0

This display means that no oranges are going to NYC, 70 berries are going to NYC, 980 oranges are
going to LAX, and no berries are going to LAX.

List the optimal flow of the following:

Fruit Airports

----- --------

Berries NYC

Apples BOS

Oranges LAX

idx = findindex(flow, {'berries', 'apples', 'oranges'}, {'NYC', 'BOS', 'LAX'})

idx = 1×3

 4 5 10

optimalFlow = sol.flow(idx)

optimalFlow = 1×3

 70.0000 28.0000 980.0000

This display means that 70 berries are going to NYC, 28 apples are going to BOS, and 980 oranges are
going to LAX.

Create Initial Point with Named Index Variables

Create named index variables for a problem with various land types, potential crops, and plowing
methods.

land = ["irr-good","irr-poor","dry-good","dry-poor"];
crops = ["wheat-lentil","wheat-corn","barley-chickpea","barley-lentil","wheat-onion","barley-onion"];
plow = ["tradition","mechanized"];
xcrop = optimvar('xcrop',land,crops,plow,'LowerBound',0);

Set the initial point to a zero array of the correct size.

x0.xcrop = zeros(size(xcrop));

Set the initial value to 3000 for the "wheat-onion" and "wheat-lentil" crops that are planted in
any dry condition and are plowed traditionally.

15 Functions

15-66

[idxLand, idxCrop, idxPlough] = findindex(xcrop, ["dry-good","dry-poor"], ...
 ["wheat-onion","wheat-lentil"],"tradition");
x0.xcrop(idxLand,idxCrop,idxPlough) = 3000;

Set the initial values for the following three points.

Land Crops Method Value
dry-good wheat-corn mechanized 2000
irr-poor barley-onion tradition 5000
irr-good barley-chickpea mechanized 3500

idx = findindex(xcrop,...
 ["dry-good","irr-poor","irr-good"],...
 ["wheat-corn","barley-onion","barley-chickpea"],...
 ["mechanized","tradition","mechanized"]);
x0.xcrop(idx) = [2000,5000,3500];

Input Arguments
var — Optimization variable
OptimizationVariable object

Optimization variable, specified as an OptimizationVariable object. Create var using optimvar.
Example: var = optimvar('var',4,6)

strindex — Named index
cell array of character vectors | character vector | string vector | integer vector

Named index, specified as a cell array of character vectors, character vector, string vector, or integer
vector. The number of strindex arguments must be the number of dimensions in var.
Example: ["small","medium","large"]
Data Types: double | char | string | cell

Output Arguments
numindex — Numeric index equivalent
integer vector

Numeric index equivalent, returned as an integer vector. The number of output arguments must be
one of the following:

• The number of dimensions in var. Each output vector numindexj is the numeric equivalent of the
corresponding input argument strindexj.

• One. In this case, the size of each input strindexj must be the same for all j, and the output
satisfies the linear indexing criterion

var(numindex(j)) = var(strindex1(j),...,strindexk(j)) for all j.

See Also
OptimizationVariable | solve

 findindex

15-67

Topics
“Create Initial Point for Optimization with Named Index Variables” on page 9-47
“Named Index for Optimization Variables” on page 9-20

Introduced in R2018a

15 Functions

15-68

fminbnd
Find minimum of single-variable function on fixed interval

Syntax
x = fminbnd(fun,x1,x2)
x = fminbnd(fun,x1,x2,options)
x = fminbnd(problem)
[x,fval] = fminbnd(___)
[x,fval,exitflag] = fminbnd(___)
[x,fval,exitflag,output] = fminbnd(___)

Description
fminbnd is a one-dimensional minimizer that finds a minimum for a problem specified by

min
x

f (x) such that x1 < x < x2 .

x, x1, and x2 are finite scalars, and f(x) is a function that returns a scalar.

x = fminbnd(fun,x1,x2) returns a value x that is a local minimizer of the scalar valued function
that is described in fun in the interval x1 < x < x2.

x = fminbnd(fun,x1,x2,options) minimizes with the optimization options specified in
options. Use optimset to set these options.

x = fminbnd(problem) finds the minimum for problem, a structure described in problem.

[x,fval] = fminbnd(___), for any input arguments, returns the value of the objective function
computed in fun at the solution x.

[x,fval,exitflag] = fminbnd(___) additionally returns a value exitflag that describes the
exit condition.

[x,fval,exitflag,output] = fminbnd(___) additionally returns a structure output that
contains information about the optimization.

Examples

Minimum of sin

Find the point where the sin(x) function takes its minimum in the range 0 < x < 2π.

fun = @sin;
x1 = 0;
x2 = 2*pi;
x = fminbnd(fun,x1,x2)

x = 4.7124

 fminbnd

15-69

To display precision, this is the same as the correct value x = 3π/2.

3*pi/2

ans = 4.7124

Minimize a Function Specified by a File

Minimize a function that is specified by a separate function file. A function accepts a point x and
returns a real scalar representing the value of the objective function at x.

Write the following function as a file, and save the file as scalarobjective.m on your MATLAB®
path.

function f = scalarobjective(x)
f = 0;
for k = -10:10
 f = f + (k+1)^2*cos(k*x)*exp(-k^2/2);
end

Find the x that minimizes scalarobjective on the interval 1 <= x <= 3.

x = fminbnd(@scalarobjective,1,3)

x =

 2.0061

Minimize with Extra Parameter

Minimize a function when there is an extra parameter. The function sin(x− a) has a minimum that
depends on the value of the parameter a. Create an anonymous function of x that includes the value
of the parameter a. Minimize this function over the interval 0 < x < 2π.

a = 9/7;
fun = @(x)sin(x-a);
x = fminbnd(fun,1,2*pi)

x = 5.9981

This answer is correct; the theoretical value is

3*pi/2 + 9/7

ans = 5.9981

For more information about including extra parameters, see “Parameterizing Functions”.

15 Functions

15-70

Monitor Iterations

Monitor the steps fminbnd takes to minimize the sin(x) function for 0 < x < 2π.

fun = @sin;
x1 = 0;
x2 = 2*pi;
options = optimset('Display','iter');
x = fminbnd(fun,x1,x2,options)

 Func-count x f(x) Procedure
 1 2.39996 0.67549 initial
 2 3.88322 -0.67549 golden
 3 4.79993 -0.996171 golden
 4 5.08984 -0.929607 parabolic
 5 4.70582 -0.999978 parabolic
 6 4.7118 -1 parabolic
 7 4.71239 -1 parabolic
 8 4.71236 -1 parabolic
 9 4.71242 -1 parabolic

Optimization terminated:
 the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-04

x = 4.7124

Find Minimum Location and Function Value

Find the location of the minimum of sin(x) and the value of the minimum for 0 < x < 2π.

fun = @sin;
[x,fval] = fminbnd(fun,1,2*pi)

x = 4.7124

fval = -1.0000

Obtain All Information

Return all information about the fminbnd solution process by requesting all outputs. Also, monitor
the solution process using a plot function.

fun = @sin;
x1 = 0;
x2 = 2*pi;
options = optimset('PlotFcns',@optimplotfval);
[x,fval,exitflag,output] = fminbnd(fun,x1,x2,options)

 fminbnd

15-71

x = 4.7124

fval = -1.0000

exitflag = 1

output = struct with fields:
 iterations: 8
 funcCount: 9
 algorithm: 'golden section search, parabolic interpolation'
 message: 'Optimization terminated:...'

Input Arguments
fun — Function to minimize
function handle | function name

Function to minimize, specified as a function handle or function name. fun is a function that accepts
a real scalar x and returns a real scalar f (the objective function evaluated at x).

Specify fun as a function handle for a file:

x = fminbnd(@myfun,x1,x2)

where myfun is a MATLAB function such as

15 Functions

15-72

function f = myfun(x)
f = ... % Compute function value at x

You can also specify fun as a function handle for an anonymous function:

x = fminbnd(@(x)norm(x)^2,x1,x2);

Example: fun = @(x)-x*exp(-3*x)
Data Types: char | function_handle | string

x1 — Lower bound
finite real scalar

Lower bound, specified as a finite real scalar.
Example: x1 = -3
Data Types: double

x2 — Upper bound
finite real scalar

Upper bound, specified as a finite real scalar.
Example: x2 = 5
Data Types: double

options — Optimization options
structure such as optimset returns

Optimization options, specified as a structure such as optimset returns. You can use optimset to
set or change the values of these fields in the options structure. See “Optimization Options
Reference” on page 14-6 for detailed information.

Display Level of display (see “Iterative Display” on page 3-14):

• 'notify' (default) displays output only if the function does not
converge.

• 'off' or 'none' displays no output.
• 'iter' displays output at each iteration.
• 'final' displays just the final output.

FunValCheck Check whether objective function values are valid. The default
'off' allows fminbnd to proceed when the objective function
returns a value that is complex or NaN. The 'on' setting throws an
error when the objective function returns a value that is complex or
NaN.

MaxFunEvals Maximum number of function evaluations allowed, a positive integer.
The default is 500. See “Tolerances and Stopping Criteria” on page
2-68 and “Iterations and Function Counts” on page 3-9.

MaxIter Maximum number of iterations allowed, a positive integer. The
default is 500. See “Tolerances and Stopping Criteria” on page 2-68
and “Iterations and Function Counts” on page 3-9.

 fminbnd

15-73

OutputFcn Specify one or more user-defined functions that an optimization
function calls at each iteration, either as a function handle or as a
cell array of function handles. The default is none ([]). See “Output
Function and Plot Function Syntax” on page 14-28.

PlotFcns Plots various measures of progress while the algorithm executes,
select from predefined plots or write your own. Pass a function
handle or a cell array of function handles. The default is none ([]).

• @optimplotx plots the current point
• @optimplotfunccount plots the function count
• @optimplotfval plots the function value

Custom plot functions use the same syntax as output functions. See
“Output Functions for Optimization Toolbox” on page 3-30 and
“Output Function and Plot Function Syntax” on page 14-28.

TolX Termination tolerance on x, a positive scalar. The default is 1e-4.
See “Tolerances and Stopping Criteria” on page 2-68.

Example: options = optimset('Display','iter')
Data Types: struct

problem — Problem structure
structure

Problem structure, specified as a structure with the following fields.

Field Name Entry
objective Objective function
x1 Left endpoint
x2 Right endpoint
solver 'fminbnd'
options Options structure such as returned by optimset

Data Types: struct

Output Arguments
x — Solution
real scalar

Solution, returned as a real scalar. Typically, x is a local solution to the problem when exitflag is
positive. For information on the quality of the solution, see “When the Solver Succeeds” on page 4-18.

fval — Objective function value at solution
real number

Objective function value at the solution, returned as a real number. Generally, fval = fun(x).

exitflag — Reason fminbnd stopped
integer

15 Functions

15-74

Reason fminbnd stopped, returned as an integer.

1 Function converged to a solution x.
0 Number of iterations exceeded options.MaxIter or number of

function evaluations exceeded options.MaxFunEvals.
-1 Stopped by an output function or plot function.
-2 The bounds are inconsistent, meaning x1 > x2.

output — Information about the optimization process
structure

Information about the optimization process, returned as a structure with fields:

iterations Number of iterations taken
funcCount Number of function evaluations
algorithm 'golden section search, parabolic

interpolation'
message Exit message

Limitations
• The function to be minimized must be continuous.
• fminbnd might only give local solutions.
• fminbnd can exhibit slow convergence when the solution is on a boundary of the interval. In such

a case, fmincon often gives faster and more accurate solutions.

Algorithms
fminbnd is a function file. The algorithm is based on golden section search and parabolic
interpolation. Unless the left endpoint x1 is very close to the right endpoint x2, fminbnd never
evaluates fun at the endpoints, so fun need only be defined for x in the interval x1 < x < x2.

If the minimum actually occurs at x1 or x2, fminbnd returns a point x in the interior of the interval
(x1,x2) that is close to the minimizer. In this case, the distance of x from the minimizer is no more than
2*(TolX + 3*abs(x)*sqrt(eps)). See [1] or [2] for details about the algorithm.

Alternative Functionality
App

The Optimize Live Editor task provides a visual interface for fminbnd.

References
[1] Forsythe, G. E., M. A. Malcolm, and C. B. Moler. Computer Methods for Mathematical

Computations. Englewood Cliffs, NJ: Prentice Hall, 1976.

[2] Brent, Richard. P. Algorithms for Minimization without Derivatives. Englewood Cliffs, NJ: Prentice-
Hall, 1973.

 fminbnd

15-75

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For C/C++ code generation:

• fminbnd does not support the problem structure argument.
• fminbnd ignores the Display option and does not give iterative display or an exit message. To

check solution quality, examine the exit flag.
• The output structure does not include the algorithm or message fields.
• fminbnd ignores the OutputFcn and PlotFcns options.

See Also
fminsearch | fmincon | optimset | Optimize

Topics
“Create Function Handle”
“Anonymous Functions”

Introduced before R2006a

15 Functions

15-76

fmincon
Find minimum of constrained nonlinear multivariable function

Syntax
x = fmincon(fun,x0,A,b)
x = fmincon(fun,x0,A,b,Aeq,beq)
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub)
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
x = fmincon(problem)
[x,fval] = fmincon(___)
[x,fval,exitflag,output] = fmincon(___)
[x,fval,exitflag,output,lambda,grad,hessian] = fmincon(___)

Description
Nonlinear programming solver.

Finds the minimum of a problem specified by

min
x

f (x) such that

c(x) ≤ 0
ceq(x) = 0
A ⋅ x ≤ b

Aeq ⋅ x = beq
lb ≤ x ≤ ub,

b and beq are vectors, A and Aeq are matrices, c(x) and ceq(x) are functions that return vectors, and
f(x) is a function that returns a scalar. f(x), c(x), and ceq(x) can be nonlinear functions.

x, lb, and ub can be passed as vectors or matrices; see “Matrix Arguments” on page 2-31.

x = fmincon(fun,x0,A,b) starts at x0 and attempts to find a minimizer x of the function
described in fun subject to the linear inequalities A*x ≤ b. x0 can be a scalar, vector, or matrix.

Note “Passing Extra Parameters” on page 2-57 explains how to pass extra parameters to the
objective function and nonlinear constraint functions, if necessary.

x = fmincon(fun,x0,A,b,Aeq,beq) minimizes fun subject to the linear equalities Aeq*x = beq
and A*x ≤ b. If no inequalities exist, set A = [] and b = [].

x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub) defines a set of lower and upper bounds on the
design variables in x, so that the solution is always in the range lb ≤ x ≤ ub. If no equalities exist,
set Aeq = [] and beq = []. If x(i) is unbounded below, set lb(i) = -Inf, and if x(i) is
unbounded above, set ub(i) = Inf.

 fmincon

15-77

Note If the specified input bounds for a problem are inconsistent, fmincon throws an error. In this
case, output x is x0 and fval is [].

For the default 'interior-point' algorithm, fmincon sets components of x0 that violate the
bounds lb ≤ x ≤ ub, or are equal to a bound, to the interior of the bound region. For the 'trust-
region-reflective' algorithm, fmincon sets violating components to the interior of the bound
region. For other algorithms, fmincon sets violating components to the closest bound. Components
that respect the bounds are not changed. See “Iterations Can Violate Constraints” on page 2-33.

x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon) subjects the minimization to the nonlinear
inequalities c(x) or equalities ceq(x) defined in nonlcon. fmincon optimizes such that c(x) ≤ 0
and ceq(x) = 0. If no bounds exist, set lb = [] and/or ub = [].

x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options) minimizes with the
optimization options specified in options. Use optimoptions to set these options. If there are no
nonlinear inequality or equality constraints, set nonlcon = [].

x = fmincon(problem) finds the minimum for problem, a structure described in problem.

[x,fval] = fmincon(___), for any syntax, returns the value of the objective function fun at the
solution x.

[x,fval,exitflag,output] = fmincon(___) additionally returns a value exitflag that
describes the exit condition of fmincon, and a structure output with information about the
optimization process.

[x,fval,exitflag,output,lambda,grad,hessian] = fmincon(___) additionally returns:

• lambda — Structure with fields containing the Lagrange multipliers at the solution x.
• grad — Gradient of fun at the solution x.
• hessian — Hessian of fun at the solution x. See “fmincon Hessian” on page 3-24.

Examples

Linear Inequality Constraint

Find the minimum value of Rosenbrock's function when there is a linear inequality constraint.

Set the objective function fun to be Rosenbrock's function. Rosenbrock's function is well-known to be
difficult to minimize. It has its minimum objective value of 0 at the point (1,1). For more information,
see “Solve a Constrained Nonlinear Problem, Solver-Based” on page 1-11.

fun = @(x)100*(x(2)-x(1)^2)^2 + (1-x(1))^2;

Find the minimum value starting from the point [-1,2], constrained to have x(1) + 2x(2) ≤ 1.
Express this constraint in the form Ax <= b by taking A = [1,2] and b = 1. Notice that this
constraint means that the solution will not be at the unconstrained solution (1,1), because at that
point x(1) + 2x(2) = 3 > 1.

x0 = [-1,2];
A = [1,2];
b = 1;
x = fmincon(fun,x0,A,b)

15 Functions

15-78

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

x = 1×2

 0.5022 0.2489

Linear Inequality and Equality Constraint

Find the minimum value of Rosenbrock's function when there are both a linear inequality constraint
and a linear equality constraint.

Set the objective function fun to be Rosenbrock's function.

fun = @(x)100*(x(2)-x(1)^2)^2 + (1-x(1))^2;

Find the minimum value starting from the point [0.5,0], constrained to have x(1) + 2x(2) ≤ 1 and
2x(1) + x(2) = 1.

• Express the linear inequality constraint in the form A*x <= b by taking A = [1,2] and b = 1.
• Express the linear equality constraint in the form Aeq*x = beq by taking Aeq = [2,1] and beq

= 1.

x0 = [0.5,0];
A = [1,2];
b = 1;
Aeq = [2,1];
beq = 1;
x = fmincon(fun,x0,A,b,Aeq,beq)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

x = 1×2

 0.4149 0.1701

Minimize with Bound Constraints

Find the minimum of an objective function in the presence of bound constraints.

The objective function is a simple algebraic function of two variables.

fun = @(x)1+x(1)/(1+x(2)) - 3*x(1)*x(2) + x(2)*(1+x(1));

 fmincon

15-79

Look in the region where x has positive values, x(1) ≤ 1, and x(2) ≤ 2.

lb = [0,0];
ub = [1,2];

The problem has no linear constraints, so set those arguments to [].

A = [];
b = [];
Aeq = [];
beq = [];

Try an initial point in the middle of the region.

x0 = (lb + ub)/2;

Solve the problem.

x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

x = 1×2

 1.0000 2.0000

A different initial point can lead to a different solution.

x0 = x0/5;
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

x = 1×2
10-6 ×

 0.4000 0.4000

To determine which solution is better, see “Obtain the Objective Function Value” on page 15-85.

Nonlinear Constraints

Find the minimum of a function subject to nonlinear constraints

Find the point where Rosenbrock's function is minimized within a circle, also subject to bound
constraints.

15 Functions

15-80

fun = @(x)100*(x(2)-x(1)^2)^2 + (1-x(1))^2;

Look within the region , .

lb = [0,0.2];
ub = [0.5,0.8];

Also look within the circle centered at [1/3,1/3] with radius 1/3. Copy the following code to a file on
your MATLAB® path named circlecon.m.

% Copyright 2015 The MathWorks, Inc.

function [c,ceq] = circlecon(x)
c = (x(1)-1/3)^2 + (x(2)-1/3)^2 - (1/3)^2;
ceq = [];

There are no linear constraints, so set those arguments to [].

A = [];
b = [];
Aeq = [];
beq = [];

Choose an initial point satisfying all the constraints.

x0 = [1/4,1/4];

Solve the problem.

nonlcon = @circlecon;
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

x =

 0.5000 0.2500

Nondefault Options

Set options to view iterations as they occur and to use a different algorithm.

To observe the fmincon solution process, set the Display option to 'iter'. Also, try the 'sqp'
algorithm, which is sometimes faster or more accurate than the default 'interior-point'
algorithm.

options = optimoptions('fmincon','Display','iter','Algorithm','sqp');

 fmincon

15-81

Find the minimum of Rosenbrock's function on the unit disk, . First create a function that
represents the nonlinear constraint. Save this as a file named unitdisk.m on your MATLAB® path.

function [c,ceq] = unitdisk(x)
c = x(1)^2 + x(2)^2 - 1;
ceq = [];

Create the remaining problem specifications. Then run fmincon.

fun = @(x)100*(x(2)-x(1)^2)^2 + (1-x(1))^2;
A = [];
b = [];
Aeq = [];
beq = [];
lb = [];
ub = [];
nonlcon = @unitdisk;
x0 = [0,0];
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)

 Iter Func-count Fval Feasibility Step Length Norm of First-order
 step optimality
 0 3 1.000000e+00 0.000e+00 1.000e+00 0.000e+00 2.000e+00
 1 12 8.913011e-01 0.000e+00 1.176e-01 2.353e-01 1.107e+01
 2 22 8.047847e-01 0.000e+00 8.235e-02 1.900e-01 1.330e+01
 3 28 4.197517e-01 0.000e+00 3.430e-01 1.217e-01 6.172e+00
 4 31 2.733703e-01 0.000e+00 1.000e+00 5.254e-02 5.705e-01
 5 34 2.397111e-01 0.000e+00 1.000e+00 7.498e-02 3.164e+00
 6 37 2.036002e-01 0.000e+00 1.000e+00 5.960e-02 3.106e+00
 7 40 1.164353e-01 0.000e+00 1.000e+00 1.459e-01 1.059e+00
 8 43 1.161753e-01 0.000e+00 1.000e+00 1.754e-01 7.383e+00
 9 46 5.901601e-02 0.000e+00 1.000e+00 1.547e-02 7.278e-01
 10 49 4.533081e-02 2.898e-03 1.000e+00 5.393e-02 1.252e-01
 11 52 4.567454e-02 2.225e-06 1.000e+00 1.492e-03 1.679e-03
 12 55 4.567481e-02 4.406e-12 1.000e+00 2.095e-06 1.502e-05
 13 58 4.567481e-02 0.000e+00 1.000e+00 2.203e-12 1.406e-05

Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than
the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

x =

 0.7864 0.6177

Include Gradient

Include gradient evaluation in the objective function for faster or more reliable computations.

15 Functions

15-82

Include the gradient evaluation as a conditionalized output in the objective function file. For details,
see “Including Gradients and Hessians” on page 2-19. The objective function is Rosenbrock's
function,

which has gradient

function [f,g] = rosenbrockwithgrad(x)
% Calculate objective f
f = 100*(x(2) - x(1)^2)^2 + (1-x(1))^2;

if nargout > 1 % gradient required
 g = [-400*(x(2)-x(1)^2)*x(1)-2*(1-x(1));
 200*(x(2)-x(1)^2)];
end

Save this code as a file named rosenbrockwithgrad.m on your MATLAB® path.

Create options to use the objective function gradient.

options = optimoptions('fmincon','SpecifyObjectiveGradient',true);

Create the other inputs for the problem. Then call fmincon.

fun = @rosenbrockwithgrad;
x0 = [-1,2];
A = [];
b = [];
Aeq = [];
beq = [];
lb = [-2,-2];
ub = [2,2];
nonlcon = [];
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

x =

 1.0000 1.0000

 fmincon

15-83

Use a Problem Structure

Solve the same problem as in “Nondefault Options” on page 15-81 using a problem structure instead
of separate arguments.

Create the options and a problem structure. See “problem” on page 15-0 for the field names and
required fields.

options = optimoptions('fmincon','Display','iter','Algorithm','sqp');
problem.options = options;
problem.solver = 'fmincon';
problem.objective = @(x)100*(x(2)-x(1)^2)^2 + (1-x(1))^2;
problem.x0 = [0,0];

The nonlinear constraint function unitdisk appears at the end of this example on page 15-0 .
Include the nonlinear constraint function in problem.

problem.nonlcon = @unitdisk;

Solve the problem.

x = fmincon(problem)

 Iter Func-count Fval Feasibility Step Length Norm of First-order
 step optimality
 0 3 1.000000e+00 0.000e+00 1.000e+00 0.000e+00 2.000e+00
 1 12 8.913011e-01 0.000e+00 1.176e-01 2.353e-01 1.107e+01
 2 22 8.047847e-01 0.000e+00 8.235e-02 1.900e-01 1.330e+01
 3 28 4.197517e-01 0.000e+00 3.430e-01 1.217e-01 6.172e+00
 4 31 2.733703e-01 0.000e+00 1.000e+00 5.254e-02 5.705e-01
 5 34 2.397111e-01 0.000e+00 1.000e+00 7.498e-02 3.164e+00
 6 37 2.036002e-01 0.000e+00 1.000e+00 5.960e-02 3.106e+00
 7 40 1.164353e-01 0.000e+00 1.000e+00 1.459e-01 1.059e+00
 8 43 1.161753e-01 0.000e+00 1.000e+00 1.754e-01 7.383e+00
 9 46 5.901601e-02 0.000e+00 1.000e+00 1.547e-02 7.278e-01
 10 49 4.533081e-02 2.898e-03 1.000e+00 5.393e-02 1.252e-01
 11 52 4.567454e-02 2.225e-06 1.000e+00 1.492e-03 1.679e-03
 12 55 4.567481e-02 4.406e-12 1.000e+00 2.095e-06 1.502e-05
 13 58 4.567481e-02 0.000e+00 1.000e+00 2.203e-12 1.406e-05

Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than
the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

x = 1×2

 0.7864 0.6177

The iterative display and solution are the same as in “Nondefault Options” on page 15-81.

The following code creates the unitdisk function.

function [c,ceq] = unitdisk(x)
c = x(1)^2 + x(2)^2 - 1;
ceq = [];
end

15 Functions

15-84

Obtain the Objective Function Value

Call fmincon with the fval output to obtain the value of the objective function at the solution.

The “Minimize with Bound Constraints” on page 15-79 example shows two solutions. Which is better?
Run the example requesting the fval output as well as the solution.

fun = @(x)1+x(1)./(1+x(2)) - 3*x(1).*x(2) + x(2).*(1+x(1));
lb = [0,0];
ub = [1,2];
A = [];
b = [];
Aeq = [];
beq = [];
x0 = (lb + ub)/2;
[x,fval] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

x = 1×2

 1.0000 2.0000

fval = -0.6667

Run the problem using a different starting point x0.

x0 = x0/5;
[x2,fval2] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

x2 = 1×2
10-6 ×

 0.4000 0.4000

fval2 = 1.0000

This solution has an objective function value fval2 = 1, which is higher than the first value fval = –
0.6667. The first solution x has a lower local minimum objective function value.

 fmincon

15-85

Examine Solution Using Extra Outputs

To easily examine the quality of a solution, request the exitflag and output outputs.

Set up the problem of minimizing Rosenbrock's function on the unit disk, . First create a
function that represents the nonlinear constraint. Save this as a file named unitdisk.m on your
MATLAB® path.

function [c,ceq] = unitdisk(x)
c = x(1)^2 + x(2)^2 - 1;
ceq = [];

Create the remaining problem specifications.

fun = @(x)100*(x(2)-x(1)^2)^2 + (1-x(1))^2;
nonlcon = @unitdisk;
A = [];
b = [];
Aeq = [];
beq = [];
lb = [];
ub = [];
x0 = [0,0];

Call fmincon using the fval, exitflag, and output outputs.

[x,fval,exitflag,output] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

x =

 0.7864 0.6177

fval =

 0.0457

exitflag =

 1

output =

 struct with fields:

 iterations: 24

15 Functions

15-86

 funcCount: 84
 constrviolation: 0
 stepsize: 6.9162e-06
 algorithm: 'interior-point'
 firstorderopt: 2.0234e-08
 cgiterations: 4
 message: 'Local minimum found that satisfies the constraints....'
 bestfeasible: [1x1 struct]

• The exitflag value 1 indicates that the solution is a local minimum.
• The output structure reports several statistics about the solution process. In particular, it gives

the number of iterations in output.iterations, number of function evaluations in
output.funcCount, and the feasibility in output.constrviolation.

Obtain All Outputs

fmincon optionally returns several outputs that you can use for analyzing the reported solution.

Set up the problem of minimizing Rosenbrock's function on the unit disk. First create a function that
represents the nonlinear constraint. Save this as a file named unitdisk.m on your MATLAB® path.

function [c,ceq] = unitdisk(x)
c = x(1)^2 + x(2)^2 - 1;
ceq = [];

Create the remaining problem specifications.

fun = @(x)100*(x(2)-x(1)^2)^2 + (1-x(1))^2;
nonlcon = @unitdisk;
A = [];
b = [];
Aeq = [];
beq = [];
lb = [];
ub = [];
x0 = [0,0];

Request all fmincon outputs.

[x,fval,exitflag,output,lambda,grad,hessian] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

x =

 0.7864 0.6177

 fmincon

15-87

fval =

 0.0457

exitflag =

 1

output =

 struct with fields:

 iterations: 24
 funcCount: 84
 constrviolation: 0
 stepsize: 6.9162e-06
 algorithm: 'interior-point'
 firstorderopt: 2.0234e-08
 cgiterations: 4
 message: 'Local minimum found that satisfies the constraints....'
 bestfeasible: [1x1 struct]

lambda =

 struct with fields:

 eqlin: [0x1 double]
 eqnonlin: [0x1 double]
 ineqlin: [0x1 double]
 lower: [2x1 double]
 upper: [2x1 double]
 ineqnonlin: 0.1215

grad =

 -0.1911
 -0.1501

hessian =

 497.2838 -314.5553
 -314.5553 200.2369

• The lambda.ineqnonlin output shows that the nonlinear constraint is active at the solution, and
gives the value of the associated Lagrange multiplier.

• The grad output gives the value of the gradient of the objective function at the solution x.

15 Functions

15-88

• The hessian output is described in “fmincon Hessian” on page 3-24.

Input Arguments
fun — Function to minimize
function handle | function name

Function to minimize, specified as a function handle or function name. fun is a function that accepts
a vector or array x and returns a real scalar f, the objective function evaluated at x.

fmincon passes x to your objective function and any nonlinear constraint functions in the shape of
the x0 argument. For example, if x0 is a 5-by-3 array, then fmincon passes x to fun as a 5-by-3
array. However, fmincon multiplies linear constraint matrices A or Aeq with x after converting x to
the column vector x(:).

Specify fun as a function handle for a file:

x = fmincon(@myfun,x0,A,b)

where myfun is a MATLAB function such as

function f = myfun(x)
f = ... % Compute function value at x

You can also specify fun as a function handle for an anonymous function:

x = fmincon(@(x)norm(x)^2,x0,A,b);

If you can compute the gradient of fun and the SpecifyObjectiveGradient option is set to true,
as set by

options = optimoptions('fmincon','SpecifyObjectiveGradient',true)

then fun must return the gradient vector g(x) in the second output argument.

If you can also compute the Hessian matrix and the HessianFcn option is set to 'objective' via
optimoptions and the Algorithm option is 'trust-region-reflective', fun must return the
Hessian value H(x), a symmetric matrix, in a third output argument. fun can give a sparse Hessian.
See “Hessian for fminunc trust-region or fmincon trust-region-reflective algorithms” on page 2-21 for
details.

If you can also compute the Hessian matrix and the Algorithm option is set to 'interior-point',
there is a different way to pass the Hessian to fmincon. For more information, see “Hessian for
fmincon interior-point algorithm” on page 2-21. For an example using Symbolic Math Toolbox to
compute the gradient and Hessian, see “Calculate Gradients and Hessians Using Symbolic Math
Toolbox” on page 5-103.

The interior-point and trust-region-reflective algorithms allow you to supply a Hessian
multiply function. This function gives the result of a Hessian-times-vector product without computing
the Hessian directly. This can save memory. See “Hessian Multiply Function” on page 2-23.
Example: fun = @(x)sin(x(1))*cos(x(2))
Data Types: char | function_handle | string

x0 — Initial point
real vector | real array

 fmincon

15-89

Initial point, specified as a real vector or real array. Solvers use the number of elements in, and size
of, x0 to determine the number and size of variables that fun accepts.

• 'interior-point' algorithm — If the HonorBounds option is true (default), fmincon resets
x0 components that are on or outside bounds lb or ub to values strictly between the bounds.

• 'trust-region-reflective' algorithm — fmincon resets infeasible x0 components to be
feasible with respect to bounds or linear equalities.

• 'sqp', 'sqp-legacy', or 'active-set' algorithm — fmincon resets x0 components that are
outside bounds to the values of the corresponding bounds.

Example: x0 = [1,2,3,4]
Data Types: double

A — Linear inequality constraints
real matrix

Linear inequality constraints, specified as a real matrix. A is an M-by-N matrix, where M is the number
of inequalities, and N is the number of variables (number of elements in x0). For large problems, pass
A as a sparse matrix.

A encodes the M linear inequalities

A*x <= b,

where x is the column vector of N variables x(:), and b is a column vector with M elements.

For example, consider these inequalities:

x1 + 2x2 ≤ 10
3x1 + 4x2 ≤ 20
5x1 + 6x2 ≤ 30,

Specify the inequalities by entering the following constraints.

A = [1,2;3,4;5,6];
b = [10;20;30];

Example: To specify that the x components sum to 1 or less, use A = ones(1,N) and b = 1.
Data Types: double

b — Linear inequality constraints
real vector

Linear inequality constraints, specified as a real vector. b is an M-element vector related to the A
matrix. If you pass b as a row vector, solvers internally convert b to the column vector b(:). For
large problems, pass b as a sparse vector.

b encodes the M linear inequalities

A*x <= b,

where x is the column vector of N variables x(:), and A is a matrix of size M-by-N.

For example, consider these inequalities:

15 Functions

15-90

x1 + 2x2 ≤ 10
3x1 + 4x2 ≤ 20
5x1 + 6x2 ≤ 30.

Specify the inequalities by entering the following constraints.

A = [1,2;3,4;5,6];
b = [10;20;30];

Example: To specify that the x components sum to 1 or less, use A = ones(1,N) and b = 1.
Data Types: double

Aeq — Linear equality constraints
real matrix

Linear equality constraints, specified as a real matrix. Aeq is an Me-by-N matrix, where Me is the
number of equalities, and N is the number of variables (number of elements in x0). For large
problems, pass Aeq as a sparse matrix.

Aeq encodes the Me linear equalities

Aeq*x = beq,

where x is the column vector of N variables x(:), and beq is a column vector with Me elements.

For example, consider these inequalities:

x1 + 2x2 + 3x3 = 10
2x1 + 4x2 + x3 = 20,

Specify the inequalities by entering the following constraints.

Aeq = [1,2,3;2,4,1];
beq = [10;20];

Example: To specify that the x components sum to 1, use Aeq = ones(1,N) and beq = 1.
Data Types: double

beq — Linear equality constraints
real vector

Linear equality constraints, specified as a real vector. beq is an Me-element vector related to the Aeq
matrix. If you pass beq as a row vector, solvers internally convert beq to the column vector beq(:).
For large problems, pass beq as a sparse vector.

beq encodes the Me linear equalities

Aeq*x = beq,

where x is the column vector of N variables x(:), and Aeq is a matrix of size Me-by-N.

For example, consider these equalities:

x1 + 2x2 + 3x3 = 10
2x1 + 4x2 + x3 = 20.

 fmincon

15-91

Specify the equalities by entering the following constraints.

Aeq = [1,2,3;2,4,1];
beq = [10;20];

Example: To specify that the x components sum to 1, use Aeq = ones(1,N) and beq = 1.
Data Types: double

lb — Lower bounds
real vector | real array

Lower bounds, specified as a real vector or real array. If the number of elements in x0 is equal to the
number of elements in lb, then lb specifies that

x(i) >= lb(i) for all i.

If numel(lb) < numel(x0), then lb specifies that

x(i) >= lb(i) for 1 <= i <= numel(lb).

If lb has fewer elements than x0, solvers issue a warning.
Example: To specify that all x components are positive, use lb = zeros(size(x0)).
Data Types: double

ub — Upper bounds
real vector | real array

Upper bounds, specified as a real vector or real array. If the number of elements in x0 is equal to the
number of elements in ub, then ub specifies that

x(i) <= ub(i) for all i.

If numel(ub) < numel(x0), then ub specifies that

x(i) <= ub(i) for 1 <= i <= numel(ub).

If ub has fewer elements than x0, solvers issue a warning.
Example: To specify that all x components are less than 1, use ub = ones(size(x0)).
Data Types: double

nonlcon — Nonlinear constraints
function handle | function name

Nonlinear constraints, specified as a function handle or function name. nonlcon is a function that
accepts a vector or array x and returns two arrays, c(x) and ceq(x).

• c(x) is the array of nonlinear inequality constraints at x. fmincon attempts to satisfy

c(x) <= 0 for all entries of c.
• ceq(x) is the array of nonlinear equality constraints at x. fmincon attempts to satisfy

ceq(x) = 0 for all entries of ceq.

15 Functions

15-92

For example,

x = fmincon(@myfun,x0,A,b,Aeq,beq,lb,ub,@mycon)

where mycon is a MATLAB function such as

function [c,ceq] = mycon(x)
c = ... % Compute nonlinear inequalities at x.
ceq = ... % Compute nonlinear equalities at x.

If the gradients of the constraints can also be computed and the SpecifyConstraintGradient
option is true, as set by

options = optimoptions('fmincon','SpecifyConstraintGradient',true)

then nonlcon must also return, in the third and fourth output arguments, GC, the gradient of c(x),
and GCeq, the gradient of ceq(x). GC and GCeq can be sparse or dense. If GC or GCeq is large, with
relatively few nonzero entries, save running time and memory in the interior-point algorithm by
representing them as sparse matrices. For more information, see “Nonlinear Constraints” on page 2-
37.
Data Types: char | function_handle | string

options — Optimization options
output of optimoptions | structure such as optimset returns

Optimization options, specified as the output of optimoptions or a structure such as optimset
returns.

Some options apply to all algorithms, and others are relevant for particular algorithms. See
“Optimization Options Reference” on page 14-6 for detailed information.

Some options are absent from the optimoptions display. These options appear in italics in the
following table. For details, see “View Options” on page 2-66.

All Algorithms

 fmincon

15-93

Algorithm Choose the optimization algorithm:

• 'interior-point' (default)
• 'trust-region-reflective'
• 'sqp'
• 'sqp-legacy' (optimoptions only)
• 'active-set'

For information on choosing the algorithm, see “Choosing the
Algorithm” on page 2-6.

The trust-region-reflective algorithm requires:

• A gradient to be supplied in the objective function
• SpecifyObjectiveGradient to be set to true
• Either bound constraints or linear equality constraints, but not both

If you select the 'trust-region-reflective' algorithm and these
conditions are not all satisfied, fmincon throws an error.

The 'active-set', 'sqp-legacy', and 'sqp' algorithms are not
large-scale. See “Large-Scale vs. Medium-Scale Algorithms” on page 2-
10.

CheckGradients Compare user-supplied derivatives (gradients of objective or
constraints) to finite-differencing derivatives. Choices are false
(default) or true.

For optimset, the name is DerivativeCheck and the values are
'on' or 'off'. See “Current and Legacy Option Names” on page 14-
23.

ConstraintTolerance Tolerance on the constraint violation, a positive scalar. The default is
1e-6. See “Tolerances and Stopping Criteria” on page 2-68.

For optimset, the name is TolCon. See “Current and Legacy Option
Names” on page 14-23.

Diagnostics Display diagnostic information about the function to be minimized or
solved. Choices are 'off' (default) or 'on'.

DiffMaxChange Maximum change in variables for finite-difference gradients (a positive
scalar). The default is Inf.

DiffMinChange Minimum change in variables for finite-difference gradients (a positive
scalar). The default is 0.

15 Functions

15-94

Display Level of display (see “Iterative Display” on page 3-14):

• 'off' or 'none' displays no output.
• 'iter' displays output at each iteration, and gives the default exit

message.
• 'iter-detailed' displays output at each iteration, and gives the

technical exit message.
• 'notify' displays output only if the function does not converge,

and gives the default exit message.
• 'notify-detailed' displays output only if the function does not

converge, and gives the technical exit message.
• 'final' (default) displays only the final output, and gives the

default exit message.
• 'final-detailed' displays only the final output, and gives the

technical exit message.
FiniteDifferenceStepSi
ze

Scalar or vector step size factor for finite differences. When you set
FiniteDifferenceStepSize to a vector v, the forward finite
differences delta are

delta = v.*sign′(x).*max(abs(x),TypicalX);

where sign′(x) = sign(x) except sign′(0) = 1. Central finite
differences are

delta = v.*max(abs(x),TypicalX);

Scalar FiniteDifferenceStepSize expands to a vector. The default
is sqrt(eps) for forward finite differences, and eps^(1/3) for
central finite differences.

For optimset, the name is FinDiffRelStep. See “Current and
Legacy Option Names” on page 14-23.

FiniteDifferenceType Finite differences, used to estimate gradients, are either 'forward'
(default), or 'central' (centered). 'central' takes twice as many
function evaluations but should be more accurate. The trust-region-
reflective algorithm uses FiniteDifferenceType only when
CheckGradients is set to true.

fmincon is careful to obey bounds when estimating both types of finite
differences. So, for example, it could take a backward, rather than a
forward, difference to avoid evaluating at a point outside bounds.
However, for the interior-point algorithm, 'central' differences
might violate bounds during their evaluation if the HonorBounds
option is set to false.

For optimset, the name is FinDiffType. See “Current and Legacy
Option Names” on page 14-23.

 fmincon

15-95

FunValCheck Check whether objective function values are valid. The default setting,
'off', does not perform a check. The 'on' setting displays an error
when the objective function returns a value that is complex, Inf, or
NaN.

MaxFunctionEvaluations Maximum number of function evaluations allowed, a positive integer.
The default value for all algorithms except interior-point is
100*numberOfVariables; for the interior-point algorithm the
default is 3000. See “Tolerances and Stopping Criteria” on page 2-68
and “Iterations and Function Counts” on page 3-9.

For optimset, the name is MaxFunEvals. See “Current and Legacy
Option Names” on page 14-23.

MaxIterations Maximum number of iterations allowed, a positive integer. The default
value for all algorithms except interior-point is 400; for the
interior-point algorithm the default is 1000. See “Tolerances and
Stopping Criteria” on page 2-68 and “Iterations and Function Counts”
on page 3-9.

For optimset, the name is MaxIter. See “Current and Legacy Option
Names” on page 14-23.

OptimalityTolerance Termination tolerance on the first-order optimality (a positive scalar).
The default is 1e-6. See “First-Order Optimality Measure” on page 3-
11.

For optimset, the name is TolFun. See “Current and Legacy Option
Names” on page 14-23.

OutputFcn Specify one or more user-defined functions that an optimization
function calls at each iteration. Pass a function handle or a cell array of
function handles. The default is none ([]). See “Output Function and
Plot Function Syntax” on page 14-28.

15 Functions

15-96

PlotFcn Plots various measures of progress while the algorithm executes; select
from predefined plots or write your own. Pass a built-in plot function
name, a function handle, or a cell array of built-in plot function names
or function handles. For custom plot functions, pass function handles.
The default is none ([]):

• 'optimplotx' plots the current point
• 'optimplotfunccount' plots the function count
• 'optimplotfval' plots the function value
• 'optimplotfvalconstr' plots the best feasible objective

function value found as a line plot. The plot shows infeasible points
as red and feasible points as blue, using a feasibility tolerance of
1e-6.

• 'optimplotconstrviolation' plots the maximum constraint
violation

• 'optimplotstepsize' plots the step size
• 'optimplotfirstorderopt' plots the first-order optimality

measure

Custom plot functions use the same syntax as output functions. See
“Output Functions for Optimization Toolbox” on page 3-30 and “Output
Function and Plot Function Syntax” on page 14-28.

For optimset, the name is PlotFcns. See “Current and Legacy
Option Names” on page 14-23.

SpecifyConstraintGradi
ent

Gradient for nonlinear constraint functions defined by the user. When
set to the default, false, fmincon estimates gradients of the
nonlinear constraints by finite differences. When set to true, fmincon
expects the constraint function to have four outputs, as described in
nonlcon. The trust-region-reflective algorithm does not
accept nonlinear constraints.

For optimset, the name is GradConstr and the values are 'on' or
'off'. See “Current and Legacy Option Names” on page 14-23.

SpecifyObjectiveGradie
nt

Gradient for the objective function defined by the user. See the
description of fun to see how to define the gradient in fun. The
default, false, causes fmincon to estimate gradients using finite
differences. Set to true to have fmincon use a user-defined gradient
of the objective function. To use the 'trust-region-reflective'
algorithm, you must provide the gradient, and set
SpecifyObjectiveGradient to true.

For optimset, the name is GradObj and the values are 'on' or
'off'. See “Current and Legacy Option Names” on page 14-23.

 fmincon

15-97

StepTolerance Termination tolerance on x, a positive scalar. The default value for all
algorithms except 'interior-point' is 1e-6; for the 'interior-
point' algorithm, the default is 1e-10. See “Tolerances and Stopping
Criteria” on page 2-68.

For optimset, the name is TolX. See “Current and Legacy Option
Names” on page 14-23.

TypicalX Typical x values. The number of elements in TypicalX is equal to the
number of elements in x0, the starting point. The default value is
ones(numberofvariables,1). fmincon uses TypicalX for scaling
finite differences for gradient estimation.

The 'trust-region-reflective' algorithm uses TypicalX only
for the CheckGradients option.

UseParallel When true, fmincon estimates gradients in parallel. Disable by
setting to the default, false. trust-region-reflective requires a
gradient in the objective, so UseParallel does not apply. See
“Parallel Computing”.

Trust-Region-Reflective Algorithm
FunctionTolerance Termination tolerance on the function value, a positive scalar. The

default is 1e-6. See “Tolerances and Stopping Criteria” on page 2-68.

For optimset, the name is TolFun. See “Current and Legacy Option
Names” on page 14-23.

HessianFcn If [] (default), fmincon approximates the Hessian using finite
differences, or uses a Hessian multiply function (with option
HessianMultiplyFcn). If 'objective', fmincon uses a user-
defined Hessian (defined in fun). See “Hessian as an Input” on page
15-105.

For optimset, the name is HessFcn. See “Current and Legacy Option
Names” on page 14-23.

15 Functions

15-98

HessianMultiplyFcn Hessian multiply function, specified as a function handle. For large-
scale structured problems, this function computes the Hessian matrix
product H*Y without actually forming H. The function is of the form

W = hmfun(Hinfo,Y)

where Hinfo contains a matrix used to compute H*Y.

The first argument is the same as the third argument returned by the
objective function fun, for example

[f,g,Hinfo] = fun(x)

Y is a matrix that has the same number of rows as there are
dimensions in the problem. The matrix W = H*Y, although H is not
formed explicitly. fmincon uses Hinfo to compute the preconditioner.
For information on how to supply values for any additional parameters
hmfun needs, see “Passing Extra Parameters” on page 2-57.

Note To use the HessianMultiplyFcn option, HessianFcn must be
set to [], and SubproblemAlgorithm must be 'cg' (default).

See “Hessian Multiply Function” on page 15-106. See “Minimization
with Dense Structured Hessian, Linear Equalities” on page 5-99 for an
example.

For optimset, the name is HessMult. See “Current and Legacy
Option Names” on page 14-23.

HessPattern Sparsity pattern of the Hessian for finite differencing. Set
HessPattern(i,j) = 1 when you can have ∂2fun/∂x(i)∂x(j) ≠ 0.
Otherwise, set HessPattern(i,j) = 0.

Use HessPattern when it is inconvenient to compute the Hessian
matrix H in fun, but you can determine (say, by inspection) when the
ith component of the gradient of fun depends on x(j). fmincon can
approximate H via sparse finite differences (of the gradient) if you
provide the sparsity structure of H as the value for HessPattern. In
other words, provide the locations of the nonzeros.

When the structure is unknown, do not set HessPattern. The default
behavior is as if HessPattern is a dense matrix of ones. Then
fmincon computes a full finite-difference approximation in each
iteration. This computation can be very expensive for large problems,
so it is usually better to determine the sparsity structure.

MaxPCGIter Maximum number of preconditioned conjugate gradient (PCG)
iterations, a positive scalar. The default is
max(1,floor(numberOfVariables/2)) for bound-constrained
problems, and is numberOfVariables for equality-constrained
problems. For more information, see “Preconditioned Conjugate
Gradient Method” on page 5-21.

 fmincon

15-99

PrecondBandWidth Upper bandwidth of preconditioner for PCG, a nonnegative integer. By
default, diagonal preconditioning is used (upper bandwidth of 0). For
some problems, increasing the bandwidth reduces the number of PCG
iterations. Setting PrecondBandWidth to Inf uses a direct
factorization (Cholesky) rather than the conjugate gradients (CG). The
direct factorization is computationally more expensive than CG, but
produces a better quality step towards the solution.

SubproblemAlgorithm Determines how the iteration step is calculated. The default, 'cg',
takes a faster but less accurate step than 'factorization'. See
“fmincon Trust Region Reflective Algorithm” on page 5-19.

TolPCG Termination tolerance on the PCG iteration, a positive scalar. The
default is 0.1.

Active-Set Algorithm
FunctionTolerance Termination tolerance on the function value, a positive scalar. The

default is 1e-6. See “Tolerances and Stopping Criteria” on page 2-68.

For optimset, the name is TolFun. See “Current and Legacy Option
Names” on page 14-23.

MaxSQPIter Maximum number of SQP iterations allowed, a positive integer. The
default is 10*max(numberOfVariables, numberOfInequalities
+ numberOfBounds).

RelLineSrchBnd Relative bound (a real nonnegative scalar value) on the line search step
length. The total displacement in x satisfies |Δx(i)| ≤ relLineSrchBnd·
max(|x(i)|,|typicalx(i)|). This option provides control over the magnitude
of the displacements in x for cases in which the solver takes steps that
are considered too large. The default is no bounds ([]).

RelLineSrchBndDuration Number of iterations for which the bound specified in
RelLineSrchBnd should be active (default is 1).

TolConSQP Termination tolerance on inner iteration SQP constraint violation, a
positive scalar. The default is 1e-6.

Interior-Point Algorithm
BarrierParamUpdate Specifies how fmincon updates the barrier parameter (see “fmincon

Interior Point Algorithm” on page 5-30). The options are:

• 'monotone' (default)
• 'predictor-corrector'

This option can affect the speed and convergence of the solver, but the
effect is not easy to predict.

EnableFeasibilityMode When true, fmincon uses a different algorithm for achieving
feasibility. This setting can help fmincon reach a feasible solution in
some cases. The default value is false.

Feasibility mode usually performs better when
SubproblemAlgorithm is 'cg'. For details, see “Feasibility Mode”
on page 5-34. For an example, see “Obtain Solution Using Feasibility
Mode” on page 6-42.

15 Functions

15-100

HessianApproximation Specifies how fmincon calculates the Hessian (see “Hessian as an
Input” on page 15-105). The choices are:

• 'bfgs' (default)
• 'finite-difference'
• 'lbfgs'
• {'lbfgs',Positive Integer}

Note To use HessianApproximation, both HessianFcn and
HessianMultiplyFcn must be empty entries ([]).

For optimset, the name is Hessian and the values are 'user-
supplied', 'bfgs', 'lbfgs', 'fin-diff-grads', 'on', or 'off'.
See “Current and Legacy Option Names” on page 14-23.

HessianFcn If [] (default), fmincon approximates the Hessian using the method
specified in HessianApproximation, or uses a supplied
HessianMultiplyFcn. If a function handle, fmincon uses
HessianFcn to calculate the Hessian. See “Hessian as an Input” on
page 15-105.

For optimset, the name is HessFcn. See “Current and Legacy Option
Names” on page 14-23.

HessianMultiplyFcn User-supplied function that gives a Hessian-times-vector product (see
“Hessian Multiply Function” on page 15-106). Pass a function handle.

Note To use the HessianMultiplyFcn option, HessianFcn must be
set to [], and SubproblemAlgorithm must be 'cg'.

For optimset, the name is HessMult. See “Current and Legacy
Option Names” on page 14-23.

HonorBounds The default true ensures that bound constraints are satisfied at every
iteration. Disable by setting to false.

For optimset, the name is AlwaysHonorConstraints and the
values are 'bounds' or 'none'. See “Current and Legacy Option
Names” on page 14-23.

InitBarrierParam Initial barrier value, a positive scalar. Sometimes it might help to try a
value above the default 0.1, especially if the objective or constraint
functions are large.

InitTrustRegionRadius Initial radius of the trust region, a positive scalar. On badly scaled
problems it might help to choose a value smaller than the default n,
where n is the number of variables.

MaxProjCGIter A tolerance (stopping criterion) for the number of projected conjugate
gradient iterations; this is an inner iteration, not the number of
iterations of the algorithm. This positive integer has a default value of
2*(numberOfVariables - numberOfEqualities).

 fmincon

15-101

ObjectiveLimit A tolerance (stopping criterion) that is a scalar. If the objective function
value goes below ObjectiveLimit and the iterate is feasible, the
iterations halt, because the problem is presumably unbounded. The
default value is -1e20.

ScaleProblem true causes the algorithm to normalize all constraints and the
objective function. Disable by setting to the default false.

For optimset, the values are 'obj-and-constr' or 'none'. See
“Current and Legacy Option Names” on page 14-23.

SubproblemAlgorithm Determines how the iteration step is calculated. The default,
'factorization', is usually faster than 'cg' (conjugate gradient),
though 'cg' might be faster for large problems with dense Hessians.
See “fmincon Interior Point Algorithm” on page 5-30.

TolProjCG A relative tolerance (stopping criterion) for projected conjugate
gradient algorithm; this is for an inner iteration, not the algorithm
iteration. This positive scalar has a default of 0.01.

TolProjCGAbs Absolute tolerance (stopping criterion) for projected conjugate
gradient algorithm; this is for an inner iteration, not the algorithm
iteration. This positive scalar has a default of 1e-10.

SQP and SQP Legacy Algorithms
ObjectiveLimit A tolerance (stopping criterion) that is a scalar. If the objective function

value goes below ObjectiveLimit and the iterate is feasible, the
iterations halt, because the problem is presumably unbounded. The
default value is -1e20.

ScaleProblem true causes the algorithm to normalize all constraints and the
objective function. Disable by setting to the default false.

For optimset, the values are 'obj-and-constr' or 'none'. See
“Current and Legacy Option Names” on page 14-23.

Example: options =
optimoptions('fmincon','SpecifyObjectiveGradient',true,'SpecifyConstraintGrad
ient',true)

problem — Problem structure
structure

Problem structure, specified as a structure with the following fields:

Field Name Entry
objective Objective function
x0 Initial point for x
Aineq Matrix for linear inequality constraints
bineq Vector for linear inequality constraints
Aeq Matrix for linear equality constraints
beq Vector for linear equality constraints
lb Vector of lower bounds

15 Functions

15-102

Field Name Entry
ub Vector of upper bounds
nonlcon Nonlinear constraint function
solver 'fmincon'
options Options created with optimoptions

You must supply at least the objective, x0, solver, and options fields in the problem structure.
Data Types: struct

Output Arguments
x — Solution
real vector | real array

Solution, returned as a real vector or real array. The size of x is the same as the size of x0. Typically,
x is a local solution to the problem when exitflag is positive. For information on the quality of the
solution, see “When the Solver Succeeds” on page 4-18.

fval — Objective function value at solution
real number

Objective function value at the solution, returned as a real number. Generally, fval = fun(x).

exitflag — Reason fmincon stopped
integer

Reason fmincon stopped, returned as an integer.

All Algorithms:
1 First-order optimality measure was less than

options.OptimalityTolerance, and maximum constraint
violation was less than options.ConstraintTolerance.

0 Number of iterations exceeded options.MaxIterations or
number of function evaluations exceeded
options.MaxFunctionEvaluations.

-1 Stopped by an output function or plot function.
-2 No feasible point was found.
All algorithms except active-set:
2 Change in x was less than options.StepTolerance and

maximum constraint violation was less than
options.ConstraintTolerance.

trust-region-reflective algorithm only:
3 Change in the objective function value was less than

options.FunctionTolerance and maximum constraint
violation was less than options.ConstraintTolerance.

active-set algorithm only:

 fmincon

15-103

4 Magnitude of the search direction was less than
2*options.StepTolerance and maximum constraint violation
was less than options.ConstraintTolerance.

5 Magnitude of directional derivative in search direction was less
than 2*options.OptimalityTolerance and maximum
constraint violation was less than
options.ConstraintTolerance.

interior-point, sqp-legacy, and sqp algorithms:
-3 Objective function at current iteration went below

options.ObjectiveLimit and maximum constraint violation
was less than options.ConstraintTolerance.

output — Information about the optimization process
structure

Information about the optimization process, returned as a structure with fields:

iterations Number of iterations taken
funcCount Number of function evaluations
lssteplength Size of line search step relative to search direction (active-set

and sqp algorithms only)
constrviolation Maximum of constraint functions
stepsize Length of last displacement in x (not in active-set algorithm)
algorithm Optimization algorithm used
cgiterations Total number of PCG iterations (trust-region-reflective

and interior-point algorithms)
firstorderopt Measure of first-order optimality
bestfeasible Best (lowest objective function) feasible point encountered. A

structure with these fields:

• x
• fval
• firstorderopt
• constrviolation

If no feasible point is found, the bestfeasible field is empty.
For this purpose, a point is feasible when the maximum of the
constraint functions does not exceed
options.ConstraintTolerance.

The bestfeasible point can differ from the returned solution
point x for a variety of reasons. For an example, see “Obtain Best
Feasible Point” on page 5-123.

message Exit message

lambda — Lagrange multipliers at the solution
structure

15 Functions

15-104

Lagrange multipliers at the solution, returned as a structure with fields:

lower Lower bounds corresponding to lb
upper Upper bounds corresponding to ub
ineqlin Linear inequalities corresponding to A and b
eqlin Linear equalities corresponding to Aeq and beq
ineqnonlin Nonlinear inequalities corresponding to the c in nonlcon
eqnonlin Nonlinear equalities corresponding to the ceq in nonlcon

grad — Gradient at the solution
real vector

Gradient at the solution, returned as a real vector. grad gives the gradient of fun at the point x(:).

hessian — Approximate Hessian
real matrix

Approximate Hessian, returned as a real matrix. For the meaning of hessian, see “Hessian Output”
on page 3-24.

Limitations
• fmincon is a gradient-based method that is designed to work on problems where the objective

and constraint functions are both continuous and have continuous first derivatives.
• For the 'trust-region-reflective' algorithm, you must provide the gradient in fun and set

the 'SpecifyObjectiveGradient' option to true.
• The 'trust-region-reflective' algorithm does not allow equal upper and lower bounds. For

example, if lb(2)==ub(2), fmincon gives this error:

Equal upper and lower bounds not permitted in trust-region-reflective algorithm. Use
either interior-point or SQP algorithms instead.

• There are two different syntaxes for passing a Hessian, and there are two different syntaxes for
passing a HessianMultiplyFcn function; one for trust-region-reflective, and another for
interior-point. See “Including Hessians” on page 2-21.

• For trust-region-reflective, the Hessian of the Lagrangian is the same as the Hessian of
the objective function. You pass that Hessian as the third output of the objective function.

• For interior-point, the Hessian of the Lagrangian involves the Lagrange multipliers and
the Hessians of the nonlinear constraint functions. You pass the Hessian as a separate function
that takes into account both the current point x and the Lagrange multiplier structure lambda.

• When the problem is infeasible, fmincon attempts to minimize the maximum constraint value.

More About
Hessian as an Input

fmincon uses a Hessian as an optional input. This Hessian is the matrix of second derivatives of the
Lagrangian (see “Equation 3-1”), namely,

∇xx
2 L(x, λ) = ∇2 f (x) + ∑λi∇2ci(x) + ∑λi∇2ceqi(x) . (15-1)

 fmincon

15-105

For details of how to supply a Hessian to the trust-region-reflective or interior-point
algorithms, see “Including Hessians” on page 2-21.

The active-set and sqp algorithms do not accept an input Hessian. They compute a quasi-Newton
approximation to the Hessian of the Lagrangian.

The interior-point algorithm has several choices for the 'HessianApproximation' option; see
“Choose Input Hessian Approximation for interior-point fmincon” on page 2-24:

• 'bfgs' — fmincon calculates the Hessian by a dense quasi-Newton approximation. This is the
default Hessian approximation.

• 'lbfgs' — fmincon calculates the Hessian by a limited-memory, large-scale quasi-Newton
approximation. The default memory, 10 iterations, is used.

• {'lbfgs',positive integer} — fmincon calculates the Hessian by a limited-memory, large-
scale quasi-Newton approximation. The positive integer specifies how many past iterations should
be remembered.

• 'finite-difference' — fmincon calculates a Hessian-times-vector product by finite
differences of the gradient(s). You must supply the gradient of the objective function, and also
gradients of nonlinear constraints (if they exist). Set the 'SpecifyObjectiveGradient' option
to true and, if applicable, the 'SpecifyConstraintGradient' option to true. You must set
the 'SubproblemAlgorithm' to 'cg'.

Hessian Multiply Function

The interior-point and trust-region-reflective algorithms allow you to supply a Hessian
multiply function. This function gives the result of a Hessian-times-vector product, without computing
the Hessian directly. This can save memory. For details, see “Hessian Multiply Function” on page 2-
23.

Algorithms
Choosing the Algorithm

For help choosing the algorithm, see “fmincon Algorithms” on page 2-6. To set the algorithm, use
optimoptions to create options, and use the 'Algorithm' name-value pair.

The rest of this section gives brief summaries or pointers to information about each algorithm.

Interior-Point Optimization

This algorithm is described in “fmincon Interior Point Algorithm” on page 5-30. There is more
extensive description in [1], [41], and [9].

SQP and SQP-Legacy Optimization

The fmincon 'sqp' and 'sqp-legacy' algorithms are similar to the 'active-set' algorithm
described in “Active-Set Optimization” on page 15-107. “fmincon SQP Algorithm” on page 5-29
describes the main differences. In summary, these differences are:

• “Strict Feasibility With Respect to Bounds” on page 5-29
• “Robustness to Non-Double Results” on page 5-29
• “Refactored Linear Algebra Routines” on page 5-29

15 Functions

15-106

• “Reformulated Feasibility Routines” on page 5-29

Active-Set Optimization

fmincon uses a sequential quadratic programming (SQP) method. In this method, the function solves
a quadratic programming (QP) subproblem at each iteration. fmincon updates an estimate of the
Hessian of the Lagrangian at each iteration using the BFGS formula (see fminunc and references [7]
and [8]).

fmincon performs a line search using a merit function similar to that proposed by [6], [7], and [8].
The QP subproblem is solved using an active set strategy similar to that described in [5]. “fmincon
Active Set Algorithm” on page 5-22 describes this algorithm in detail.

See also “SQP Implementation” on page 5-25 for more details on the algorithm used.

Trust-Region-Reflective Optimization

The 'trust-region-reflective' algorithm is a subspace trust-region method and is based on the
interior-reflective Newton method described in [3] and [4]. Each iteration involves the approximate
solution of a large linear system using the method of preconditioned conjugate gradients (PCG). See
the trust-region and preconditioned conjugate gradient method descriptions in “fmincon Trust Region
Reflective Algorithm” on page 5-19.

Alternative Functionality
App

The Optimize Live Editor task provides a visual interface for fmincon.

References
[1] Byrd, R. H., J. C. Gilbert, and J. Nocedal. “A Trust Region Method Based on Interior Point

Techniques for Nonlinear Programming.” Mathematical Programming, Vol 89, No. 1, 2000,
pp. 149–185.

[2] Byrd, R. H., Mary E. Hribar, and Jorge Nocedal. “An Interior Point Algorithm for Large-Scale
Nonlinear Programming.” SIAM Journal on Optimization, Vol 9, No. 4, 1999, pp. 877–900.

[3] Coleman, T. F. and Y. Li. “An Interior, Trust Region Approach for Nonlinear Minimization Subject to
Bounds.” SIAM Journal on Optimization, Vol. 6, 1996, pp. 418–445.

[4] Coleman, T. F. and Y. Li. “On the Convergence of Reflective Newton Methods for Large-Scale
Nonlinear Minimization Subject to Bounds.” Mathematical Programming, Vol. 67, Number 2,
1994, pp. 189–224.

[5] Gill, P. E., W. Murray, and M. H. Wright. Practical Optimization, London, Academic Press, 1981.

[6] Han, S. P. “A Globally Convergent Method for Nonlinear Programming.” Journal of Optimization
Theory and Applications, Vol. 22, 1977, pp. 297.

[7] Powell, M. J. D. “A Fast Algorithm for Nonlinearly Constrained Optimization Calculations.”
Numerical Analysis, ed. G. A. Watson, Lecture Notes in Mathematics, Springer-Verlag, Vol.
630, 1978.

 fmincon

15-107

[8] Powell, M. J. D. “The Convergence of Variable Metric Methods For Nonlinearly Constrained
Optimization Calculations.” Nonlinear Programming 3 (O. L. Mangasarian, R. R. Meyer, and S.
M. Robinson, eds.), Academic Press, 1978.

[9] Waltz, R. A., J. L. Morales, J. Nocedal, and D. Orban. “An interior algorithm for nonlinear
optimization that combines line search and trust region steps.” Mathematical Programming,
Vol 107, No. 3, 2006, pp. 391–408.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• fmincon supports code generation using either the codegen function or the MATLAB Coder app.
You must have a MATLAB Coder license to generate code.

• The target hardware must support standard double-precision floating-point computations. You
cannot generate code for single-precision or fixed-point computations.

• Code generation targets do not use the same math kernel libraries as MATLAB solvers. Therefore,
code generation solutions can vary from solver solutions, especially for poorly conditioned
problems.

• All code for generation must be MATLAB code. In particular, you cannot use a custom black-box
function as an objective function for fmincon. You can use coder.ceval to evaluate a custom
function coded in C or C++. However, the custom function must be called in a MATLAB function.

• fmincon does not support the problem argument for code generation.

[x,fval] = fmincon(problem) % Not supported

• You must specify the objective function and any nonlinear constraint function by using function
handles, not strings or character names.

x = fmincon(@fun,x0,A,b,Aeq,beq,lb,ub,@nonlcon) % Supported
% Not supported: fmincon('fun',...) or fmincon("fun",...)

• All fmincon input matrices such as A, Aeq, lb, and ub must be full, not sparse. You can convert
sparse matrices to full by using the full function.

• The lb and ub arguments must have the same number of entries as the x0 argument or must be
empty [].

• For advanced code optimization involving embedded processors, you also need an Embedded
Coder license.

• You must include options for fmincon and specify them using optimoptions. The options must
include the Algorithm option, set to 'sqp' or 'sqp-legacy'.

options = optimoptions('fmincon','Algorithm','sqp');
[x,fval,exitflag] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options);

• Code generation supports these options:

• Algorithm — Must be 'sqp' or 'sqp-legacy'
• ConstraintTolerance
• FiniteDifferenceStepSize

15 Functions

15-108

• FiniteDifferenceType
• MaxFunctionEvaluations
• MaxIterations
• ObjectiveLimit
• OptimalityTolerance
• ScaleProblem
• SpecifyConstraintGradient
• SpecifyObjectiveGradient
• StepTolerance
• TypicalX

• Generated code has limited error checking for options. The recommended way to update an option
is to use optimoptions, not dot notation.

opts = optimoptions('fmincon','Algorithm','sqp');
opts = optimoptions(opts,'MaxIterations',1e4); % Recommended
opts.MaxIterations = 1e4; % Not recommended

• Do not load options from a file. Doing so can cause code generation to fail. Instead, create options
in your code.

• Usually, if you specify an option that is not supported, the option is silently ignored during code
generation. However, if you specify a plot function or output function by using dot notation, code
generation can issue an error. For reliability, specify only supported options.

• Because output functions and plot functions are not supported, fmincon does not return the exit
flag –1.

• Code generated from fmincon does not contain the bestfeasible field in a returned output
structure.

For an example, see “Code Generation for Optimization Basics” on page 5-138.

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

options = optimoptions('solvername','UseParallel',true)

For more information, see “Using Parallel Computing in Optimization Toolbox” on page 13-5.

See Also
fminbnd | fminsearch | fminunc | optimoptions | Optimize

Topics
“Solver-Based Nonlinear Optimization”
“Solver-Based Optimization Problem Setup”
“Constrained Nonlinear Optimization Algorithms” on page 5-19

Introduced before R2006a

 fmincon

15-109

fminimax
Solve minimax constraint problem

Syntax
x = fminimax(fun,x0)
x = fminimax(fun,x0,A,b)
x = fminimax(fun,x0,A,b,Aeq,beq)
x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub)
x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)
x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
x = fminimax(problem)
[x,fval] = fminimax(___)
[x,fval,maxfval,exitflag,output] = fminimax(___)
[x,fval,maxfval,exitflag,output,lambda] = fminimax(___)

Description
fminimax seeks a point that minimizes the maximum of a set of objective functions.

The problem includes any type of constraint. In detail, fminimax seeks the minimum of a problem
specified by

min
x

max
i

Fi(x) such that

c(x) ≤ 0
ceq(x) = 0
A ⋅ x ≤ b

Aeq ⋅ x = beq
lb ≤ x ≤ ub

where b and beq are vectors, A and Aeq are matrices, and c(x), ceq(x), and F(x) are functions that
return vectors. F(x), c(x), and ceq(x) can be nonlinear functions.

x, lb, and ub can be passed as vectors or matrices; see “Matrix Arguments” on page 2-31.

You can also solve max-min problems with fminimax, using the identity

max
x

min
i

Fi(x) = −min
x

max
i
−Fi(x) .

You can solve problems of the form

min
x

max
i

Fi(x)

by using the AbsoluteMaxObjectiveCount option; see “Solve Minimax Problem Using Absolute
Value of One Objective” on page 15-116.

x = fminimax(fun,x0) starts at x0 and finds a minimax solution x to the functions described in
fun.

15 Functions

15-110

Note “Passing Extra Parameters” on page 2-57 explains how to pass extra parameters to the
objective functions and nonlinear constraint functions, if necessary.

x = fminimax(fun,x0,A,b) solves the minimax problem subject to the linear inequalities
A*x ≤ b.

x = fminimax(fun,x0,A,b,Aeq,beq) solves the minimax problem subject to the linear equalities
Aeq*x = beq as well. If no inequalities exist, set A = [] and b = [].

x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub) solves the minimax problem subject to the bounds
lb ≤ x ≤ ub. If no equalities exist, set Aeq = [] and beq = []. If x(i) is unbounded below, set
lb(i) = –Inf; if x(i) is unbounded above, set ub(i) = Inf.

Note See “Iterations Can Violate Constraints” on page 2-33.

Note If the specified input bounds for a problem are inconsistent, the output x is x0 and the output
fval is [].

x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon) solves the minimax problem subject to
the nonlinear inequalities c(x) or equalities ceq(x) defined in nonlcon. The function optimizes
such that c(x) ≤ 0 and ceq(x) = 0. If no bounds exist, set lb = [] or ub = [], or both.

x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options) solves the minimax problem
with the optimization options specified in options. Use optimoptions to set these options.

x = fminimax(problem) solves the minimax problem for problem, a structure described in
problem.

[x,fval] = fminimax(___), for any syntax, returns the values of the objective functions
computed in fun at the solution x.

[x,fval,maxfval,exitflag,output] = fminimax(___) additionally returns the maximum
value of the objective functions at the solution x, a value exitflag that describes the exit condition
of fminimax, and a structure output with information about the optimization process.

[x,fval,maxfval,exitflag,output,lambda] = fminimax(___) additionally returns a
structure lambda whose fields contain the Lagrange multipliers at the solution x.

Examples

Minimize Maximum of sin and cos

Create a plot of the sin and cos functions and their maximum over the interval [–pi,pi].

t = linspace(-pi,pi);
plot(t,sin(t),'r-')
hold on
plot(t,cos(t),'b-');
plot(t,max(sin(t),cos(t)),'ko')
legend('sin(t)','cos(t)','max(sin(t),cos(t))','Location','NorthWest')

 fminimax

15-111

The plot shows two local minima of the maximum, one near 1, and the other near –2. Find the
minimum near 1.

fun = @(x)[sin(x);cos(x)];
x0 = 1;
x1 = fminimax(fun,x0)

Local minimum possible. Constraints satisfied.

fminimax stopped because the size of the current search direction is less than
twice the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

x1 = 0.7854

Find the minimum near –2.

x0 = -2;
x2 = fminimax(fun,x0)

Local minimum possible. Constraints satisfied.

fminimax stopped because the size of the current search direction is less than
twice the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

x2 = -2.3562

15 Functions

15-112

Solve Linearly Constrained Minimax Problem

The objective functions for this example are linear plus constants. For a description and plot of the
objective functions, see “Compare fminimax and fminunc” on page 7-7.

Set the objective functions as three linear functions of the form dot(x, v) + v0 for three vectors v and
three constants v0.

a = [1;1];
b = [-1;1];
c = [0;-1];
a0 = 2;
b0 = -3;
c0 = 4;
fun = @(x)[x*a+a0,x*b+b0,x*c+c0];

Find the minimax point subject to the inequality x(1) + 3*x(2) <= –4.

A = [1,3];
b = -4;
x0 = [-1,-2];
x = fminimax(fun,x0,A,b)

Local minimum possible. Constraints satisfied.

fminimax stopped because the size of the current search direction is less than
twice the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

x = 1×2

 -5.8000 0.6000

Solve Bound-Constrained Minimax Problem

The objective functions for this example are linear plus constants. For a description and plot of the
objective functions, see “Compare fminimax and fminunc” on page 7-7.

Set the objective functions as three linear functions of the form dot(x, v) + v0 for three vectors v and
three constants v0.

a = [1;1];
b = [-1;1];
c = [0;-1];
a0 = 2;
b0 = -3;
c0 = 4;
fun = @(x)[x*a+a0,x*b+b0,x*c+c0];

Set bounds that –2 <= x(1) <= 2 and –1 <= x(2) <= 1 and solve the minimax problem starting
from [0,0].

 fminimax

15-113

lb = [-2,-1];
ub = [2,1];
x0 = [0,0];
A = []; % No linear constraints
b = [];
Aeq = [];
beq = [];
[x,fval] = fminimax(fun,x0,A,b,Aeq,beq,lb,ub)

Local minimum possible. Constraints satisfied.

fminimax stopped because the size of the current search direction is less than
twice the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

x = 1×2

 -0.0000 1.0000

fval = 1×3

 3.0000 -2.0000 3.0000

In this case, the solution is not unique. Many points satisfy the constraints and have the same
minimax value. Plot the surface representing the maximum of the three objective functions, and plot a
red line showing the points that have the same minimax value.

[X,Y] = meshgrid(linspace(-2,2),linspace(-1,1));
Z = max(fun([X(:),Y(:)]),[],2);
Z = reshape(Z,size(X));
surf(X,Y,Z,'LineStyle','none')
view(-118,28)
hold on
line([-2,0],[1,1],[3,3],'Color','r','LineWidth',8)
hold off

15 Functions

15-114

Find Minimax Subject to Nonlinear Constraints

The objective functions for this example are linear plus constants. For a description and plot of the
objective functions, see “Compare fminimax and fminunc” on page 7-7.

Set the objective functions as three linear functions of the form dot(x, v) + v0 for three vectors v and
three constants v0.

a = [1;1];
b = [-1;1];
c = [0;-1];
a0 = 2;
b0 = -3;
c0 = 4;
fun = @(x)[x*a+a0,x*b+b0,x*c+c0];

The unitdisk function represents the nonlinear inequality constraint ‖x‖2 ≤ 1.

type unitdisk

function [c,ceq] = unitdisk(x)
c = x(1)^2 + x(2)^2 - 1;
ceq = [];

Solve the minimax problem subject to the unitdisk constraint, starting from x0 = [0,0].

 fminimax

15-115

x0 = [0,0];
A = []; % No other constraints
b = [];
Aeq = [];
beq = [];
lb = [];
ub = [];
nonlcon = @unitdisk;
x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)

Local minimum possible. Constraints satisfied.

fminimax stopped because the size of the current search direction is less than
twice the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

x = 1×2

 -0.0000 1.0000

Solve Minimax Problem Using Absolute Value of One Objective

fminimax can minimize the maximum of either Fi(x) or |Fi(x)| for the first several values of i by using
the AbsoluteMaxObjectiveCount option. To minimize the absolute values of k of the objectives,
arrange the objective function values so that F1(x) through Fk(x) are the objectives for absolute
minimization, and set the AbsoluteMaxObjectiveCount option to k.

In this example, minimize the maximum of sin and cos, specify sin as the first objective, and set
AbsoluteMaxObjectiveCount to 1.

fun = @(x)[sin(x),cos(x)];
options = optimoptions('fminimax','AbsoluteMaxObjectiveCount',1);
x0 = 1;
A = []; % No constraints
b = [];
Aeq = [];
beq = [];
lb = [];
ub = [];
nonlcon = [];
x1 = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)

Local minimum possible. Constraints satisfied.

fminimax stopped because the size of the current search direction is less than
twice the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

x1 = 0.7854

Try starting from x0 = –2.

x0 = -2;
x2 = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)

15 Functions

15-116

Local minimum possible. Constraints satisfied.

fminimax stopped because the size of the current search direction is less than
twice the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

x2 = -3.1416

Plot the function.

t = linspace(-pi,pi);
plot(t,max(abs(sin(t)),cos(t)))

To see the effect of the AbsoluteMaxObjectiveCount option, compare this plot to the plot in the
example “Minimize Maximum of sin and cos” on page 15-111.

Obtain Minimax Value

Obtain both the location of the minimax point and the value of the objective functions. For a
description and plot of the objective functions, see “Compare fminimax and fminunc” on page 7-7.

Set the objective functions as three linear functions of the form dot(x, v) + v0 for three vectors v and
three constants v0.

 fminimax

15-117

a = [1;1];
b = [-1;1];
c = [0;-1];
a0 = 2;
b0 = -3;
c0 = 4;
fun = @(x)[x*a+a0,x*b+b0,x*c+c0];

Set the initial point to [0,0] and find the minimax point and value.

x0 = [0,0];
[x,fval] = fminimax(fun,x0)

Local minimum possible. Constraints satisfied.

fminimax stopped because the size of the current search direction is less than
twice the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

x = 1×2

 -2.5000 2.2500

fval = 1×3

 1.7500 1.7500 1.7500

All three objective functions have the same value at the minimax point. Unconstrained problems
typically have at least two objectives that are equal at the solution, because if a point is not a local
minimum for any objective and only one objective has the maximum value, then the maximum
objective can be lowered.

Obtain All Minimax Outputs

The objective functions for this example are linear plus constants. For a description and plot of the
objective functions, see “Compare fminimax and fminunc” on page 7-7.

Set the objective functions as three linear functions of the form dot(x, v) + v0 for three vectors v and
three constants v0.

a = [1;1];
b = [-1;1];
c = [0;-1];
a0 = 2;
b0 = -3;
c0 = 4;
fun = @(x)[x*a+a0,x*b+b0,x*c+c0];

Find the minimax point subject to the inequality x(1) + 3*x(2) <= –4.

A = [1,3];
b = -4;
x0 = [-1,-2];

15 Functions

15-118

Set options for iterative display, and obtain all solver outputs.

options = optimoptions('fminimax','Display','iter');
Aeq = []; % No other constraints
beq = [];
lb = [];
ub = [];
nonlcon = [];
[x,fval,maxfval,exitflag,output,lambda] =...
 fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)

 Objective Max Line search Directional
 Iter F-count value constraint steplength derivative Procedure
 0 4 0 6
 1 9 5 0 1 0.981
 2 14 4.889 0 1 -0.302 Hessian modified twice
 3 19 3.4 8.132e-09 1 -0.302 Hessian modified twice

Local minimum possible. Constraints satisfied.

fminimax stopped because the size of the current search direction is less than
twice the value of the step size tolerance and constraints are
satisfied to within the value of the constraint tolerance.

x = 1×2

 -5.8000 0.6000

fval = 1×3

 -3.2000 3.4000 3.4000

maxfval = 3.4000

exitflag = 4

output = struct with fields:
 iterations: 4
 funcCount: 19
 lssteplength: 1
 stepsize: 6.0684e-10
 algorithm: 'active-set'
 firstorderopt: []
 constrviolation: 8.1323e-09
 message: 'Local minimum possible. Constraints satisfied....'

lambda = struct with fields:
 lower: [2x1 double]
 upper: [2x1 double]
 eqlin: [0x1 double]
 eqnonlin: [0x1 double]
 ineqlin: 0.2000
 ineqnonlin: [0x1 double]

Examine the returned information:

 fminimax

15-119

• Two objective function values are equal at the solution.
• The solver converges in 4 iterations and 19 function evaluations.
• The lambda.ineqlin value is nonzero, indicating that the linear constraint is active at the

solution.

Input Arguments
fun — Objective functions
function handle | function name

Objective functions, specified as a function handle or function name. fun is a function that accepts a
vector x and returns a vector F, the objective functions evaluated at x. You can specify the function
fun as a function handle for a function file:

x = fminimax(@myfun,x0,goal,weight)

where myfun is a MATLAB function such as

function F = myfun(x)
F = ... % Compute function values at x.

fun can also be a function handle for an anonymous function:

x = fminimax(@(x)sin(x.*x),x0,goal,weight);

fminimax passes x to your objective function and any nonlinear constraint functions in the shape of
the x0 argument. For example, if x0 is a 5-by-3 array, then fminimax passes x to fun as a 5-by-3
array. However, fminimax multiplies linear constraint matrices A or Aeq with x after converting x to
the column vector x(:).

To minimize the worst-case absolute values of some elements of the vector F(x) (that is, min{max
abs{F(x)} }), partition those objectives into the first elements of F and use optimoptions to set the
AbsoluteMaxObjectiveCount option to the number of these objectives. These objectives must be
partitioned into the first elements of the vector F returned by fun. For an example, see “Solve
Minimax Problem Using Absolute Value of One Objective” on page 15-116.

Assume that the gradients of the objective functions can also be computed and the
SpecifyObjectiveGradient option is true, as set by:

options = optimoptions('fminimax','SpecifyObjectiveGradient',true)

In this case, the function fun must return, in the second output argument, the gradient values G (a
matrix) at x. The gradient consists of the partial derivative dF/dx of each F at the point x. If F is a
vector of length m and x has length n, where n is the length of x0, then the gradient G of F(x) is an
n-by-m matrix where G(i,j) is the partial derivative of F(j) with respect to x(i) (that is, the jth
column of G is the gradient of the jth objective function F(j)). If you define F as an array, then the
preceding discussion applies to F(:), the linear ordering of the F array. In any case, G is a 2-D
matrix.

Note Setting SpecifyObjectiveGradient to true is effective only when the problem has no
nonlinear constraint, or when the problem has a nonlinear constraint with
SpecifyConstraintGradient set to true. Internally, the objective is folded into the constraints,

15 Functions

15-120

so the solver needs both gradients (objective and constraint) supplied in order to avoid estimating a
gradient.

Data Types: char | string | function_handle

x0 — Initial point
real vector | real array

Initial point, specified as a real vector or real array. Solvers use the number of elements in x0 and the
size of x0 to determine the number and size of variables that fun accepts.
Example: x0 = [1,2,3,4]
Data Types: double

A — Linear inequality constraints
real matrix

Linear inequality constraints, specified as a real matrix. A is an M-by-N matrix, where M is the number
of inequalities, and N is the number of variables (number of elements in x0). For large problems, pass
A as a sparse matrix.

A encodes the M linear inequalities

A*x <= b,

where x is the column vector of N variables x(:), and b is a column vector with M elements.

For example, consider these inequalities:

x1 + 2x2 ≤ 10
3x1 + 4x2 ≤ 20
5x1 + 6x2 ≤ 30,

Specify the inequalities by entering the following constraints.

A = [1,2;3,4;5,6];
b = [10;20;30];

Example: To specify that the x components sum to 1 or less, use A = ones(1,N) and b = 1.
Data Types: double

b — Linear inequality constraints
real vector

Linear inequality constraints, specified as a real vector. b is an M-element vector related to the A
matrix. If you pass b as a row vector, solvers internally convert b to the column vector b(:). For
large problems, pass b as a sparse vector.

b encodes the M linear inequalities

A*x <= b,

where x is the column vector of N variables x(:), and A is a matrix of size M-by-N.

For example, consider these inequalities:

 fminimax

15-121

x1 + 2x2 ≤ 10
3x1 + 4x2 ≤ 20
5x1 + 6x2 ≤ 30.

Specify the inequalities by entering the following constraints.

A = [1,2;3,4;5,6];
b = [10;20;30];

Example: To specify that the x components sum to 1 or less, use A = ones(1,N) and b = 1.
Data Types: double

Aeq — Linear equality constraints
real matrix

Linear equality constraints, specified as a real matrix. Aeq is an Me-by-N matrix, where Me is the
number of equalities, and N is the number of variables (number of elements in x0). For large
problems, pass Aeq as a sparse matrix.

Aeq encodes the Me linear equalities

Aeq*x = beq,

where x is the column vector of N variables x(:), and beq is a column vector with Me elements.

For example, consider these inequalities:

x1 + 2x2 + 3x3 = 10
2x1 + 4x2 + x3 = 20,

Specify the inequalities by entering the following constraints.

Aeq = [1,2,3;2,4,1];
beq = [10;20];

Example: To specify that the x components sum to 1, use Aeq = ones(1,N) and beq = 1.
Data Types: double

beq — Linear equality constraints
real vector

Linear equality constraints, specified as a real vector. beq is an Me-element vector related to the Aeq
matrix. If you pass beq as a row vector, solvers internally convert beq to the column vector beq(:).
For large problems, pass beq as a sparse vector.

beq encodes the Me linear equalities

Aeq*x = beq,

where x is the column vector of N variables x(:), and Aeq is a matrix of size Me-by-N.

For example, consider these equalities:

x1 + 2x2 + 3x3 = 10
2x1 + 4x2 + x3 = 20.

15 Functions

15-122

Specify the equalities by entering the following constraints.

Aeq = [1,2,3;2,4,1];
beq = [10;20];

Example: To specify that the x components sum to 1, use Aeq = ones(1,N) and beq = 1.
Data Types: double

lb — Lower bounds
real vector | real array

Lower bounds, specified as a real vector or real array. If the number of elements in x0 is equal to the
number of elements in lb, then lb specifies that

x(i) >= lb(i) for all i.

If numel(lb) < numel(x0), then lb specifies that

x(i) >= lb(i) for 1 <= i <= numel(lb).

If lb has fewer elements than x0, solvers issue a warning.
Example: To specify that all x components are positive, use lb = zeros(size(x0)).
Data Types: double

ub — Upper bounds
real vector | real array

Upper bounds, specified as a real vector or real array. If the number of elements in x0 is equal to the
number of elements in ub, then ub specifies that

x(i) <= ub(i) for all i.

If numel(ub) < numel(x0), then ub specifies that

x(i) <= ub(i) for 1 <= i <= numel(ub).

If ub has fewer elements than x0, solvers issue a warning.
Example: To specify that all x components are less than 1, use ub = ones(size(x0)).
Data Types: double

nonlcon — Nonlinear constraints
function handle | function name

Nonlinear constraints, specified as a function handle or function name. nonlcon is a function that
accepts a vector or array x and returns two arrays, c(x) and ceq(x).

• c(x) is the array of nonlinear inequality constraints at x. fminimax attempts to satisfy
c(x) <= 0 for all entries of c.

• ceq(x) is the array of nonlinear equality constraints at x. fminimax attempts to satisfy
ceq(x) = 0 for all entries of ceq.

For example,

 fminimax

15-123

x = fminimax(@myfun,x0,...,@mycon)

where mycon is a MATLAB function such as the following:

function [c,ceq] = mycon(x)
c = ... % Compute nonlinear inequalities at x.
ceq = ... % Compute nonlinear equalities at x.

Suppose that the gradients of the constraints can also be computed and the
SpecifyConstraintGradient option is true, as set by:

options = optimoptions('fminimax','SpecifyConstraintGradient',true)

In this case, the function nonlcon must also return, in the third and fourth output arguments, GC, the
gradient of c(x), and GCeq, the gradient of ceq(x). See “Nonlinear Constraints” on page 2-37 for an
explanation of how to “conditionalize” the gradients for use in solvers that do not accept supplied
gradients.

If nonlcon returns a vector c of m components and x has length n, where n is the length of x0, then
the gradient GC of c(x) is an n-by-m matrix, where GC(i,j) is the partial derivative of c(j) with
respect to x(i) (that is, the jth column of GC is the gradient of the jth inequality constraint c(j)).
Likewise, if ceq has p components, the gradient GCeq of ceq(x) is an n-by-p matrix, where
GCeq(i,j) is the partial derivative of ceq(j) with respect to x(i) (that is, the jth column of GCeq
is the gradient of the jth equality constraint ceq(j)).

Note Setting SpecifyConstraintGradient to true is effective only when
SpecifyObjectiveGradient is set to true. Internally, the objective is folded into the constraint,
so the solver needs both gradients (objective and constraint) supplied in order to avoid estimating a
gradient.

Note Because Optimization Toolbox functions accept only inputs of type double, user-supplied
objective and nonlinear constraint functions must return outputs of type double.

See “Passing Extra Parameters” on page 2-57 for an explanation of how to parameterize the nonlinear
constraint function nonlcon, if necessary.
Data Types: char | function_handle | string

options — Optimization options
output of optimoptions | structure such as optimset returns

Optimization options, specified as the output of optimoptions or a structure such as optimset
returns.

Some options are absent from the optimoptions display. These options appear in italics in the
following table. For details, see “View Options” on page 2-66.

For details about options that have different names for optimset, see “Current and Legacy Option
Names” on page 14-23.

15 Functions

15-124

Option Description
AbsoluteMaxObjectiveCount Number of elements of Fi(x) for which to minimize the

absolute value of Fi. See “Solve Minimax Problem Using
Absolute Value of One Objective” on page 15-116.

For optimset, the name is MinAbsMax.
ConstraintTolerance Termination tolerance on the constraint violation (a

positive scalar). The default is 1e-6. See “Tolerances and
Stopping Criteria” on page 2-68.

For optimset, the name is TolCon.
Diagnostics Display of diagnostic information about the function to be

minimized or solved. The choices are 'on' or 'off' (the
default).

DiffMaxChange Maximum change in variables for finite-difference
gradients (a positive scalar). The default is Inf.

DiffMinChange Minimum change in variables for finite-difference
gradients (a positive scalar). The default is 0.

Display Level of display (see “Iterative Display” on page 3-14):

• 'off' or 'none' displays no output.
• 'iter' displays output at each iteration, and gives the

default exit message.
• 'iter-detailed' displays output at each iteration,

and gives the technical exit message.
• 'notify' displays output only if the function does not

converge, and gives the default exit message.
• 'notify-detailed' displays output only if the

function does not converge, and gives the technical exit
message.

• 'final' (default) displays only the final output, and
gives the default exit message.

• 'final-detailed' displays only the final output, and
gives the technical exit message.

 fminimax

15-125

Option Description
FiniteDifferenceStepSize Scalar or vector step size factor for finite differences.

When you set FiniteDifferenceStepSize to a vector
v, the forward finite differences delta are

delta = v.*sign′(x).*max(abs(x),TypicalX);

where sign′(x) = sign(x) except sign′(0) = 1.
Central finite differences are

delta = v.*max(abs(x),TypicalX);

Scalar FiniteDifferenceStepSize expands to a vector.
The default is sqrt(eps) for forward finite differences,
and eps^(1/3) for central finite differences.

For optimset, the name is FinDiffRelStep.
FiniteDifferenceType Type of finite differences used to estimate gradients, either

'forward' (default) or 'central' (centered).
'central' takes twice as many function evaluations, but
is generally more accurate.

The algorithm is careful to obey bounds when estimating
both types of finite differences. For example, it might take
a backward difference, rather than a forward difference, to
avoid evaluating at a point outside the bounds.

For optimset, the name is FinDiffType.
FunctionTolerance Termination tolerance on the function value (a positive

scalar). The default is 1e-6. See “Tolerances and Stopping
Criteria” on page 2-68.

For optimset, the name is TolFun.
FunValCheck Check that signifies whether the objective function and

constraint values are valid. 'on' displays an error when
the objective function or constraints return a value that is
complex, Inf, or NaN. The default 'off' displays no
error.

MaxFunctionEvaluations Maximum number of function evaluations allowed (a
positive integer). The default is
100*numberOfVariables. See “Tolerances and Stopping
Criteria” on page 2-68 and “Iterations and Function
Counts” on page 3-9.

For optimset, the name is MaxFunEvals.
MaxIterations Maximum number of iterations allowed (a positive

integer). The default is 400. See “Tolerances and Stopping
Criteria” on page 2-68 and “Iterations and Function
Counts” on page 3-9.

For optimset, the name is MaxIter.

15 Functions

15-126

Option Description
MaxSQPIter Maximum number of SQP iterations allowed (a positive

integer). The default is 10*max(numberOfVariables,
numberOfInequalities + numberOfBounds).

MeritFunction If this option is set to 'multiobj' (the default), use the
goal attainment or minimax merit function. If this option is
set to 'singleobj', use the fmincon merit function.

OptimalityTolerance Termination tolerance on the first-order optimality (a
positive scalar). The default is 1e-6. See “First-Order
Optimality Measure” on page 3-11.

For optimset, the name is TolFun.
OutputFcn One or more user-defined functions that an optimization

function calls at each iteration. Pass a function handle or a
cell array of function handles. The default is none ([]). See
“Output Function and Plot Function Syntax” on page 14-
28.

PlotFcn Plots showing various measures of progress while the
algorithm executes. Select from predefined plots or write
your own. Pass a name, function handle, or cell array of
names or function handles. For custom plot functions, pass
function handles. The default is none ([]).

• 'optimplotx' plots the current point.
• 'optimplotfunccount' plots the function count.
• 'optimplotfval' plots the objective function values.
• 'optimplotconstrviolation' plots the maximum

constraint violation.
• 'optimplotstepsize' plots the step size.

Custom plot functions use the same syntax as output
functions. See “Output Functions for Optimization
Toolbox” on page 3-30 and “Output Function and Plot
Function Syntax” on page 14-28.

For optimset, the name is PlotFcns.
RelLineSrchBnd Relative bound (a real nonnegative scalar value) on the

line search step length such that the total displacement in
x satisfies |Δx(i)| ≤ relLineSrchBnd· max(|x(i)|,|typicalx(i)|).
This option provides control over the magnitude of the
displacements in x when the solver takes steps that are too
large. The default is none ([]).

RelLineSrchBndDuration Number of iterations for which the bound specified in
RelLineSrchBnd should be active. The default is 1.

 fminimax

15-127

Option Description
SpecifyConstraintGradient Gradient for nonlinear constraint functions defined by the

user. When this option is set to true, fminimax expects
the constraint function to have four outputs, as described
in nonlcon. When this option is set to false (the default),
fminimax estimates gradients of the nonlinear constraints
using finite differences.

For optimset, the name is GradConstr and the values
are 'on' or 'off'.

SpecifyObjectiveGradient Gradient for the objective function defined by the user.
Refer to the description of fun to see how to define the
gradient. Set this option to true to have fminimax use a
user-defined gradient of the objective function. The
default, false, causes fminimax to estimate gradients
using finite differences.

For optimset, the name is GradObj and the values are
'on' or 'off'.

StepTolerance Termination tolerance on x (a positive scalar). The default
is 1e-6. See “Tolerances and Stopping Criteria” on page 2-
68.

For optimset, the name is TolX.
TolConSQP Termination tolerance on the inner iteration SQP

constraint violation (a positive scalar). The default is 1e-6.
TypicalX Typical x values. The number of elements in TypicalX is

equal to the number of elements in x0, the starting point.
The default value is ones(numberofvariables,1). The
fminimax function uses TypicalX for scaling finite
differences for gradient estimation.

UseParallel Option for using parallel computing. When this option is
set to true, fminimax estimates gradients in parallel. The
default is false. See “Parallel Computing”.

Example: optimoptions('fminimax','PlotFcn','optimplotfval')

problem — Problem structure
structure

Problem structure, specified as a structure with the fields in this table.

Field Name Entry
objective Objective function fun
x0 Initial point for x
Aineq Matrix for linear inequality constraints
bineq Vector for linear inequality constraints
Aeq Matrix for linear equality constraints

15 Functions

15-128

Field Name Entry
beq Vector for linear equality constraints
lb Vector of lower bounds
ub Vector of upper bounds
nonlcon Nonlinear constraint function
solver 'fminimax'
options Options created with optimoptions

You must supply at least the objective, x0, solver, and options fields in the problem structure.
Data Types: struct

Output Arguments
x — Solution
real vector | real array

Solution, returned as a real vector or real array. The size of x is the same as the size of x0. Typically,
x is a local solution to the problem when exitflag is positive. For information on the quality of the
solution, see “When the Solver Succeeds” on page 4-18.

fval — Objective function values at solution
real array

Objective function values at the solution, returned as a real array. Generally, fval = fun(x).

maxfval — Maximum of objective function values at solution
real scalar

Maximum of the objective function values at the solution, returned as a real scalar. maxfval =
max(fval(:)).

exitflag — Reason fminimax stopped
integer

Reason fminimax stopped, returned as an integer.

1 Function converged to a solution x
4 Magnitude of the search direction was less than the specified

tolerance, and the constraint violation was less than
options.ConstraintTolerance

5 Magnitude of the directional derivative was less than the
specified tolerance, and the constraint violation was less than
options.ConstraintTolerance

0 Number of iterations exceeded options.MaxIterations or
the number of function evaluations exceeded
options.MaxFunctionEvaluations

-1 Stopped by an output function or plot function
-2 No feasible point was found.

 fminimax

15-129

output — Information about optimization process
structure

Information about the optimization process, returned as a structure with the fields in this table.

iterations Number of iterations taken
funcCount Number of function evaluations
lssteplength Size of the line search step relative to the search direction
constrviolation Maximum of the constraint functions
stepsize Length of the last displacement in x
algorithm Optimization algorithm used
firstorderopt Measure of first-order optimality
message Exit message

lambda — Lagrange multipliers at solution
structure

Lagrange multipliers at the solution, returned as a structure with the fields in this table.

lower Lower bounds corresponding to lb
upper Upper bounds corresponding to ub
ineqlin Linear inequalities corresponding to A and b
eqlin Linear equalities corresponding to Aeq and beq
ineqnonlin Nonlinear inequalities corresponding to the c in nonlcon
eqnonlin Nonlinear equalities corresponding to the ceq in nonlcon

Algorithms
fminimax solves a minimax problem by converting it into a goal attainment problem, and then
solving the converted goal attainment problem using fgoalattain. The conversion sets all goals to
0 and all weights to 1. See “Equation 7-1” in “Multiobjective Optimization Algorithms” on page 7-2.

Alternative Functionality
App

The Optimize Live Editor task provides a visual interface for fminimax.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

options = optimoptions('solvername','UseParallel',true)

For more information, see “Using Parallel Computing in Optimization Toolbox” on page 13-5.

15 Functions

15-130

See Also
fgoalattain | optimoptions | Optimize

Topics
“Create Function Handle”
“Multiobjective Optimization”

Introduced before R2006a

 fminimax

15-131

fminsearch
Find minimum of unconstrained multivariable function using derivative-free method

Syntax
x = fminsearch(fun,x0)
x = fminsearch(fun,x0,options)
x = fminsearch(problem)
[x,fval] = fminsearch(___)
[x,fval,exitflag] = fminsearch(___)
[x,fval,exitflag,output] = fminsearch(___)

Description
Nonlinear programming solver. Searches for the minimum of a problem specified by

min
x

f (x)

f(x) is a function that returns a scalar, and x is a vector or a matrix; see “Matrix Arguments” on page
2-31.

x = fminsearch(fun,x0) starts at the point x0 and attempts to find a local minimum x of the
function described in fun.

x = fminsearch(fun,x0,options) minimizes with the optimization options specified in the
structure options. Use optimset to set these options.

x = fminsearch(problem) finds the minimum for problem, a structure described in problem.

[x,fval] = fminsearch(___), for any previous input syntax, returns in fval the value of the
objective function fun at the solution x.

[x,fval,exitflag] = fminsearch(___) additionally returns a value exitflag that describes
the exit condition.

[x,fval,exitflag,output] = fminsearch(___) additionally returns a structure output with
information about the optimization process.

Examples

Minimize Rosenbrock's Function

Minimize Rosenbrock's function, a notoriously difficult optimization problem for many algorithms:

f (x) = 100(x2− x1
2)2 + (1− x1)2 .

The function is minimized at the point x = [1,1] with minimum value 0.

Set the start point to x0 = [-1.2,1] and minimize Rosenbrock's function using fminsearch.

15 Functions

15-132

fun = @(x)100*(x(2) - x(1)^2)^2 + (1 - x(1))^2;
x0 = [-1.2,1];
x = fminsearch(fun,x0)

x = 1×2

 1.0000 1.0000

Monitor Optimization Process

Set options to monitor the process as fminsearch attempts to locate a minimum.

Set options to plot the objective function at each iteration.

options = optimset('PlotFcns',@optimplotfval);

Set the objective function to Rosenbrock's function,

f (x) = 100(x2− x1
2)2 + (1− x1)2 .

The function is minimized at the point x = [1,1] with minimum value 0.

Set the start point to x0 = [-1.2,1] and minimize Rosenbrock's function using fminsearch.

fun = @(x)100*(x(2) - x(1)^2)^2 + (1 - x(1))^2;
x0 = [-1.2,1];
x = fminsearch(fun,x0,options)

 fminsearch

15-133

x = 1×2

 1.0000 1.0000

Minimize a Function Specified by a File

Minimize an objective function whose values are given by executing a file. A function file must accept
a real vector x and return a real scalar that is the value of the objective function.

Copy the following code and include it as a file named objectivefcn1.m on your MATLAB® path.

function f = objectivefcn1(x)
f = 0;
for k = -10:10
 f = f + exp(-(x(1)-x(2))^2 - 2*x(1)^2)*cos(x(2))*sin(2*x(2));
end

Start at x0 = [0.25,-0.25] and search for a minimum of objectivefcn.

x0 = [0.25,-0.25];
x = fminsearch(@objectivefcn1,x0)

15 Functions

15-134

x =

 -0.1696 -0.5086

Minimize with Extra Parameters

Sometimes your objective function has extra parameters. These parameters are not variables to
optimize, they are fixed values during the optimization. For example, suppose that you have a
parameter a in the Rosenbrock-type function

f (x, a) = 100(x2− x1
2)2 + (a− x1)2 .

This function has a minimum value of 0 at x1 = a, x2 = a2. If, for example, a = 3, you can include the
parameter in your objective function by creating an anonymous function.

Create the objective function with its extra parameters as extra arguments.

f = @(x,a)100*(x(2) - x(1)^2)^2 + (a-x(1))^2;

Put the parameter in your MATLAB® workspace.

a = 3;

Create an anonymous function of x alone that includes the workspace value of the parameter.

fun = @(x)f(x,a);

Solve the problem starting at x0 = [-1,1.9].

x0 = [-1,1.9];
x = fminsearch(fun,x0)

x = 1×2

 3.0000 9.0000

For more information about using extra parameters in your objective function, see “Parameterizing
Functions”.

Find Minimum Location and Value

Find both the location and value of a minimum of an objective function using fminsearch.

Write an anonymous objective function for a three-variable problem.

x0 = [1,2,3];
fun = @(x)-norm(x+x0)^2*exp(-norm(x-x0)^2 + sum(x));

Find the minimum of fun starting at x0. Find the value of the minimum as well.

 fminsearch

15-135

[x,fval] = fminsearch(fun,x0)

x = 1×3

 1.5359 2.5645 3.5932

fval = -5.9565e+04

Inspect Optimization Process

Inspect the results of an optimization, both while it is running and after it finishes.

Set options to provide iterative display, which gives information on the optimization as the solver
runs. Also, set a plot function to show the objective function value as the solver runs.

options = optimset('Display','iter','PlotFcns',@optimplotfval);

Set an objective function and start point.

function f = objectivefcn1(x)
f = 0;
for k = -10:10
 f = f + exp(-(x(1)-x(2))^2 - 2*x(1)^2)*cos(x(2))*sin(2*x(2));
end

Include the code for objectivefcn1 as a file on your MATLAB® path.

x0 = [0.25,-0.25];
fun = @objectivefcn1;

Obtain all solver outputs. Use these outputs to inspect the results after the solver finishes.

[x,fval,exitflag,output] = fminsearch(fun,x0,options)

 Iteration Func-count min f(x) Procedure
 0 1 -6.70447
 1 3 -6.89837 initial simplex
 2 5 -7.34101 expand
 3 7 -7.91894 expand
 4 9 -9.07939 expand
 5 11 -10.5047 expand
 6 13 -12.4957 expand
 7 15 -12.6957 reflect
 8 17 -12.8052 contract outside
 9 19 -12.8052 contract inside
 10 21 -13.0189 expand
 11 23 -13.0189 contract inside
 12 25 -13.0374 reflect
 13 27 -13.122 reflect
 14 28 -13.122 reflect
 15 29 -13.122 reflect
 16 31 -13.122 contract outside

15 Functions

15-136

 17 33 -13.1279 contract inside
 18 35 -13.1279 contract inside
 19 37 -13.1296 contract inside
 20 39 -13.1301 contract inside
 21 41 -13.1305 reflect
 22 43 -13.1306 contract inside
 23 45 -13.1309 contract inside
 24 47 -13.1309 contract inside
 25 49 -13.131 reflect
 26 51 -13.131 contract inside
 27 53 -13.131 contract inside
 28 55 -13.131 contract inside
 29 57 -13.131 contract outside
 30 59 -13.131 contract inside
 31 61 -13.131 contract inside
 32 63 -13.131 contract inside
 33 65 -13.131 contract outside
 34 67 -13.131 contract inside
 35 69 -13.131 contract inside

Optimization terminated:
 the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-04
 and F(X) satisfies the convergence criteria using OPTIONS.TolFun of 1.000000e-04

x =

 -0.1696 -0.5086

fval =

 -13.1310

exitflag =

 1

output =

 struct with fields:

 iterations: 35
 funcCount: 69
 algorithm: 'Nelder-Mead simplex direct search'
 message: 'Optimization terminated:...'

 fminsearch

15-137

The value of exitflag is 1, meaning fminsearch likely converged to a local minimum.

The output structure shows the number of iterations. The iterative display and the plot show this
information as well. The output structure also shows the number of function evaluations, which the
iterative display shows, but the chosen plot function does not.

Input Arguments
fun — Function to minimize
function handle | function name

Function to minimize, specified as a function handle or function name. fun is a function that accepts
a vector or array x and returns a real scalar f (the objective function evaluated at x).

fminsearch passes x to your objective function in the shape of the x0 argument. For example, if x0
is a 5-by-3 array, then fminsearch passes x to fun as a 5-by-3 array.

Specify fun as a function handle for a file:

x = fminsearch(@myfun,x0)

where myfun is a MATLAB function such as

function f = myfun(x)
f = ... % Compute function value at x

You can also specify fun as a function handle for an anonymous function:

15 Functions

15-138

x = fminsearch(@(x)norm(x)^2,x0);

Example: fun = @(x)-x*exp(-3*x)
Data Types: char | function_handle | string

x0 — Initial point
real vector | real array

Initial point, specified as a real vector or real array. Solvers use the number of elements in x0 and the
size of x0 to determine the number and size of variables that fun accepts.
Example: x0 = [1,2,3,4]
Data Types: double

options — Optimization options
structure such as optimset returns

Optimization options, specified as a structure such as optimset returns. You can use optimset to
set or change the values of these fields in the options structure. See “Optimization Options
Reference” on page 14-6 for detailed information.

Display Level of display (see “Iterative Display” on page 3-14):

• 'notify' (default) displays output only if the function does not
converge.

• 'final' displays just the final output.
• 'off' or 'none' displays no output.
• 'iter' displays output at each iteration.

FunValCheck Check whether objective function values are valid. 'on' displays an
error when the objective function returns a value that is complex or
NaN. The default 'off' displays no error.

MaxFunEvals Maximum number of function evaluations allowed, a positive integer.
The default is 200*numberOfVariables. See “Tolerances and
Stopping Criteria” on page 2-68 and “Iterations and Function
Counts” on page 3-9.

MaxIter Maximum number of iterations allowed, a positive integer. The
default value is 200*numberOfVariables. See “Tolerances and
Stopping Criteria” on page 2-68 and “Iterations and Function
Counts” on page 3-9.

OutputFcn Specify one or more user-defined functions that an optimization
function calls at each iteration, either as a function handle or as a
cell array of function handles. The default is none ([]). See “Output
Function and Plot Function Syntax” on page 14-28.

 fminsearch

15-139

PlotFcns Plots various measures of progress while the algorithm executes.
Select from predefined plots or write your own. Pass a function
handle or a cell array of function handles. The default is none ([]):

• @optimplotx plots the current point.
• @optimplotfunccount plots the function count.
• @optimplotfval plots the function value.

Custom plot functions use the same syntax as output functions. See
“Output Functions for Optimization Toolbox” on page 3-30 and
“Output Function and Plot Function Syntax” on page 14-28.

TolFun Termination tolerance on the function value, a positive scalar. The
default is 1e-4. See “Tolerances and Stopping Criteria” on page 2-
68. Unlike other solvers, fminsearch stops when it satisfies both
TolFun and TolX.

TolX Termination tolerance on x, a positive scalar. The default value is
1e-4. See “Tolerances and Stopping Criteria” on page 2-68. Unlike
other solvers, fminsearch stops when it satisfies both TolFun and
TolX.

Example: options = optimset('Display','iter')
Data Types: struct

problem — Problem structure
structure

Problem structure, specified as a structure with the following fields.

Field Name Entry
objective Objective function
x0 Initial point for x
solver 'fminsearch'
options Options structure such as returned by optimset

Data Types: struct

Output Arguments
x — Solution
real vector | real array

Solution, returned as a real vector or real array. The size of x is the same as the size of x0. Typically,
x is a local solution to the problem when exitflag is positive. For information on the quality of the
solution, see “When the Solver Succeeds” on page 4-18.

fval — Objective function value at solution
real number

Objective function value at the solution, returned as a real number. Generally, fval = fun(x).

15 Functions

15-140

exitflag — Reason fminsearch stopped
integer

Reason fminsearch stopped, returned as an integer.

1 The function converged to a solution x.
0 Number of iterations exceeded options.MaxIter or number of

function evaluations exceeded options.MaxFunEvals.
-1 The algorithm was terminated by the output function.

output — Information about the optimization process
structure

Information about the optimization process, returned as a structure with fields:

iterations Number of iterations
funcCount Number of function evaluations
algorithm 'Nelder-Mead simplex direct search'
message Exit message

Tips
• fminsearch only minimizes over the real numbers, that is, x must only consist of real numbers

and f(x) must only return real numbers. When x has complex values, split x into real and imaginary
parts.

• Use fminsearch to solve nondifferentiable problems or problems with discontinuities,
particularly if no discontinuity occurs near the solution.

• fminsearch is generally less efficient than fminunc, especially for problems of dimension
greater than two. However, when the problem is discontinuous, fminsearch can be more robust
than fminunc.

• fminsearch is not the preferred solver for problems that are sums of squares, that is, of the form

min
x

f (x) 2
2 = min

x
f1(x)2 + f2(x)2 + ... + fn(x)2

Instead, use the lsqnonlin function, which has been optimized for problems of this form.

Algorithms
fminsearch uses the simplex search method of Lagarias et al. [1]. This is a direct search method
that does not use numerical or analytic gradients as in fminunc. The algorithm is described in detail
in “fminsearch Algorithm” on page 5-9. The algorithm is not guaranteed to converge to a local
minimum.

Alternative Functionality
App

The Optimize Live Editor task provides a visual interface for fminsearch.

 fminsearch

15-141

References
[1] Lagarias, J. C., J. A. Reeds, M. H. Wright, and P. E. Wright. “Convergence Properties of the Nelder-

Mead Simplex Method in Low Dimensions.” SIAM Journal of Optimization. Vol. 9, Number 1,
1998, pp. 112–147.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For C/C++ code generation:

• fminsearch ignores the Display option and does not give iterative display or an exit message.
To check solution quality, examine the exit flag.

• The output structure does not include the algorithm or message fields.
• fminsearch ignores the OutputFcn and PlotFcns options.

See Also
fminbnd | fminunc | optimset | Optimize

Topics
“Create Function Handle”
“Anonymous Functions”

Introduced before R2006a

15 Functions

15-142

fminunc
Find minimum of unconstrained multivariable function

Syntax
x = fminunc(fun,x0)
x = fminunc(fun,x0,options)
x = fminunc(problem)
[x,fval] = fminunc(___)
[x,fval,exitflag,output] = fminunc(___)
[x,fval,exitflag,output,grad,hessian] = fminunc(___)

Description
Nonlinear programming solver.

Finds the minimum of a problem specified by

min
x

f (x)

where f(x) is a function that returns a scalar.

x is a vector or a matrix; see “Matrix Arguments” on page 2-31.

x = fminunc(fun,x0) starts at the point x0 and attempts to find a local minimum x of the function
described in fun. The point x0 can be a scalar, vector, or matrix.

Note “Passing Extra Parameters” on page 2-57 explains how to pass extra parameters to the
objective function and nonlinear constraint functions, if necessary.

fminunc is for nonlinear problems without constraints. If your problem has constraints, generally
use fmincon. See “Optimization Decision Table” on page 2-4.

x = fminunc(fun,x0,options) minimizes fun with the optimization options specified in
options. Use optimoptions to set these options.

x = fminunc(problem) finds the minimum for problem, a structure described in problem.

[x,fval] = fminunc(___), for any syntax, returns the value of the objective function fun at the
solution x.

[x,fval,exitflag,output] = fminunc(___) additionally returns a value exitflag that
describes the exit condition of fminunc, and a structure output with information about the
optimization process.

[x,fval,exitflag,output,grad,hessian] = fminunc(___) additionally returns:

• grad — Gradient of fun at the solution x.

 fminunc

15-143

• hessian — Hessian of fun at the solution x. See “fminunc Hessian” on page 3-24.

Examples

Minimize a Polynomial

Minimize the function f (x) = 3x1
2 + 2x1x2 + x2

2− 4x1 + 5x2.

To do so, write an anonymous function fun that calculates the objective.

fun = @(x)3*x(1)^2 + 2*x(1)*x(2) + x(2)^2 - 4*x(1) + 5*x(2);

Call fminunc to find a minimum of fun near [1,1].

x0 = [1,1];
[x,fval] = fminunc(fun,x0)

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

x = 1×2

 2.2500 -4.7500

fval = -16.3750

Supply Gradient

fminunc can be faster and more reliable when you provide derivatives.

Write an objective function that returns the gradient as well as the function value. Use the
conditionalized form described in “Including Gradients and Hessians” on page 2-19. The objective
function is Rosenbrock's function,

f (x) = 100 x2− x1
2 2 + (1− x1)2,

which has gradient

∇ f (x) =
−400 x2− x1

2 x1− 2 1− x1

200 x2− x1
2

.

The code for the objective function with gradient appears at the end of this example on page 15-0 .

Create options to use the objective function’s gradient. Also, set the algorithm to 'trust-region'.

options = optimoptions('fminunc','Algorithm','trust-region','SpecifyObjectiveGradient',true);

Set the initial point to [-1,2]. Then call fminunc.

15 Functions

15-144

x0 = [-1,2];
fun = @rosenbrockwithgrad;
x = fminunc(fun,x0,options)

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

x = 1×2

 1.0000 1.0000

The following code creates the rosenbrockwithgrad function, which includes the gradient as the
second output.

function [f,g] = rosenbrockwithgrad(x)
% Calculate objective f
f = 100*(x(2) - x(1)^2)^2 + (1-x(1))^2;

if nargout > 1 % gradient required
 g = [-400*(x(2)-x(1)^2)*x(1) - 2*(1-x(1));
 200*(x(2)-x(1)^2)];
end
end

Use Problem Structure

Solve the same problem as in “Supply Gradient” on page 15-144 using a problem structure instead of
separate arguments.

Write an objective function that returns the gradient as well as the function value. Use the
conditionalized form described in “Including Gradients and Hessians” on page 2-19. The objective
function is Rosenbrock's function,

f (x) = 100 x2− x1
2 2 + (1− x1)2,

which has gradient

∇ f (x) =
−400 x2− x1

2 x1− 2 1− x1

200 x2− x1
2

.

The code for the objective function with gradient appears at the end of this example on page 15-0 .

Create options to use the objective function’s gradient. Also, set the algorithm to 'trust-region'.

options = optimoptions('fminunc','Algorithm','trust-region','SpecifyObjectiveGradient',true);

Create a problem structure including the initial point x0 = [-1,2]. For the required fields in this
structure, see “problem” on page 15-0 .

problem.options = options;
problem.x0 = [-1,2];

 fminunc

15-145

problem.objective = @rosenbrockwithgrad;
problem.solver = 'fminunc';

Solve the problem.

x = fminunc(problem)

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

x = 1×2

 1.0000 1.0000

The following code creates the rosenbrockwithgrad function, which includes the gradient as the
second output.

function [f,g] = rosenbrockwithgrad(x)
% Calculate objective f
f = 100*(x(2) - x(1)^2)^2 + (1-x(1))^2;

if nargout > 1 % gradient required
 g = [-400*(x(2)-x(1)^2)*x(1)-2*(1-x(1));
 200*(x(2)-x(1)^2)];
end
end

Obtain Optimal Objective Function Value

Find both the location of the minimum of a nonlinear function and the value of the function at that
minimum. The objective function is

f (x) = x(1)e− x 2
2

+ x 2
2/20.

fun = @(x)x(1)*exp(-(x(1)^2 + x(2)^2)) + (x(1)^2 + x(2)^2)/20;

Find the location and objective function value of the minimizer starting at x0 = [1,2].

x0 = [1,2];
[x,fval] = fminunc(fun,x0)

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

x = 1×2

 -0.6691 0.0000

fval = -0.4052

15 Functions

15-146

Examine the Solution Process

Choose fminunc options and outputs to examine the solution process.

Set options to obtain iterative display and use the 'quasi-newton' algorithm.

options = optimoptions(@fminunc,'Display','iter','Algorithm','quasi-newton');

The objective function is

f (x) = x(1)e− x 2
2

+ x 2
2/20 .

fun = @(x)x(1)*exp(-(x(1)^2 + x(2)^2)) + (x(1)^2 + x(2)^2)/20;

Start the minimization at x0 = [1,2], and obtain outputs that enable you to examine the solution
quality and process.

x0 = [1,2];
[x,fval,exitflag,output] = fminunc(fun,x0,options)

 First-order
 Iteration Func-count f(x) Step-size optimality
 0 3 0.256738 0.173
 1 6 0.222149 1 0.131
 2 9 0.15717 1 0.158
 3 18 -0.227902 0.438133 0.386
 4 21 -0.299271 1 0.46
 5 30 -0.404028 0.102071 0.0458
 6 33 -0.404868 1 0.0296
 7 36 -0.405236 1 0.00119
 8 39 -0.405237 1 0.000252
 9 42 -0.405237 1 7.97e-07

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

x = 1×2

 -0.6691 0.0000

fval = -0.4052

exitflag = 1

output = struct with fields:
 iterations: 9
 funcCount: 42
 stepsize: 2.9343e-04
 lssteplength: 1
 firstorderopt: 7.9721e-07
 algorithm: 'quasi-newton'
 message: 'Local minimum found....'

 fminunc

15-147

• The exit flag 1 shows that the solution is a local optimum.
• The output structure shows the number of iterations, number of function evaluations, and other

information.
• The iterative display also shows the number of iterations and function evaluations.

Use "lbfgs" Hessian Approximation for Large Problem

When your problem has a large number of variables, the default value of the
HessianApproximation can cause fminunc to use a large amount of memory and run slowly. To
use less memory and run faster, specify HessianApproximation="lbfgs".

For example, if you attempt to minimize the multirosenbrock function (listed below) with 1e5
variables using the default parameters, fminunc issues an error.

N = 1e5;
x0 = -2*ones(N,1);
x0(2:2:N) = 2;
[x,fval] = fminunc(@multirosenbrock,x0)

Error using eye
Requested 100000x100000 (74.5GB) array exceeds maximum array size preference (63.9GB). This might cause MATLAB to become
unresponsive.

Error in optim.internal.fminunc.AbstractDenseHessianApproximation (line 21)
 this.Value = eye(nVars);

Error in optim.internal.fminunc.BFGSHessianApproximation (line 14)
 this = this@optim.internal.fminunc.AbstractDenseHessianApproximation(nVars);

Error in fminusub (line 73)
 HessApprox = optim.internal.fminunc.BFGSHessianApproximation(sizes.nVar);

Error in fminunc (line 488)
 [x,FVAL,GRAD,HESSIAN,EXITFLAG,OUTPUT] = fminusub(funfcn,x, ...

To solve this problem, set the HessianApproximation option to "lbfgs". To speed the solution,
set options to use the supplied gradient.

N = 1e5;
x0 = -2*ones(N,1);
x0(2:2:N) = 2;
options = optimoptions("fminunc",HessianApproximation="lbfgs",...
 SpecifyObjectiveGradient=true);
[x,fval] = fminunc(@multirosenbrock,x0,options);

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

The theoretical solution is x(i) = 1 for all i. Check the accuracy of the returned solution.

max(abs(x-1))

15 Functions

15-148

ans =

 1.3795e-04

This code creates the multirosenbrock function.

function [f,g] = multirosenbrock(x)
% Get the problem size
n = length(x);
if n == 0, error('Input vector, x, is empty.'); end
if mod(n,2) ~= 0
 error('Input vector, x ,must have an even number of components.');
end
% Evaluate the vector function
odds = 1:2:n;
evens = 2:2:n;
F = zeros(n,1);
F(odds,1) = 1-x(odds);
F(evens,1) = 10.*(x(evens)-x(odds).^2);
f = sum(F.^2);
if nargout >= 2 % Calculate gradient
 g = zeros(n,1);
 g(evens) = 200*(x(evens)-x(odds).^2);
 g(odds) = -2*(1 - x(odds)) - 400*(x(evens)-x(odds).^2).*x(odds);
end
end

Input Arguments
fun — Function to minimize
function handle | function name

Function to minimize, specified as a function handle or function name. fun is a function that accepts
a vector or array x and returns a real scalar f, the objective function evaluated at x.

fminunc passes x to your objective function in the shape of the x0 argument. For example, if x0 is a
5-by-3 array, then fminunc passes x to fun as a 5-by-3 array.

Specify fun as a function handle for a file:

x = fminunc(@myfun,x0)

where myfun is a MATLAB function such as

function f = myfun(x)
f = ... % Compute function value at x

You can also specify fun as a function handle for an anonymous function:

x = fminunc(@(x)norm(x)^2,x0);

If you can compute the gradient of fun and the SpecifyObjectiveGradient option is set to true,
as set by

options = optimoptions('fminunc','SpecifyObjectiveGradient',true)

then fun must return the gradient vector g(x) in the second output argument.

 fminunc

15-149

If you can also compute the Hessian matrix and the HessianFcn option is set to 'objective' via
options = optimoptions('fminunc','HessianFcn','objective') and the Algorithm
option is set to 'trust-region', fun must return the Hessian value H(x), a symmetric matrix, in a
third output argument. fun can give a sparse Hessian. See “Hessian for fminunc trust-region or
fmincon trust-region-reflective algorithms” on page 2-21 for details.

The trust-region algorithm allows you to supply a Hessian multiply function. This function gives
the result of a Hessian-times-vector product without computing the Hessian directly. This can save
memory. See “Hessian Multiply Function” on page 2-23.
Example: fun = @(x)sin(x(1))*cos(x(2))
Data Types: char | function_handle | string

x0 — Initial point
real vector | real array

Initial point, specified as a real vector or real array. Solvers use the number of elements in x0 and the
size of x0 to determine the number and size of variables that fun accepts.
Example: x0 = [1,2,3,4]
Data Types: double

options — Optimization options
output of optimoptions | structure such as optimset returns

Optimization options, specified as the output of optimoptions or a structure such as optimset
returns.

Some options apply to all algorithms, and others are relevant for particular algorithms. See
“Optimization Options Reference” on page 14-6 for detailed information.

Some options are absent from the optimoptions display. These options appear in italics in the
following table. For details, see “View Options” on page 2-66.

All Algorithms
Algorithm Choose the fminunc algorithm. Choices are 'quasi-newton'

(default) or 'trust-region'.

The 'trust-region' algorithm requires you to provide the gradient
(see the description of fun), or else fminunc uses the 'quasi-
newton' algorithm. For information on choosing the algorithm, see
“Choosing the Algorithm” on page 2-6.

CheckGradients Compare user-supplied derivatives (gradient of objective) to finite-
differencing derivatives. Choices are false (default) or true.

For optimset, the name is DerivativeCheck and the values are
'on' or 'off'. See “Current and Legacy Option Names” on page 14-
23.

Diagnostics Display diagnostic information about the function to be minimized or
solved. Choices are 'off' (default) or 'on'.

DiffMaxChange Maximum change in variables for finite-difference gradients (a positive
scalar). The default is Inf.

15 Functions

15-150

DiffMinChange Minimum change in variables for finite-difference gradients (a positive
scalar). The default is 0.

Display Level of display (see “Iterative Display” on page 3-14):

• 'off' or 'none' displays no output.
• 'iter' displays output at each iteration, and gives the default exit

message.
• 'iter-detailed' displays output at each iteration, and gives the

technical exit message.
• 'notify' displays output only if the function does not converge,

and gives the default exit message.
• 'notify-detailed' displays output only if the function does not

converge, and gives the technical exit message.
• 'final' (default) displays only the final output, and gives the

default exit message.
• 'final-detailed' displays only the final output, and gives the

technical exit message.
FiniteDifferenceStepSi
ze

Scalar or vector step size factor for finite differences. When you set
FiniteDifferenceStepSize to a vector v, the forward finite
differences delta are

delta = v.*sign′(x).*max(abs(x),TypicalX);

where sign′(x) = sign(x) except sign′(0) = 1. Central finite
differences are

delta = v.*max(abs(x),TypicalX);

Scalar FiniteDifferenceStepSize expands to a vector. The default
is sqrt(eps) for forward finite differences, and eps^(1/3) for
central finite differences.

The trust-region algorithm uses FiniteDifferenceStepSize only
when CheckGradients is set to true.

For optimset, the name is FinDiffRelStep. See “Current and
Legacy Option Names” on page 14-23.

FiniteDifferenceType Finite differences, used to estimate gradients, are either 'forward'
(the default), or 'central' (centered). 'central' takes twice as
many function evaluations, but should be more accurate. The trust-
region algorithm uses FiniteDifferenceType only when
CheckGradients is set to true.

For optimset, the name is FinDiffType. See “Current and Legacy
Option Names” on page 14-23.

FunValCheck Check whether objective function values are valid. The default setting,
'off', does not perform a check. The 'on' setting displays an error
when the objective function returns a value that is complex, Inf, or
NaN.

 fminunc

15-151

MaxFunctionEvaluations Maximum number of function evaluations allowed, a positive integer.
The default value is 100*numberOfVariables. See “Tolerances and
Stopping Criteria” on page 2-68 and “Iterations and Function Counts”
on page 3-9.

For optimset, the name is MaxFunEvals. See “Current and Legacy
Option Names” on page 14-23.

MaxIterations Maximum number of iterations allowed, a positive integer. The default
value is 400. See “Tolerances and Stopping Criteria” on page 2-68 and
“Iterations and Function Counts” on page 3-9.

For optimset, the name is MaxIter. See “Current and Legacy Option
Names” on page 14-23.

OptimalityTolerance Termination tolerance on the first-order optimality (a positive scalar).
The default is 1e-6. See “First-Order Optimality Measure” on page 3-
11.

For optimset, the name is TolFun. See “Current and Legacy Option
Names” on page 14-23.

OutputFcn Specify one or more user-defined functions that an optimization
function calls at each iteration. Pass a function handle or a cell array of
function handles. The default is none ([]). See “Output Function and
Plot Function Syntax” on page 14-28.

PlotFcn Plots various measures of progress while the algorithm executes; select
from predefined plots or write your own. Pass a built-in plot function
name, a function handle, or a cell array of built-in plot function names
or function handles. For custom plot functions, pass function handles.
The default is none ([]):

• 'optimplotx' plots the current point.
• 'optimplotfunccount' plots the function count.
• 'optimplotfval' plots the function value.
• 'optimplotstepsize' plots the step size.
• 'optimplotfirstorderopt' plots the first-order optimality

measure.

Custom plot functions use the same syntax as output functions. See
“Output Functions for Optimization Toolbox” on page 3-30 and “Output
Function and Plot Function Syntax” on page 14-28.

For optimset, the name is PlotFcns. See “Current and Legacy
Option Names” on page 14-23.

15 Functions

15-152

SpecifyObjectiveGradie
nt

Gradient for the objective function defined by the user. See the
description of fun to see how to define the gradient in fun. Set to
true to have fminunc use a user-defined gradient of the objective
function. The default false causes fminunc to estimate gradients
using finite differences. You must provide the gradient, and set
SpecifyObjectiveGradient to true, to use the trust-region
algorithm. This option is not required for the quasi-Newton algorithm.

For optimset, the name is GradObj and the values are 'on' or
'off'. See “Current and Legacy Option Names” on page 14-23.

StepTolerance Termination tolerance on x, a positive scalar. The default value is 1e-6.
See “Tolerances and Stopping Criteria” on page 2-68.

For optimset, the name is TolX. See “Current and Legacy Option
Names” on page 14-23.

TypicalX Typical x values. The number of elements in TypicalX is equal to the
number of elements in x0, the starting point. The default value is
ones(numberofvariables,1). fminunc uses TypicalX for scaling
finite differences for gradient estimation.

The trust-region algorithm uses TypicalX only for the
CheckGradients option.

trust-region Algorithm
FunctionTolerance Termination tolerance on the function value, a positive scalar. The

default is 1e-6. See “Tolerances and Stopping Criteria” on page 2-68.

For optimset, the name is TolFun. See “Current and Legacy Option
Names” on page 14-23.

HessianFcn If set to [] (default), fminunc approximates the Hessian using finite
differences.

If set to 'objective', fminunc uses a user-defined Hessian for the
objective function. The Hessian is the third output of the objective
function (see fun).

For optimset, the name is HessFcn. See “Current and Legacy Option
Names” on page 14-23.

 fminunc

15-153

HessianMultiplyFcn Hessian multiply function, specified as a function handle. For large-
scale structured problems, this function computes the Hessian matrix
product H*Y without actually forming H. The function is of the form

W = hmfun(Hinfo,Y)

where Hinfo contains the matrix used to compute H*Y.

The first argument is the same as the third argument returned by the
objective function fun, for example

[f,g,Hinfo] = fun(x)

Y is a matrix that has the same number of rows as there are
dimensions in the problem. The matrix W = H*Y, although H is not
formed explicitly. fminunc uses Hinfo to compute the preconditioner.
For information on how to supply values for any additional parameters
hmfun needs, see “Passing Extra Parameters” on page 2-57.

Note To use the HessianMultiplyFcn option, HessianFcn must be
set to [].

For an example, see “Minimization with Dense Structured Hessian,
Linear Equalities” on page 5-99.

For optimset, the name is HessMult. See “Current and Legacy
Option Names” on page 14-23.

HessPattern Sparsity pattern of the Hessian for finite differencing. Set
HessPattern(i,j) = 1 when you can have ∂2fun/∂x(i)∂x(j) ≠ 0.
Otherwise, set HessPattern(i,j) = 0.

Use HessPattern when it is inconvenient to compute the Hessian
matrix H in fun, but you can determine (say, by inspection) when the
ith component of the gradient of fun depends on x(j). fminunc can
approximate H via sparse finite differences (of the gradient) if you
provide the sparsity structure of H as the value for HessPattern. In
other words, provide the locations of the nonzeros.

When the structure is unknown, do not set HessPattern. The default
behavior is as if HessPattern is a dense matrix of ones. Then
fminunc computes a full finite-difference approximation in each
iteration. This computation can be expensive for large problems, so it
is usually better to determine the sparsity structure.

MaxPCGIter Maximum number of preconditioned conjugate gradient (PCG)
iterations, a positive scalar. The default is
max(1,floor(numberOfVariables/2)). For more information, see
“Trust Region Algorithm” on page 15-157.

15 Functions

15-154

PrecondBandWidth Upper bandwidth of preconditioner for PCG, a nonnegative integer. By
default, fminunc uses diagonal preconditioning (upper bandwidth of
0). For some problems, increasing the bandwidth reduces the number
of PCG iterations. Setting PrecondBandWidth to Inf uses a direct
factorization (Cholesky) rather than the conjugate gradients (CG). The
direct factorization is computationally more expensive than CG, but
produces a better quality step towards the solution.

SubproblemAlgorithm Determines how the iteration step is calculated. The default, 'cg',
takes a faster but less accurate step than 'factorization'. See
“fminunc trust-region Algorithm” on page 5-2.

TolPCG Termination tolerance on the PCG iteration, a positive scalar. The
default is 0.1.

quasi-newton Algorithm
HessianApproximation Specifies how fminunc calculates the Hessian. The choices are:

• "bfgs" (default)
• "lbfgs"
• {"lbfgs",Positive Integer}

The choice "lbfgs" is the same as {"lbfgs",10}, meaning the
default "lbfgs" memory value is 10. Use "lbfgs" for problems with
many variables. See “Solve Nonlinear Problem with Many Variables”
on page 5-130.

For optimset, the option name is HessUpdate and the values are
"bfgs", "lbfgs", {"lbfgs",Positive Integer}, "dfp", and
"steepdesc". See “Current and Legacy Option Names” on page 14-
23.

Note Usually, the "dfp" and "steepdesc" values do not work well.
They are available for educational purposes; see “Banana Function
Minimization” on page 5-55.

ObjectiveLimit A tolerance (stopping criterion) that is a scalar. If the objective function
value at an iteration is less than or equal to ObjectiveLimit, the
iterations halt because the problem is presumably unbounded. The
default value is -1e20.

UseParallel When true, fminunc estimates gradients in parallel. Disable by
setting to the default, false. trust-region requires a gradient in
the objective, so UseParallel does not apply. See “Parallel
Computing”.

Example: options = optimoptions('fminunc','SpecifyObjectiveGradient',true)

problem — Problem structure
structure

Problem structure, specified as a structure with the following fields:

 fminunc

15-155

Field Name Entry
objective Objective function
x0 Initial point for x
solver 'fminunc'
options Options created with optimoptions

Data Types: struct

Output Arguments
x — Solution
real vector | real array

Solution, returned as a real vector or real array. The size of x is the same as the size of x0. Typically,
x is a local solution to the problem when exitflag is positive. For information on the quality of the
solution, see “When the Solver Succeeds” on page 4-18.

fval — Objective function value at solution
real number

Objective function value at the solution, returned as a real number. Generally, fval = fun(x).

exitflag — Reason fminunc stopped
integer

Reason fminunc stopped, returned as an integer.

1 Magnitude of gradient is smaller than the
OptimalityTolerance tolerance.

2 Change in x was smaller than the StepTolerance tolerance.
3 Change in the objective function value was less than the

FunctionTolerance tolerance.
5 Predicted decrease in the objective function was less than the

FunctionTolerance tolerance.
0 Number of iterations exceeded MaxIterations or number of

function evaluations exceeded MaxFunctionEvaluations.
-1 Algorithm was terminated by the output function.
-3 Objective function at current iteration went below

ObjectiveLimit.

output — Information about the optimization process
structure

Information about the optimization process, returned as a structure with fields:

iterations Number of iterations taken
funcCount Number of function evaluations
firstorderopt Measure of first-order optimality

15 Functions

15-156

algorithm Optimization algorithm used
cgiterations Total number of PCG iterations ('trust-region' algorithm

only)
lssteplength Size of line search step relative to search direction ('quasi-

newton' algorithm only)
stepsize Final displacement in x
message Exit message

grad — Gradient at the solution
real vector

Gradient at the solution, returned as a real vector. grad gives the gradient of fun at the point x(:).

hessian — Approximate Hessian
real matrix

Approximate Hessian, returned as a real matrix. For the meaning of hessian, see “Hessian Output”
on page 3-24.

If the HessianApproximation option is "lbfgs" or {"lbfgs" n} then the returned hessian is
[].
Data Types: double

Algorithms
Quasi-Newton Algorithm

By default, the quasi-newton algorithm uses the BFGS Quasi-Newton method with a cubic line
search procedure. This quasi-Newton method uses the BFGS ([1],[5],[8], and [9]) formula for
updating the approximation of the Hessian matrix. You can also specify the low-memory BFGS
algorithm ("lbfgs") as the HessianApproximation option. While not recommended, you can
specify the DFP ([4],[6], and [7]) formula, which approximates the inverse Hessian matrix, by setting
the option to 'dfp'. You can specify a steepest descent method by setting the option to
'steepdesc', although this setting is usually inefficient. See “fminunc quasi-newton Algorithm” on
page 5-4.

Trust Region Algorithm

The trust-region algorithm requires that you supply the gradient in fun and set
SpecifyObjectiveGradient to true using optimoptions. This algorithm is a subspace trust-
region method and is based on the interior-reflective Newton method described in [2] and [3]. Each
iteration involves the approximate solution of a large linear system using the method of
preconditioned conjugate gradients (PCG). See “fminunc trust-region Algorithm” on page 5-2, “Trust-
Region Methods for Nonlinear Minimization” on page 5-2 and “Preconditioned Conjugate Gradient
Method” on page 5-3.

Alternative Functionality
App

The Optimize Live Editor task provides a visual interface for fminunc.

 fminunc

15-157

References
[1] Broyden, C. G. “The Convergence of a Class of Double-Rank Minimization Algorithms.” Journal

Inst. Math. Applic., Vol. 6, 1970, pp. 76–90.

[2] Coleman, T. F. and Y. Li. “An Interior, Trust Region Approach for Nonlinear Minimization Subject to
Bounds.” SIAM Journal on Optimization, Vol. 6, 1996, pp. 418–445.

[3] Coleman, T. F. and Y. Li. “On the Convergence of Reflective Newton Methods for Large-Scale
Nonlinear Minimization Subject to Bounds.” Mathematical Programming, Vol. 67, Number 2,
1994, pp. 189–224.

[4] Davidon, W. C. “Variable Metric Method for Minimization.” A.E.C. Research and Development
Report, ANL-5990, 1959.

[5] Fletcher, R. “A New Approach to Variable Metric Algorithms.” Computer Journal, Vol. 13, 1970, pp.
317–322.

[6] Fletcher, R. “Practical Methods of Optimization.” Vol. 1, Unconstrained Optimization, John Wiley
and Sons, 1980.

[7] Fletcher, R. and M. J. D. Powell. “A Rapidly Convergent Descent Method for Minimization.”
Computer Journal, Vol. 6, 1963, pp. 163–168.

[8] Goldfarb, D. “A Family of Variable Metric Updates Derived by Variational Means.” Mathematics of
Computing, Vol. 24, 1970, pp. 23–26.

[9] Shanno, D. F. “Conditioning of Quasi-Newton Methods for Function Minimization.” Mathematics of
Computing, Vol. 24, 1970, pp. 647–656.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

options = optimoptions('solvername','UseParallel',true)

For more information, see “Using Parallel Computing in Optimization Toolbox” on page 13-5.

See Also
fmincon | fminsearch | optimoptions | Optimize

Topics
“Solver-Based Nonlinear Optimization”
“Solver-Based Optimization Problem Setup”
“Unconstrained Nonlinear Optimization Algorithms” on page 5-2

Introduced before R2006a

15 Functions

15-158

fseminf
Find minimum of semi-infinitely constrained multivariable nonlinear function

Syntax
x = fseminf(fun,x0,ntheta,seminfcon)
x = fseminf(fun,x0,ntheta,seminfcon,A,b)
x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq)
x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq,lb,ub)
x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq,lb,ub,options)
x = fseminf(problem)
[x,fval] = fseminf(___)
[x,fval,exitflag,output] = fseminf(___)
[x,fval,exitflag,output,lambda] = fseminf(___)

Description
fseminf is a nonlinear programming solver that finds the minimum of a problem specified by

min
x

f (x) such that

A ⋅ x ≤ b,
Aeq ⋅ x = beq,
lb ≤ x ≤ ub,

c(x) ≤ 0,
ceq(x) = 0,

Ki(x, wi) ≤ 0, 1 ≤ i ≤ n .

• b and beq are vectors.
• A and Aeq are matrices.
• c(x), ceq(x), and Ki(x,wi) are functions that return vectors.
• f(x) is a function that returns a scalar.

f(x), c(x), and ceq(x) can be nonlinear functions. The vectors (or matrices) Ki(x,wi) ≤ 0 are continuous
functions of both x and an additional set of variables w1,w2,...,wn. The variables w1,w2,...,wn are
vectors of length two, at most.

x, lb, and ub can be passed as vectors or matrices; see “Matrix Arguments” on page 2-31.

x = fseminf(fun,x0,ntheta,seminfcon) starts at x0 and finds a minimum of the function fun
constrained by ntheta semi-infinite constraints defined in seminfcon.

x = fseminf(fun,x0,ntheta,seminfcon,A,b) also tries to satisfy the linear inequalities
A*x ≤ b.

x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq) minimizes subject to the linear
equalities Aeq*x = beq as well. Set A = [] and b = [] if no inequalities exist.

x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq,lb,ub) defines a set of lower and
upper bounds on the design variables in x, so that the solution is always in the range lb ≤ x ≤ ub.

 fseminf

15-159

x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq,lb,ub,options) minimizes with the
optimization options specified in options. Use optimoptions to set these options.

x = fseminf(problem) finds the minimum for problem, a structure described in problem.

[x,fval] = fseminf(___), for any previous input syntax, returns the value of the objective
function fun at the solution x.

Note If the specified input bounds for a problem are inconsistent, the output x is x0 and the output
fval is [].

[x,fval,exitflag,output] = fseminf(___) also returns a value exitflag that describes
the exit condition, and a structure output with information about the optimization process.

[x,fval,exitflag,output,lambda] = fseminf(___) returns a structure lambda whose
fields contain the Lagrange multipliers at the solution x.

Examples

Minimize Function with Semi-Infinite Constraints

Minimize the function

(x− 1)2,

subject to the constraints

0 ≤ x ≤ 2

g(x, t) = (x− 1/2)− (t − 1/2)2 ≤ 0 for all 0 ≤ t ≤ 1.

The unconstrained objective function is minimized at x = 1. However, the constraint

g(x, t) ≤ 0 for all 0 ≤ t ≤ 1

implies x ≤ 1/2. Notice that (t − 1/2)2 ≥ 0, so

max
t

g(x, t) = x− 1/2.

Therefore,

max
t

g(x, t) ≤ 0 when x ≤ 1/2.

To solve this problem using fseminf, write the objective function as an anonymous function.

objfun = @(x)(x-1)^2;

Write the semi-infinite constraint function seminfcon, which includes the nonlinear constraints [],
initial sampling interval for t (0 to 1 in steps of 0.01), and the semi-infinite constraint function g(x, t).
The code for the seminfcon function appears at the end of this example on page 15-0 .

15 Functions

15-160

Set the initial point x0 = 0.2.

x0 = 0.2;

Specify the one semi-infinite constraint.

ntheta = 1;

Solve the problem by calling fseminf and view the result.

x = fseminf(objfun,x0,ntheta,@seminfcon)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

x = 0.5000

The following code creates the seminfcon function.

function [c, ceq, K1, s] = seminfcon(x,s)

% No finite nonlinear inequality and equality constraints
c = [];
ceq = [];

% Sample set
if isnan(s)
 % Initial sampling interval
 s = [0.01 0];
end
t = 0:s(1):1;

% Evaluate the semi-infinite constraint
K1 = (x - 0.5) - (t - 0.5).^2;
end

Examine fseminf Outputs

Minimize the function

(x− 1)2,

subject to the constraints

0 ≤ x ≤ 2

g(x, t) = (x− 1/2)− (t − 1/2)2 ≤ 0 for all 0 ≤ t ≤ 1.

This problem is formulated and solved in the example “Minimize Function with Semi-Infinite
Constraints” on page 15-160 which collects more information about the solution and solution process.

To solve this problem using fseminf, write the objective function as an anonymous function.

 fseminf

15-161

objfun = @(x)(x-1)^2;

The code for the nonlinear and semi-infinite constraint function seminfcon appears at the end of this
example on page 15-0 .

Set the initial point x0 = 0.2.

x0 = 0.2;

Specify the one semi-infinite constraint.

ntheta = 1;

Solve the problem by calling fseminf and view the result.

A = [];
b = [];
Aeq = [];
beq = [];
lb = 0;
ub = 2;
[x,fval,exitflag,output,lambda] = fseminf(objfun,x0,ntheta,@seminfcon,...
 A,b,Aeq,beq,lb,ub)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

x = 0.5000

fval = 0.2500

exitflag = 1

output = struct with fields:
 iterations: 2
 funcCount: 4
 lssteplength: 1
 stepsize: 4.6841e-12
 algorithm: 'active-set'
 firstorderopt: 9.3682e-12
 constrviolation: 4.6841e-12
 message: 'Local minimum found that satisfies the constraints....'

lambda = struct with fields:
 lower: 0
 upper: 0
 eqlin: [0x1 double]
 eqnonlin: [0x1 double]
 ineqlin: [0x1 double]
 ineqnonlin: [1x0 double]

The returned values show:

• The problem is solved at x = 1/2.

15 Functions

15-162

• The value of the objective function, (x− 1)2, is 1/4.
• The solver takes two iterations and four function evaluations to reach the solution.
• The only constraints other than semi-infinite constraints are bounds, so the lambda structure has

no linear or nonlinear values. The lambda.lower and lambda.upper fields, which correspond to
bounds, are not empty, but have zero values because the solution is not at either bound.

The following code creates the seminfcon function.

function [c, ceq, K1, s] = seminfcon(x,s)

% No finite nonlinear inequality and equality constraints
c = [];
ceq = [];

% Sample set
if isnan(s)
 % Initial sampling interval
 s = [0.01 0];
end
t = 0:s(1):1;

% Evaluate the semi-infinite constraint
K1 = (x - 0.5) - (t - 0.5).^2;
end

Input Arguments
fun — Function to minimize
function handle | function name

Function to minimize, specified as a function handle or function name. fun is a function that accepts
a vector or array x and returns a real scalar f, the objective function evaluated at x.

fseminf passes x to your objective function and any nonlinear constraint functions in the shape of
the x0 argument. For example, if x0 is a 5-by-3 array, then fseminf passes x to fun as a 5-by-3
array. However, fseminf multiplies linear constraint matrices A or Aeq with x after converting x to
the column vector x(:).

Specify fun as a function handle for a file.

x = fseminf(@myfun,...)

Here, myfun is a MATLAB function such as the following.

function f = myfun(x)
f = ... % Compute function value at x

You can also specify fun as a function handle for an anonymous function.

x = fseminf(@(x)norm(x)^2,...);

If you can compute the gradient of fun and the SpecifyObjectiveGradient option is set to true,
as set by

options = optimoptions('fseminf','SpecifyObjectiveGradient',true);

 fseminf

15-163

then fun must return the gradient vector g(x) in the second output argument.
Example: fun = @(x)sin(x(1))*cos(x(2))
Data Types: char | function_handle | string

x0 — Initial point
real vector | real array

Initial point, specified as a real vector or real array. Solvers use the number of elements in x0 and the
size of x0 to determine the number and size of variables that fun accepts.
Example: x0 = [1,2,3,4]
Data Types: double

ntheta — Number of semi-infinite constraints
positive integer

Number of semi-infinite constraints, specified as a positive integer.
Example: 4
Data Types: double

seminfcon — Function that computes nonlinear constraints and semi-infinite constraints
function handle | function name

Function that computes the vector of nonlinear inequality constraints c, the vector of nonlinear
equality constraints ceq, and ntheta semi-infinite constraints (vectors or matrices) K1, K2,...,
Kntheta evaluated over an interval S at the point x. You can specify seminfcon as a function
handle.

x = fseminf(@myfun,x0,ntheta,@myinfcon)

where myinfcon is a MATLAB function such as
function [c,ceq,K1,K2,...,Kntheta,S] = myinfcon(x,S)
% Initial sampling interval
if isnan(S(1,1)),
 S = ...% S has ntheta rows and 2 columns
end
w1 = ...% Compute sample set
w2 = ...% Compute sample set
...
wntheta = ... % Compute sample set
K1 = ... % 1st semi-infinite constraint at x and w
K2 = ... % 2nd semi-infinite constraint at x and w
...
Kntheta = ...% Last semi-infinite constraint at x and w
c = ... % Compute nonlinear inequalities at x
ceq = ... % Compute nonlinear equalities at x

S is a recommended sampling interval, which the function might not use. Return [] for c and ceq if
no such constraints exist.

The vectors or matrices K1, K2, ..., Kntheta contain the semi-infinite constraints evaluated for a
sampled set of values for the independent variables w1, w2, ..., wntheta, respectively. The two-
column matrix S contains a recommended sampling interval for values of w1, w2, ..., wntheta,
which are used to evaluate K1, K2, ..., Kntheta. The ith row of S contains the recommended
sampling interval for evaluating Ki. When Ki is a vector, the function uses only S(i,1) (the second
column can be all zeros). When Ki is a matrix, the function uses S(i,2) to sample the rows in Ki,

15 Functions

15-164

and uses S(i,1) for the sampling interval of the columns of Ki (see “Two-Dimensional Semi-Infinite
Constraint” on page 5-150). Because S is NaN on the first iteration, seminfcon must determine some
initial sampling interval.

Note Because Optimization Toolbox functions accept inputs of type double only, user-supplied
objective and nonlinear constraint functions must return outputs of type double.

For methods to parameterize seminfcon, if necessary, see “Passing Extra Parameters” on page 2-57.
For an example of both one- and two-dimensional sampling points, see “Example of Creating
Sampling Points” on page 5-37.

A — Linear inequality constraints
real matrix

Linear inequality constraints, specified as a real matrix. A is an M-by-N matrix, where M is the number
of inequalities, and N is the number of variables (number of elements in x0). For large problems, pass
A as a sparse matrix.

A encodes the M linear inequalities

A*x <= b,

where x is the column vector of N variables x(:), and b is a column vector with M elements.

For example, consider these inequalities:

x1 + 2x2 ≤ 10
3x1 + 4x2 ≤ 20
5x1 + 6x2 ≤ 30,

Specify the inequalities by entering the following constraints.

A = [1,2;3,4;5,6];
b = [10;20;30];

Example: To specify that the x components sum to 1 or less, use A = ones(1,N) and b = 1.
Data Types: double

b — Linear inequality constraints
real vector

Linear inequality constraints, specified as a real vector. b is an M-element vector related to the A
matrix. If you pass b as a row vector, solvers internally convert b to the column vector b(:). For
large problems, pass b as a sparse vector.

b encodes the M linear inequalities

A*x <= b,

where x is the column vector of N variables x(:), and A is a matrix of size M-by-N.

For example, consider these inequalities:

x1 + 2x2 ≤ 10

 fseminf

15-165

3x1 + 4x2 ≤ 20
5x1 + 6x2 ≤ 30.

Specify the inequalities by entering the following constraints.

A = [1,2;3,4;5,6];
b = [10;20;30];

Example: To specify that the x components sum to 1 or less, use A = ones(1,N) and b = 1.
Data Types: double

Aeq — Linear equality constraints
real matrix

Linear equality constraints, specified as a real matrix. Aeq is an Me-by-N matrix, where Me is the
number of equalities, and N is the number of variables (number of elements in x0). For large
problems, pass Aeq as a sparse matrix.

Aeq encodes the Me linear equalities

Aeq*x = beq,

where x is the column vector of N variables x(:), and beq is a column vector with Me elements.

For example, consider these inequalities:

x1 + 2x2 + 3x3 = 10
2x1 + 4x2 + x3 = 20,

Specify the inequalities by entering the following constraints.

Aeq = [1,2,3;2,4,1];
beq = [10;20];

Example: To specify that the x components sum to 1, use Aeq = ones(1,N) and beq = 1.
Data Types: double

beq — Linear equality constraints
real vector

Linear equality constraints, specified as a real vector. beq is an Me-element vector related to the Aeq
matrix. If you pass beq as a row vector, solvers internally convert beq to the column vector beq(:).
For large problems, pass beq as a sparse vector.

beq encodes the Me linear equalities

Aeq*x = beq,

where x is the column vector of N variables x(:), and Aeq is a matrix of size Me-by-N.

For example, consider these equalities:

x1 + 2x2 + 3x3 = 10
2x1 + 4x2 + x3 = 20.

Specify the equalities by entering the following constraints.

15 Functions

15-166

Aeq = [1,2,3;2,4,1];
beq = [10;20];

Example: To specify that the x components sum to 1, use Aeq = ones(1,N) and beq = 1.
Data Types: double

lb — Lower bounds
real vector | real array

Lower bounds, specified as a real vector or real array. If the number of elements in x0 is equal to the
number of elements in lb, then lb specifies that

x(i) >= lb(i) for all i.

If numel(lb) < numel(x0), then lb specifies that

x(i) >= lb(i) for 1 <= i <= numel(lb).

If lb has fewer elements than x0, solvers issue a warning.
Example: To specify that all x components are positive, use lb = zeros(size(x0)).
Data Types: double

ub — Upper bounds
real vector | real array

Upper bounds, specified as a real vector or real array. If the number of elements in x0 is equal to the
number of elements in ub, then ub specifies that

x(i) <= ub(i) for all i.

If numel(ub) < numel(x0), then ub specifies that

x(i) <= ub(i) for 1 <= i <= numel(ub).

If ub has fewer elements than x0, solvers issue a warning.
Example: To specify that all x components are less than 1, use ub = ones(size(x0)).
Data Types: double

options — Optimization options
output of optimoptions | structure such as optimset returns

Optimization options, specified as the output of optimoptions or a structure such as optimset
returns. See “Optimization Options Reference” on page 14-6 for detailed information.

Some options are absent from the optimoptions display. These options appear in italics in the
following table. For details, see “View Options” on page 2-66.

 fseminf

15-167

Option Description
CheckGradients Compare user-supplied derivatives (gradients of objective or

constraints) to finite-differencing derivatives. The choices
are true or the default false.

For optimset, the name is DerivativeCheck and the
values are 'on' or 'off'. See “Current and Legacy Option
Names” on page 14-23.

ConstraintTolerance Termination tolerance on the constraint violation (a positive
scalar). The default is 1e-6. See “Tolerances and Stopping
Criteria” on page 2-68.

For optimset, the name is TolCon. See “Current and
Legacy Option Names” on page 14-23.

Diagnostics Display diagnostic information about the function to be
minimized or solved. The choices are 'on' or the default
'off'.

DiffMaxChange Maximum change in variables for finite-difference gradients
(a positive scalar). The default is Inf.

DiffMinChange Minimum change in variables for finite-difference gradients
(a positive scalar). The default is 0.

Display Level of display (see “Iterative Display” on page 3-14):

• 'off' or 'none' displays no output.
• 'iter' displays output at each iteration, and gives the

default exit message.
• 'iter-detailed' displays output at each iteration, and

gives the technical exit message.
• 'notify' displays output only if the function does not

converge, and gives the default exit message.
• 'notify-detailed' displays output only if the function

does not converge, and gives the technical exit message.
• 'final' (default) displays only the final output, and

gives the default exit message.
• 'final-detailed' displays only the final output, and

gives the technical exit message.

15 Functions

15-168

Option Description
FiniteDifferenceStepSize Scalar or vector step size factor for finite differences. When

you set FiniteDifferenceStepSize to a vector v, the
forward finite differences delta are

delta = v.*sign′(x).*max(abs(x),TypicalX);

where sign′(x) = sign(x) except sign′(0) = 1.
Central finite differences are

delta = v.*max(abs(x),TypicalX);

Scalar FiniteDifferenceStepSize expands to a vector.
The default is sqrt(eps) for forward finite differences, and
eps^(1/3) for central finite differences.

For optimset, the name is FinDiffRelStep. See “Current
and Legacy Option Names” on page 14-23.

FiniteDifferenceType Finite differences, used to estimate gradients, are either
'forward' (the default) or 'central' (centered).
'central' takes twice as many function evaluations, but
can be more accurate.

The algorithm is careful to obey bounds when estimating
both types of finite differences. For example, to avoid
evaluating at a point outside the bounds, the algorithm might
take a backward difference rather than a forward difference.

For optimset, the name is FinDiffType. See “Current and
Legacy Option Names” on page 14-23.

FunctionTolerance Termination tolerance on the function value (a positive
scalar). The default is 1e-4. See “Tolerances and Stopping
Criteria” on page 2-68.

For optimset, the name is TolFun. See “Current and
Legacy Option Names” on page 14-23.

FunValCheck Check whether objective function and constraints values are
valid. The setting 'on' displays an error when the objective
function or constraints return a value that is complex, Inf,
or NaN. The default 'off' displays no error.

MaxFunctionEvaluations Maximum number of function evaluations allowed (a positive
integer). The default is 100*numberOfVariables. See
“Tolerances and Stopping Criteria” on page 2-68 and
“Iterations and Function Counts” on page 3-9.

For optimset, the name is MaxFunEvals. See “Current and
Legacy Option Names” on page 14-23.

 fseminf

15-169

Option Description
MaxIterations Maximum number of iterations allowed (a positive integer).

The default is 400. See “Tolerances and Stopping Criteria”
on page 2-68 and “Iterations and Function Counts” on page
3-9.

For optimset, the name is MaxIter. See “Current and
Legacy Option Names” on page 14-23.

MaxSQPIter Maximum number of SQP iterations allowed (a positive
integer). The default is 10*max(numberOfVariables,
numberOfInequalities + numberOfBounds).

OptimalityTolerance Termination tolerance on the first-order optimality (a positive
scalar). The default is 1e-6. See “First-Order Optimality
Measure” on page 3-11.

For optimset, the name is TolFun. See “Current and
Legacy Option Names” on page 14-23.

OutputFcn Specify one or more user-defined functions called by an
optimization function at each iteration. Pass a function
handle or a cell array of function handles. The default is
none ([]). See “Output Function and Plot Function Syntax”
on page 14-28.

PlotFcn Plot various measures of progress while the algorithm
executes; select from predefined plots or write your own.
Pass a name, function handle, or cell array of names or
function handles. For custom plot functions, pass function
handles. The default is none ([]).

• 'optimplotx' plots the current point.
• 'optimplotfunccount' plots the function count.
• 'optimplotfval' plots the function value.
• 'optimplotfvalconstr' plots the best feasible

objective function value found as a line plot. The plot
shows infeasible points as red and feasible points as blue,
using a feasibility tolerance of 1e-6.

• 'optimplotconstrviolation' plots the maximum
constraint violation.

• 'optimplotstepsize' plots the step size.
• 'optimplotfirstorderopt' plots the first-order

optimality measure.

Custom plot functions use the same syntax as output
functions. See “Output Functions for Optimization Toolbox”
on page 3-30 and “Output Function and Plot Function
Syntax” on page 14-28.

For optimset, the name is PlotFcns. See “Current and
Legacy Option Names” on page 14-23.

15 Functions

15-170

Option Description
RelLineSrchBnd Relative bound (a real nonnegative scalar value) on the line

search step length such that the total displacement in x
satisfies |Δx(i)| ≤ relLineSrchBnd· max(|x(i)|,|typicalx(i)|).
This option provides control over the magnitude of the
displacements in x for cases in which the solver takes steps
that fseminf considers too large. The default is no bounds
([]).

RelLineSrchBndDuration Number of iterations for which the bound specified in
RelLineSrchBnd should be active (default is 1).

SpecifyObjectiveGradient Gradient for the objective function defined by the user. See
the preceding description of fun to see how to define the
gradient in fun. Set this option to true to have fseminf
use a user-defined gradient of the objective function. The
default false causes fseminf to estimate gradients using
finite differences.

For optimset, the name is GradObj and the values are
'on' or 'off'. See “Current and Legacy Option Names” on
page 14-23.

StepTolerance Termination tolerance on x, a positive scalar. The default
value is 1e-4. See “Tolerances and Stopping Criteria” on
page 2-68.

For optimset, the name is TolX. See “Current and Legacy
Option Names” on page 14-23.

TolConSQP Termination tolerance on the inner iteration SQP constraint
violation, a positive scalar. The default is 1e-6.

TypicalX Typical x values. The number of elements in TypicalX is
equal to the number of elements in x0, the starting point.
The default value is ones(numberofvariables,1).
fseminf uses TypicalX for scaling finite differences for
gradient estimation.

Example: options = optimoptions('fseminf','PlotFcn','optimplotfval')

problem — Problem structure
structure

Problem structure, specified as a structure with the following fields.

Field Name Entry
objective Objective function
x0 Initial point for x
ntheta Number of semi-infinite constraints
seminfcon Semi-infinite constraint function
Aineq Matrix for linear inequality constraints
bineq Vector for linear inequality constraints

 fseminf

15-171

Field Name Entry
Aeq Matrix for linear equality constraints
beq Vector for linear equality constraints
lb Vector of lower bounds
ub Vector of upper bounds
solver 'fmseminf'
options Options created with optimoptions

You must supply at least the objective, x0, seminfcon, solver, and options fields in the
problem structure.
Data Types: struct

Output Arguments
x — Solution
real vector | real array

Solution, returned as a real vector or real array. The size of x is the same as the size of x0. Typically,
x is a local solution to the problem when exitflag is positive. For information on the quality of the
solution, see “When the Solver Succeeds” on page 4-18.

fval — Objective function value at solution
real number

Objective function value at the solution, returned as a real number. Generally, fval = fun(x).

exitflag — Reason fseminf stopped
integer

Reason fseminf stopped, returned as an integer.

Flag Description
1 Function converged to a solution x.
4 Magnitude of the search direction was less than the specified

tolerance, and the constraint violation was less than
options.ConstraintTolerance.

5 Magnitude of the directional derivative was less than the
specified tolerance, and the constraint violation was less than
options.ConstraintTolerance.

0 Number of iterations exceeded options.MaxIterations, or
the number of function evaluations exceeded
options.MaxFunctionEvaluations.

-1 Stopped by an output function or plot function.
-2 No feasible point was found.

output — Information about the optimization process
structure

15 Functions

15-172

Information about the optimization process, returned as a structure with the following fields.

Field Name Description
iterations Number of iterations taken
funcCount Number of function evaluations
lssteplength Size of line search step relative to search direction
stepsize Final displacement in x
algorithm Optimization algorithm used
constrviolation Maximum of constraint functions
firstorderopt Measure of first-order optimality
message Exit message
iterations Number of iterations taken
funcCount Number of function evaluations

lambda — Lagrange multipliers at the solution
structure

Lagrange multipliers at the solution, returned as a structure with the following fields.

Field Name Description
lower Lower bounds corresponding to lb
upper Upper bounds corresponding to ub
ineqlin Linear inequalities corresponding to A and b
eqlin Linear equalities corresponding to Aeq and beq
ineqnonlin Nonlinear inequalities corresponding to the c in seminfcon
eqnonlin Nonlinear equalities corresponding to the ceq in seminfcon

Limitations
• The function to be minimized, the constraints, and the semi-infinite constraints must be

continuous functions of x and w.
• fseminf might give local solutions only.

Algorithms
fseminf uses cubic and quadratic interpolation techniques to estimate peak values in the semi-
infinite constraints. The algorithm uses the peak values to form a set of constraints supplied to an
SQP method, as in the fmincon function. When the number of constraints changes, the algorithm
reallocates Lagrange multipliers to the new set of constraints.

The recommended sampling interval calculation uses the difference between the interpolated peak
values and the peak values in the data set to estimate whether the function needs to take more or
fewer points. The function also evaluates the effectiveness of the interpolation by extrapolating the
curve and comparing it to other points in the curve. The recommended sampling interval decreases
when the peak values are close to constraint boundaries, that is, zero.

When the problem is not feasible, fseminf attempts to minimize the maximum constraint value.

 fseminf

15-173

For more details on the algorithm used and the types of procedures displayed under the Procedures
heading when the Display option is set to 'iter' with optimoptions, see “SQP Implementation”
on page 5-25. For more details on the fseminf algorithm, see “fseminf Problem Formulation and
Algorithm” on page 5-36.

See Also
fmincon | optimoptions

Topics
“One-Dimensional Semi-Infinite Constraints” on page 5-147
“Two-Dimensional Semi-Infinite Constraint” on page 5-150
“Analyzing the Effect of Uncertainty Using Semi-Infinite Programming” on page 5-153
“fseminf Problem Formulation and Algorithm” on page 5-36

Introduced before R2006a

15 Functions

15-174

fsolve
Solve system of nonlinear equations

Syntax
x = fsolve(fun,x0)
x = fsolve(fun,x0,options)
x = fsolve(problem)
[x,fval] = fsolve(___)
[x,fval,exitflag,output] = fsolve(___)
[x,fval,exitflag,output,jacobian] = fsolve(___)

Description
Nonlinear system solver

Solves a problem specified by

F(x) = 0

for x, where F(x) is a function that returns a vector value.

x is a vector or a matrix; see “Matrix Arguments” on page 2-31.

x = fsolve(fun,x0) starts at x0 and tries to solve the equations fun(x) = 0, an array of zeros.

Note “Passing Extra Parameters” on page 2-57 explains how to pass extra parameters to the vector
function fun(x), if necessary. See “Solve Parameterized Equation” on page 15-178.

x = fsolve(fun,x0,options) solves the equations with the optimization options specified in
options. Use optimoptions to set these options.

x = fsolve(problem) solves problem, a structure described in problem.

[x,fval] = fsolve(___), for any syntax, returns the value of the objective function fun at the
solution x.

[x,fval,exitflag,output] = fsolve(___) additionally returns a value exitflag that
describes the exit condition of fsolve, and a structure output with information about the
optimization process.

[x,fval,exitflag,output,jacobian] = fsolve(___) returns the Jacobian of fun at the
solution x.

Examples

 fsolve

15-175

Solution of 2-D Nonlinear System

This example shows how to solve two nonlinear equations in two variables. The equations are

Convert the equations to the form .

Write a function that computes the left-hand side of these two equations.

function F = root2d(x)

F(1) = exp(-exp(-(x(1)+x(2)))) - x(2)*(1+x(1)^2);
F(2) = x(1)*cos(x(2)) + x(2)*sin(x(1)) - 0.5;

Save this code as a file named root2d.m on your MATLAB® path.

Solve the system of equations starting at the point [0,0].

fun = @root2d;
x0 = [0,0];
x = fsolve(fun,x0)

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.

x =

 0.3532 0.6061

Solution with Nondefault Options

Examine the solution process for a nonlinear system.

Set options to have no display and a plot function that displays the first-order optimality, which should
converge to 0 as the algorithm iterates.

options = optimoptions('fsolve','Display','none','PlotFcn',@optimplotfirstorderopt);

The equations in the nonlinear system are

15 Functions

15-176

Convert the equations to the form .

Write a function that computes the left-hand side of these two equations.

function F = root2d(x)

F(1) = exp(-exp(-(x(1)+x(2)))) - x(2)*(1+x(1)^2);
F(2) = x(1)*cos(x(2)) + x(2)*sin(x(1)) - 0.5;

Save this code as a file named root2d.m on your MATLAB® path.

Solve the nonlinear system starting from the point [0,0] and observe the solution process.

fun = @root2d;
x0 = [0,0];
x = fsolve(fun,x0,options)

x =

 0.3532 0.6061

 fsolve

15-177

Solve Parameterized Equation

You can parameterize equations as described in the topic “Passing Extra Parameters” on page 2-57.
For example, the paramfun helper function at the end of this example on page 15-0 creates the
following equation system parameterized by c:

2x1 + x2 = exp(cx1)
−x1 + 2x2 = exp(cx2) .

To solve the system for a particular value, in this case c = − 1, set c in the workspace and create an
anonymous function in x from paramfun.

c = -1;
fun = @(x)paramfun(x,c);

Solve the system starting from the point x0 = [0 1].

x0 = [0 1];
x = fsolve(fun,x0)

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.

15 Functions

15-178

x = 1×2

 0.1976 0.4255

To solve for a different value of c, enter c in the workspace and create the fun function again, so it
has the new c value.

c = -2;
fun = @(x)paramfun(x,c); % fun now has the new c value
x = fsolve(fun,x0)

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.

x = 1×2

 0.1788 0.3418

Helper Function

This code creates the paramfun helper function.

function F = paramfun(x,c)
F = [2*x(1) + x(2) - exp(c*x(1))
 -x(1) + 2*x(2) - exp(c*x(2))];
end

Solve a Problem Structure

Create a problem structure for fsolve and solve the problem.

Solve the same problem as in “Solution with Nondefault Options” on page 15-176, but formulate the
problem using a problem structure.

Set options for the problem to have no display and a plot function that displays the first-order
optimality, which should converge to 0 as the algorithm iterates.

problem.options = optimoptions('fsolve','Display','none','PlotFcn',@optimplotfirstorderopt);

The equations in the nonlinear system are

Convert the equations to the form .

Write a function that computes the left-hand side of these two equations.

 fsolve

15-179

function F = root2d(x)

F(1) = exp(-exp(-(x(1)+x(2)))) - x(2)*(1+x(1)^2);
F(2) = x(1)*cos(x(2)) + x(2)*sin(x(1)) - 0.5;

Save this code as a file named root2d.m on your MATLAB® path.

Create the remaining fields in the problem structure.

problem.objective = @root2d;
problem.x0 = [0,0];
problem.solver = 'fsolve';

Solve the problem.

x = fsolve(problem)

x =

 0.3532 0.6061

15 Functions

15-180

Solution Process of Nonlinear System

This example returns the iterative display showing the solution process for the system of two
equations and two unknowns

2x1− x2 = e−x1

−x1 + 2x2 = e−x2 .

Rewrite the equations in the form F(x) = 0:

2x1− x2− e−x1 = 0

−x1 + 2x2− e−x2 = 0 .

Start your search for a solution at x0 = [-5 -5].

First, write a function that computes F, the values of the equations at x.

F = @(x) [2*x(1) - x(2) - exp(-x(1));
 -x(1) + 2*x(2) - exp(-x(2))];

Create the initial point x0.

x0 = [-5;-5];

Set options to return iterative display.

options = optimoptions('fsolve','Display','iter');

Solve the equations.

[x,fval] = fsolve(F,x0,options)

 Norm of First-order Trust-region
 Iteration Func-count f(x) step optimality radius
 0 3 47071.2 2.29e+04 1
 1 6 12003.4 1 5.75e+03 1
 2 9 3147.02 1 1.47e+03 1
 3 12 854.452 1 388 1
 4 15 239.527 1 107 1
 5 18 67.0412 1 30.8 1
 6 21 16.7042 1 9.05 1
 7 24 2.42788 1 2.26 1
 8 27 0.032658 0.759511 0.206 2.5
 9 30 7.03149e-06 0.111927 0.00294 2.5
 10 33 3.29525e-13 0.00169132 6.36e-07 2.5

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.

x = 2×1

 0.5671

 fsolve

15-181

 0.5671

fval = 2×1
10-6 ×

 -0.4059
 -0.4059

The iterative display shows f(x), which is the square of the norm of the function F(x). This value
decreases to near zero as the iterations proceed. The first-order optimality measure likewise
decreases to near zero as the iterations proceed. These entries show the convergence of the
iterations to a solution. For the meanings of the other entries, see “Iterative Display” on page 3-14.

The fval output gives the function value F(x), which should be zero at a solution (to within the
FunctionTolerance tolerance).

Examine Matrix Equation Solution

Find a matrix X that satisfies

X * X * X =
1 2
3 4

,

starting at the point x0 = [1,1;1,1]. Create an anonymous function that calculates the matrix
equation and create the point x0.

fun = @(x)x*x*x - [1,2;3,4];
x0 = ones(2);

Set options to have no display.

options = optimoptions('fsolve','Display','off');

Examine the fsolve outputs to see the solution quality and process.

[x,fval,exitflag,output] = fsolve(fun,x0,options)

x = 2×2

 -0.1291 0.8602
 1.2903 1.1612

fval = 2×2
10-9 ×

 -0.4697 0.2149
 0.3223 -0.1484

exitflag = 1

output = struct with fields:
 iterations: 9

15 Functions

15-182

 funcCount: 46
 algorithm: 'trust-region-dogleg'
 firstorderopt: 6.8853e-10
 message: 'Equation solved....'

The exit flag value 1 indicates that the solution is reliable. To verify this manually, calculate the
residual (sum of squares of fval) to see how close it is to zero.

sum(sum(fval.*fval))

ans = 3.9272e-19

This small residual confirms that x is a solution.

You can see in the output structure how many iterations and function evaluations fsolve performed
to find the solution.

Input Arguments
fun — Nonlinear equations to solve
function handle | function name

Nonlinear equations to solve, specified as a function handle or function name. fun is a function that
accepts a vector x and returns a vector F, the nonlinear equations evaluated at x. The equations to
solve are F = 0 for all components of F. The function fun can be specified as a function handle for a
file

x = fsolve(@myfun,x0)

where myfun is a MATLAB function such as
function F = myfun(x)
F = ... % Compute function values at x

fun can also be a function handle for an anonymous function.

x = fsolve(@(x)sin(x.*x),x0);

fsolve passes x to your objective function in the shape of the x0 argument. For example, if x0 is a 5-
by-3 array, then fsolve passes x to fun as a 5-by-3 array.

If the Jacobian can also be computed and the 'SpecifyObjectiveGradient' option is true, set by

options = optimoptions('fsolve','SpecifyObjectiveGradient',true)

the function fun must return, in a second output argument, the Jacobian value J, a matrix, at x.

If fun returns a vector (matrix) of m components and x has length n, where n is the length of x0, the
Jacobian J is an m-by-n matrix where J(i,j) is the partial derivative of F(i) with respect to x(j).
(The Jacobian J is the transpose of the gradient of F.)
Example: fun = @(x)x*x*x-[1,2;3,4]
Data Types: char | function_handle | string

x0 — Initial point
real vector | real array

 fsolve

15-183

Initial point, specified as a real vector or real array. fsolve uses the number of elements in and size
of x0 to determine the number and size of variables that fun accepts.
Example: x0 = [1,2,3,4]
Data Types: double

options — Optimization options
output of optimoptions | structure as optimset returns

Optimization options, specified as the output of optimoptions or a structure such as optimset
returns.

Some options apply to all algorithms, and others are relevant for particular algorithms. See
“Optimization Options Reference” on page 14-6 for detailed information.

Some options are absent from the optimoptions display. These options appear in italics in the
following table. For details, see “View Options” on page 2-66.

All Algorithms
Algorithm Choose between 'trust-region-dogleg' (default), 'trust-

region', and 'levenberg-marquardt'.

The Algorithm option specifies a preference for which algorithm to
use. It is only a preference because for the trust-region algorithm, the
nonlinear system of equations cannot be underdetermined; that is, the
number of equations (the number of elements of F returned by fun)
must be at least as many as the length of x. Similarly, for the trust-
region-dogleg algorithm, the number of equations must be the same as
the length of x. fsolve uses the Levenberg-Marquardt algorithm
when the selected algorithm is unavailable. For more information on
choosing the algorithm, see “Choosing the Algorithm” on page 2-6.

To set some algorithm options using optimset instead of
optimoptions:

• Algorithm — Set the algorithm to 'trust-region-
reflective' instead of 'trust-region'.

• InitDamping — Set the initial Levenberg-Marquardt parameter λ by
setting Algorithm to a cell array such as {'levenberg-
marquardt',.005}.

CheckGradients Compare user-supplied derivatives (gradients of objective or
constraints) to finite-differencing derivatives. The choices are true or
the default false.

For optimset, the name is DerivativeCheck and the values are
'on' or 'off'. See “Current and Legacy Option Names” on page 14-
23.

Diagnostics Display diagnostic information about the function to be minimized or
solved. The choices are 'on' or the default 'off'.

DiffMaxChange Maximum change in variables for finite-difference gradients (a positive
scalar). The default is Inf.

15 Functions

15-184

DiffMinChange Minimum change in variables for finite-difference gradients (a positive
scalar). The default is 0.

Display Level of display (see “Iterative Display” on page 3-14):

• 'off' or 'none' displays no output.
• 'iter' displays output at each iteration, and gives the default exit

message.
• 'iter-detailed' displays output at each iteration, and gives the

technical exit message.
• 'final' (default) displays just the final output, and gives the

default exit message.
• 'final-detailed' displays just the final output, and gives the

technical exit message.
FiniteDifferenceStepSi
ze

Scalar or vector step size factor for finite differences. When you set
FiniteDifferenceStepSize to a vector v, the forward finite
differences delta are

delta = v.*sign′(x).*max(abs(x),TypicalX);

where sign′(x) = sign(x) except sign′(0) = 1. Central finite
differences are

delta = v.*max(abs(x),TypicalX);

Scalar FiniteDifferenceStepSize expands to a vector. The default
is sqrt(eps) for forward finite differences, and eps^(1/3) for
central finite differences.

For optimset, the name is FinDiffRelStep. See “Current and
Legacy Option Names” on page 14-23.

FiniteDifferenceType Finite differences, used to estimate gradients, are either 'forward'
(default), or 'central' (centered). 'central' takes twice as many
function evaluations, but should be more accurate.

The algorithm is careful to obey bounds when estimating both types of
finite differences. So, for example, it could take a backward, rather
than a forward, difference to avoid evaluating at a point outside
bounds.

For optimset, the name is FinDiffType. See “Current and Legacy
Option Names” on page 14-23.

FunctionTolerance Termination tolerance on the function value, a positive scalar. The
default is 1e-6. See “Tolerances and Stopping Criteria” on page 2-68.

For optimset, the name is TolFun. See “Current and Legacy Option
Names” on page 14-23.

FunValCheck Check whether objective function values are valid. 'on' displays an
error when the objective function returns a value that is complex,
Inf, or NaN. The default, 'off', displays no error.

 fsolve

15-185

MaxFunctionEvaluations Maximum number of function evaluations allowed, a positive integer.
The default is 100*numberOfVariables for the 'trust-region-
dogleg' and 'trust-region' algorithms, and
200*numberOfVariables for the 'levenberg-marquardt'
algorithm. See “Tolerances and Stopping Criteria” on page 2-68 and
“Iterations and Function Counts” on page 3-9.

For optimset, the name is MaxFunEvals. See “Current and Legacy
Option Names” on page 14-23.

MaxIterations Maximum number of iterations allowed, a positive integer. The default
is 400. See “Tolerances and Stopping Criteria” on page 2-68 and
“Iterations and Function Counts” on page 3-9.

For optimset, the name is MaxIter. See “Current and Legacy Option
Names” on page 14-23.

OptimalityTolerance Termination tolerance on the first-order optimality (a positive scalar).
The default is 1e-6. See “First-Order Optimality Measure” on page 3-
11.

Internally, the 'levenberg-marquardt' algorithm uses an optimality
tolerance (stopping criterion) of 1e-4 times FunctionTolerance and
does not use OptimalityTolerance.

OutputFcn Specify one or more user-defined functions that an optimization
function calls at each iteration. Pass a function handle or a cell array of
function handles. The default is none ([]). See “Output Function and
Plot Function Syntax” on page 14-28.

PlotFcn Plots various measures of progress while the algorithm executes; select
from predefined plots or write your own. Pass a built-in plot function
name, a function handle, or a cell array of built-in plot function names
or function handles. For custom plot functions, pass function handles.
The default is none ([]):

• 'optimplotx' plots the current point.
• 'optimplotfunccount' plots the function count.
• 'optimplotfval' plots the function value.
• 'optimplotstepsize' plots the step size.
• 'optimplotfirstorderopt' plots the first-order optimality

measure.

Custom plot functions use the same syntax as output functions. See
“Output Functions for Optimization Toolbox” on page 3-30 and “Output
Function and Plot Function Syntax” on page 14-28.

For optimset, the name is PlotFcns. See “Current and Legacy
Option Names” on page 14-23.

15 Functions

15-186

SpecifyObjectiveGradie
nt

If true, fsolve uses a user-defined Jacobian (defined in fun), or
Jacobian information (when using JacobianMultiplyFcn), for the
objective function. If false (default), fsolve approximates the
Jacobian using finite differences.

For optimset, the name is Jacobian and the values are 'on' or
'off'. See “Current and Legacy Option Names” on page 14-23.

StepTolerance Termination tolerance on x, a positive scalar. The default is 1e-6. See
“Tolerances and Stopping Criteria” on page 2-68.

For optimset, the name is TolX. See “Current and Legacy Option
Names” on page 14-23.

TypicalX Typical x values. The number of elements in TypicalX is equal to the
number of elements in x0, the starting point. The default value is
ones(numberofvariables,1). fsolve uses TypicalX for scaling
finite differences for gradient estimation.

The trust-region-dogleg algorithm uses TypicalX as the
diagonal terms of a scaling matrix.

UseParallel When true, fsolve estimates gradients in parallel. Disable by setting
to the default, false. See “Parallel Computing”.

trust-region Algorithm

 fsolve

15-187

JacobianMultiplyFcn Jacobian multiply function, specified as a function handle. For large-
scale structured problems, this function computes the Jacobian matrix
product J*Y, J'*Y, or J'*(J*Y) without actually forming J. The
function is of the form

W = jmfun(Jinfo,Y,flag)

where Jinfo contains a matrix used to compute J*Y (or J'*Y, or
J'*(J*Y)). The first argument Jinfo must be the same as the second
argument returned by the objective function fun, for example, in

[F,Jinfo] = fun(x)

Y is a matrix that has the same number of rows as there are
dimensions in the problem. flag determines which product to
compute:

• If flag == 0, W = J'*(J*Y).
• If flag > 0, W = J*Y.
• If flag < 0, W = J'*Y.

In each case, J is not formed explicitly. fsolve uses Jinfo to compute
the preconditioner. See “Passing Extra Parameters” on page 2-57 for
information on how to supply values for any additional parameters
jmfun needs.

Note 'SpecifyObjectiveGradient' must be set to true for
fsolve to pass Jinfo from fun to jmfun.

See “Minimization with Dense Structured Hessian, Linear Equalities”
on page 5-99 for a similar example.

For optimset, the name is JacobMult. See “Current and Legacy
Option Names” on page 14-23.

JacobPattern Sparsity pattern of the Jacobian for finite differencing. Set
JacobPattern(i,j) = 1 when fun(i) depends on x(j).
Otherwise, set JacobPattern(i,j) = 0. In other words,
JacobPattern(i,j) = 1 when you can have ∂fun(i)/∂x(j) ≠ 0.

Use JacobPattern when it is inconvenient to compute the Jacobian
matrix J in fun, though you can determine (say, by inspection) when
fun(i) depends on x(j). fsolve can approximate J via sparse finite
differences when you give JacobPattern.

In the worst case, if the structure is unknown, do not set
JacobPattern. The default behavior is as if JacobPattern is a
dense matrix of ones. Then fsolve computes a full finite-difference
approximation in each iteration. This can be very expensive for large
problems, so it is usually better to determine the sparsity structure.

15 Functions

15-188

MaxPCGIter Maximum number of PCG (preconditioned conjugate gradient)
iterations, a positive scalar. The default is
max(1,floor(numberOfVariables/2)). For more information, see
“Equation Solving Algorithms” on page 12-2.

PrecondBandWidth Upper bandwidth of preconditioner for PCG, a nonnegative integer. The
default PrecondBandWidth is Inf, which means a direct factorization
(Cholesky) is used rather than the conjugate gradients (CG). The direct
factorization is computationally more expensive than CG, but produces
a better quality step towards the solution. Set PrecondBandWidth to
0 for diagonal preconditioning (upper bandwidth of 0). For some
problems, an intermediate bandwidth reduces the number of PCG
iterations.

SubproblemAlgorithm Determines how the iteration step is calculated. The default,
'factorization', takes a slower but more accurate step than 'cg'.
See “Trust-Region Algorithm” on page 12-2.

TolPCG Termination tolerance on the PCG iteration, a positive scalar. The
default is 0.1.

Levenberg-Marquardt Algorithm
InitDamping Initial value of the Levenberg-Marquardt parameter, a positive scalar.

Default is 1e-2. For details, see “Levenberg-Marquardt Method” on
page 11-6.

ScaleProblem 'jacobian' can sometimes improve the convergence of a poorly
scaled problem. The default is 'none'.

Example: options = optimoptions('fsolve','FiniteDifferenceType','central')

problem — Problem structure
structure

Problem structure, specified as a structure with the following fields:

Field Name Entry
objective Objective function
x0 Initial point for x
solver 'fsolve'
options Options created with optimoptions

Data Types: struct

Output Arguments
x — Solution
real vector | real array

Solution, returned as a real vector or real array. The size of x is the same as the size of x0. Typically,
x is a local solution to the problem when exitflag is positive. For information on the quality of the
solution, see “When the Solver Succeeds” on page 4-18.

 fsolve

15-189

fval — Objective function value at the solution
real vector

Objective function value at the solution, returned as a real vector. Generally, fval = fun(x).

exitflag — Reason fsolve stopped
integer

Reason fsolve stopped, returned as an integer.

1 Equation solved. First-order optimality is small.
2 Equation solved. Change in x smaller than the specified

tolerance, or Jacobian at x is undefined.
3 Equation solved. Change in residual smaller than the specified

tolerance.
4 Equation solved. Magnitude of search direction smaller than

specified tolerance.
0 Number of iterations exceeded options.MaxIterations or

number of function evaluations exceeded
options.MaxFunctionEvaluations.

-1 Output function or plot function stopped the algorithm.
-2 Equation not solved. The exit message can have more

information.
-3 Equation not solved. Trust region radius became too small

(trust-region-dogleg algorithm).

output — Information about the optimization process
structure

Information about the optimization process, returned as a structure with fields:

iterations Number of iterations taken
funcCount Number of function evaluations
algorithm Optimization algorithm used
cgiterations Total number of PCG iterations ('trust-region' algorithm

only)
stepsize Final displacement in x (not in 'trust-region-dogleg')
firstorderopt Measure of first-order optimality
message Exit message

jacobian — Jacobian at the solution
real matrix

Jacobian at the solution, returned as a real matrix. jacobian(i,j) is the partial derivative of
fun(i) with respect to x(j) at the solution x.

15 Functions

15-190

Limitations
• The function to be solved must be continuous.
• When successful, fsolve only gives one root.
• The default trust-region dogleg method can only be used when the system of equations is square,

i.e., the number of equations equals the number of unknowns. For the Levenberg-Marquardt
method, the system of equations need not be square.

Tips
• For large problems, meaning those with thousands of variables or more, save memory (and

possibly save time) by setting the Algorithm option to 'trust-region' and the
SubproblemAlgorithm option to 'cg'.

Algorithms
The Levenberg-Marquardt and trust-region methods are based on the nonlinear least-squares
algorithms also used in lsqnonlin. Use one of these methods if the system may not have a zero. The
algorithm still returns a point where the residual is small. However, if the Jacobian of the system is
singular, the algorithm might converge to a point that is not a solution of the system of equations (see
“Limitations” on page 15-191).

• By default fsolve chooses the trust-region dogleg algorithm. The algorithm is a variant of the
Powell dogleg method described in [8]. It is similar in nature to the algorithm implemented in [7].
See “Trust-Region-Dogleg Algorithm” on page 12-4.

• The trust-region algorithm is a subspace trust-region method and is based on the interior-
reflective Newton method described in [1] and [2]. Each iteration involves the approximate
solution of a large linear system using the method of preconditioned conjugate gradients (PCG).
See “Trust-Region Algorithm” on page 12-2.

• The Levenberg-Marquardt method is described in references [4], [5], and [6]. See “Levenberg-
Marquardt Method” on page 12-5.

Alternative Functionality
App

The Optimize Live Editor task provides a visual interface for fsolve.

References
[1] Coleman, T.F. and Y. Li, “An Interior, Trust Region Approach for Nonlinear Minimization Subject to

Bounds,” SIAM Journal on Optimization, Vol. 6, pp. 418-445, 1996.

[2] Coleman, T.F. and Y. Li, “On the Convergence of Reflective Newton Methods for Large-Scale
Nonlinear Minimization Subject to Bounds,” Mathematical Programming, Vol. 67, Number 2,
pp. 189-224, 1994.

[3] Dennis, J. E. Jr., “Nonlinear Least-Squares,” State of the Art in Numerical Analysis, ed. D. Jacobs,
Academic Press, pp. 269-312.

 fsolve

15-191

[4] Levenberg, K., “A Method for the Solution of Certain Problems in Least-Squares,” Quarterly
Applied Mathematics 2, pp. 164-168, 1944.

[5] Marquardt, D., “An Algorithm for Least-squares Estimation of Nonlinear Parameters,” SIAM
Journal Applied Mathematics, Vol. 11, pp. 431-441, 1963.

[6] Moré, J. J., “The Levenberg-Marquardt Algorithm: Implementation and Theory,” Numerical
Analysis, ed. G. A. Watson, Lecture Notes in Mathematics 630, Springer Verlag, pp. 105-116,
1977.

[7] Moré, J. J., B. S. Garbow, and K. E. Hillstrom, User Guide for MINPACK 1, Argonne National
Laboratory, Rept. ANL-80-74, 1980.

[8] Powell, M. J. D., “A Fortran Subroutine for Solving Systems of Nonlinear Algebraic Equations,”
Numerical Methods for Nonlinear Algebraic Equations, P. Rabinowitz, ed., Ch.7, 1970.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

• fsolve supports code generation using either the codegen function or the MATLAB Coder app.
You must have a MATLAB Coder license to generate code.

• The target hardware must support standard double-precision floating-point computations. You
cannot generate code for single-precision or fixed-point computations.

• Code generation targets do not use the same math kernel libraries as MATLAB solvers. Therefore,
code generation solutions can vary from solver solutions, especially for poorly conditioned
problems.

• All code for generation must be MATLAB code. In particular, you cannot use a custom black-box
function as an objective function for fsolve. You can use coder.ceval to evaluate a custom
function coded in C or C++. However, the custom function must be called in a MATLAB function.

• fsolve does not support the problem argument for code generation.

[x,fval] = fsolve(problem) % Not supported

• You must specify the objective function by using function handles, not strings or character names.

x = fsolve(@fun,x0,options) % Supported
% Not supported: fsolve('fun',...) or fsolve("fun",...)

• For advanced code optimization involving embedded processors, you also need an Embedded
Coder license.

• You must include options for fsolve and specify them using optimoptions. The options must
include the Algorithm option, set to 'levenberg-marquardt'.

options = optimoptions('fsolve','Algorithm','levenberg-marquardt');
[x,fval,exitflag] = fsolve(fun,x0,options);

• Code generation supports these options:

• Algorithm — Must be 'levenberg-marquardt'
• FiniteDifferenceStepSize
• FiniteDifferenceType

15 Functions

15-192

• FunctionTolerance
• MaxFunctionEvaluations
• MaxIterations
• SpecifyObjectiveGradient
• StepTolerance
• TypicalX

• Generated code has limited error checking for options. The recommended way to update an option
is to use optimoptions, not dot notation.

opts = optimoptions('fsolve','Algorithm','levenberg-marquardt');
opts = optimoptions(opts,'MaxIterations',1e4); % Recommended
opts.MaxIterations = 1e4; % Not recommended

• Do not load options from a file. Doing so can cause code generation to fail. Instead, create options
in your code.

• Usually, if you specify an option that is not supported, the option is silently ignored during code
generation. However, if you specify a plot function or output function by using dot notation, code
generation can issue an error. For reliability, specify only supported options.

• Because output functions and plot functions are not supported, solvers do not return the exit flag –
1.

For an example, see “Generate Code for fsolve” on page 12-38.

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

options = optimoptions('solvername','UseParallel',true)

For more information, see “Using Parallel Computing in Optimization Toolbox” on page 13-5.

See Also
fzero | lsqcurvefit | lsqnonlin | optimoptions | Optimize

Topics
“Solve Nonlinear System Without and Including Jacobian” on page 12-7
“Large Sparse System of Nonlinear Equations with Jacobian” on page 12-10
“Large System of Nonlinear Equations with Jacobian Sparsity Pattern” on page 12-14
“Nonlinear Systems with Constraints” on page 12-17
“Solver-Based Optimization Problem Setup”
“Equation Solving Algorithms” on page 12-2

Introduced before R2006a

 fsolve

15-193

fzero
Root of nonlinear function

Syntax
x = fzero(fun,x0)
x = fzero(fun,x0,options)

x = fzero(problem)

[x,fval,exitflag,output] = fzero(___)

Description
x = fzero(fun,x0) tries to find a point x where fun(x) = 0. This solution is where fun(x)
changes sign—fzero cannot find a root of a function such as x^2.

x = fzero(fun,x0,options) uses options to modify the solution process.

x = fzero(problem) solves a root-finding problem specified by problem.

[x,fval,exitflag,output] = fzero(___) returns fun(x) in the fval output, exitflag
encoding the reason fzero stopped, and an output structure containing information on the solution
process.

Examples

Root Starting From One Point

Calculate π by finding the zero of the sine function near 3.

fun = @sin; % function
x0 = 3; % initial point
x = fzero(fun,x0)

x = 3.1416

Root Starting From an Interval

Find the zero of cosine between 1 and 2.

fun = @cos; % function
x0 = [1 2]; % initial interval
x = fzero(fun,x0)

x = 1.5708

Note that cos(1) and cos(2) differ in sign.

15 Functions

15-194

Root of a Function Defined by a File

Find a zero of the function f(x) = x3 – 2x – 5.

First, write a file called f.m.

function y = f(x)
y = x.^3-2*x-5;

Save f.m on your MATLAB path.

Find the zero of f(x) near 2.

fun = @f; % function
x0 = 2; % initial point
z = fzero(fun,x0)

z =
 2.0946

Since f(x) is a polynomial, you can find the same real zero, and a complex conjugate pair of zeros,
using the roots command.

roots([1 0 -2 -5])

 ans =
 2.0946
 -1.0473 + 1.1359i
 -1.0473 - 1.1359i

Root of Function with Extra Parameter

Find the root of a function that has an extra parameter.

myfun = @(x,c) cos(c*x); % parameterized function
c = 2; % parameter
fun = @(x) myfun(x,c); % function of x alone
x = fzero(fun,0.1)

x = 0.7854

Nondefault Options

Plot the solution process by setting some plot functions.

Define the function and initial point.

fun = @(x)sin(cosh(x));
x0 = 1;

Examine the solution process by setting options that include plot functions.

 fzero

15-195

options = optimset('PlotFcns',{@optimplotx,@optimplotfval});

Run fzero including options.

x = fzero(fun,x0,options)

x = 1.8115

Solve Problem Structure

Solve a problem that is defined by a problem structure.

Define a structure that encodes a root-finding problem.

problem.objective = @(x)sin(cosh(x));
problem.x0 = 1;
problem.solver = 'fzero'; % a required part of the structure
problem.options = optimset(@fzero); % default options

Solve the problem.

x = fzero(problem)

x = 1.8115

15 Functions

15-196

More Information from Solution

Find the point where exp(-exp(-x)) = x, and display information about the solution process.

fun = @(x) exp(-exp(-x)) - x; % function
x0 = [0 1]; % initial interval
options = optimset('Display','iter'); % show iterations
[x fval exitflag output] = fzero(fun,x0,options)

 Func-count x f(x) Procedure
 2 1 -0.307799 initial
 3 0.544459 0.0153522 interpolation
 4 0.566101 0.00070708 interpolation
 5 0.567143 -1.40255e-08 interpolation
 6 0.567143 1.50013e-12 interpolation
 7 0.567143 0 interpolation

Zero found in the interval [0, 1]

x = 0.5671

fval = 0

exitflag = 1

output = struct with fields:
 intervaliterations: 0
 iterations: 5
 funcCount: 7
 algorithm: 'bisection, interpolation'
 message: 'Zero found in the interval [0, 1]'

fval = 0 means fun(x) = 0, as desired.

Input Arguments
fun — Function to solve
function handle | function name

Function to solve, specified as a handle to a scalar-valued function or the name of such a function.
fun accepts a scalar x and returns a scalar fun(x).

fzero solves fun(x) = 0. To solve an equation fun(x) = c(x), instead solve fun2(x) =
fun(x) - c(x) = 0.

To include extra parameters in your function, see the example “Root of Function with Extra
Parameter” on page 15-195 and the section “Passing Extra Parameters” on page 2-57.
Example: 'sin'
Example: @myFunction
Example: @(x)(x-a)^5 - 3*x + a - 1

 fzero

15-197

Data Types: char | function_handle | string

x0 — Initial value
scalar | 2-element vector

Initial value, specified as a real scalar or a 2-element real vector.

• Scalar — fzero begins at x0 and tries to locate a point x1 where fun(x1) has the opposite sign
of fun(x0). Then fzero iteratively shrinks the interval where fun changes sign to reach a
solution.

• 2-element vector — fzero checks that fun(x0(1)) and fun(x0(2)) have opposite signs, and
errors if they do not. It then iteratively shrinks the interval where fun changes sign to reach a
solution. An interval x0 must be finite; it cannot contain ±Inf.

Tip Calling fzero with an interval (x0 with two elements) is often faster than calling it with a scalar
x0.

Example: 3
Example: [2,17]
Data Types: double

options — Options for solution process
structure, typically created using optimset

Options for solution process, specified as a structure. Create or modify the options structure using
optimset. fzero uses these options structure fields.

Display Level of display (see “Iterative Display” on page 3-14):

• 'off' displays no output.
• 'iter' displays output at each iteration.
• 'final' displays just the final output.
• 'notify' (default) displays output only if the function does not converge.

FunValCheck Check whether objective function values are valid.

• 'on' displays an error when the objective function returns a value that is
complex, Inf, or NaN.

• The default, 'off', displays no error.
OutputFcn Specify one or more user-defined functions that an optimization function calls

at each iteration, either as a function handle or as a cell array of function
handles. The default is none ([]). See “Output Function and Plot Function
Syntax” on page 14-28.

15 Functions

15-198

PlotFcns Plot various measures of progress while the algorithm executes. Select from
predefined plots or write your own. Pass a function handle or a cell array of
function handles. The default is none ([]).

• @optimplotx plots the current point.
• @optimplotfval plots the function value.

Custom plot functions use the same syntax as output functions. See “Output
Functions for Optimization Toolbox” on page 3-30 and “Output Function and
Plot Function Syntax” on page 14-28.

TolX Termination tolerance on x, a positive scalar. The default is eps, 2.2204e–16.
See “Tolerances and Stopping Criteria” on page 2-68.

Example: options = optimset('FunValCheck','on')
Data Types: struct

problem — Root-finding problem
structure

Root-finding problem, specified as a structure with all of the following fields.

objective Objective function
x0 Initial point for x, scalar or 2-D vector
solver 'fzero'
options Options structure, typically created using optimset

Data Types: struct

Output Arguments
x — Location of root or sign change
real scalar

Location of root or sign change, returned as a scalar.

fval — Function value at x
real scalar

Function value at x, returned as a scalar.

exitflag — Integer encoding the exit condition
integer

Integer encoding the exit condition, meaning the reason fzero stopped its iterations.

1 Function converged to a solution x.
-1 Algorithm was terminated by the output function or plot function.
-3 NaN or Inf function value was encountered while searching for an interval

containing a sign change.

 fzero

15-199

-4 Complex function value was encountered while searching for an interval
containing a sign change.

-5 Algorithm might have converged to a singular point.
-6 fzero did not detect a sign change.

output — Information about root-finding process
structure

Information about root-finding process, returned as a structure. The fields of the structure are:

intervaliterations Number of iterations taken to find an interval containing a root
iterations Number of zero-finding iterations
funcCount Number of function evaluations
algorithm 'bisection, interpolation'
message Exit message

Algorithms
The fzero command is a function file. The algorithm, created by T. Dekker, uses a combination of
bisection, secant, and inverse quadratic interpolation methods. An Algol 60 version, with some
improvements, is given in [1]. A Fortran version, upon which fzero is based, is in [2].

Alternative Functionality
App

The Optimize Live Editor task provides a visual interface for fzero.

References
[1] Brent, R., Algorithms for Minimization Without Derivatives, Prentice-Hall, 1973.

[2] Forsythe, G. E., M. A. Malcolm, and C. B. Moler, Computer Methods for Mathematical
Computations, Prentice-Hall, 1976.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For C/C++ code generation:

• The fun input argument must be a function handle, and not a structure or character vector.
• fzero ignores all options except for TolX and FunValCheck.
• fzero does not support the fourth output argument, the output structure.

See Also
fminbnd | fsolve | optimset | roots | Optimize

15 Functions

15-200

Topics
“Roots of Scalar Functions”
“Passing Extra Parameters” on page 2-57

Introduced before R2006a

 fzero

15-201

infeasibility
Package: optim.problemdef

Constraint violation at a point

Syntax
infeas = infeasibility(constr,pt)

Description
Use infeasibility to find the numeric value of a constraint violation at a point.

Tip For the full workflow, see “Problem-Based Optimization Workflow” on page 9-2 or “Problem-
Based Workflow for Solving Equations” on page 9-4.

infeas = infeasibility(constr,pt) returns the amount of violation of the constraint constr
at the point pt.

Examples

Compute Constraint Violation

Check whether a point satisfies a constraint.

Set up optimization variables and two constraints.

x = optimvar('x');
y = optimvar('y');
cons = x + y <= 2;
cons2 = x + y/4 <= 1;

Check whether the point x = 0, y = 4 satisfies the constraint named cons. A point is feasible when
its infeasibility is zero.

pt.x = 0;
pt.y = 4;
infeas = infeasibility(cons,pt)

infeas = 2

The point is not feasible with respect to this constraint.

Check the feasibility with respect to the other constraint.

infeas = infeasibility(cons2,pt)

infeas = 0

The point is feasible with respect to this constraint.

15 Functions

15-202

Compute Multiple Constraint Violations

Check whether a point satisfies a constraint that has multiple conditions.

Set up an optimization variable and a vector of constraints.

x = optimvar('x',3,2);
cons = sum(x,2) <= [1;3;2];

Check whether the point pt.x = [1,-1;2,3;3,-1] satisfies these constraints.

pt.x = [1,-1;2,3;3,-1];
infeas = infeasibility(cons,pt)

infeas = 3×1

 0
 2
 0

The point is not feasible with respect to the second constraint.

Input Arguments
constr — Optimization constraint
OptimizationEquality object | OptimizationInequality object | OptimizationConstraint
object

Optimization constraint, specified as an OptimizationEquality object,
OptimizationInequality object, or OptimizationConstraint object. constr can represent a
single constraint or an array of constraints.
Example: constr = x + y <= 1 is a single constraint when x and y are scalar variables.
Example: constr = sum(x) == 1 is an array of constraints when x is an array of two or more
dimensions.

pt — Point to evaluate
structure with field names that match the optimization variable names

Point to evaluate, specified as a structure with field names that match the optimization variable
names, for optimization variables in the constraint. The size of each field in pt must match the size of
the corresponding optimization variable.
Example: pt.x = 5*eye(3)
Data Types: struct

Output Arguments
infeas — Infeasibility of constraint
real array

 infeasibility

15-203

Infeasibility of constraint, returned as a real array. Each zero entry represents a feasible constraint,
and each positive entry represents an infeasible constraint. The size of infeas is the same as the
size of the constraint constr. For an example of nonscalar infeas, see “Compute Multiple
Constraint Violations” on page 15-203.

Warning The problem-based approach does not support complex values in an objective function,
nonlinear equalities, or nonlinear inequalities. If a function calculation has a complex value, even as
an intermediate value, the final result can be incorrect.

See Also
OptimizationEquality | OptimizationInequality | OptimizationConstraint | evaluate

Topics
“Problem-Based Optimization Workflow” on page 9-2

Introduced in R2017b

15 Functions

15-204

intlinprog
Mixed-integer linear programming (MILP)

Syntax
x = intlinprog(f,intcon,A,b)
x = intlinprog(f,intcon,A,b,Aeq,beq)
x = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub)
x = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub,x0)
x = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub,x0,options)
x = intlinprog(problem)
[x,fval,exitflag,output] = intlinprog(___)

Description
Mixed-integer linear programming solver.

Finds the minimum of a problem specified by

min
x

f Tx subject to

x(intcon) are integers
A ⋅ x ≤ b
Aeq ⋅ x = beq
lb ≤ x ≤ ub .

f, x, intcon, b, beq, lb, and ub are vectors, and A and Aeq are matrices.

You can specify f, intcon, lb, and ub as vectors or arrays. See “Matrix Arguments” on page 2-31.

Note intlinprog applies only to the solver-based approach. For a discussion of the two
optimization approaches, see “First Choose Problem-Based or Solver-Based Approach” on page 1-3.

x = intlinprog(f,intcon,A,b) solves min f'*x such that the components of x in intcon are
integers, and A*x ≤ b.

x = intlinprog(f,intcon,A,b,Aeq,beq) solves the problem above while additionally satisfying
the equality constraints Aeq*x = beq. Set A = [] and b = [] if no inequalities exist.

x = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub) defines a set of lower and upper bounds on
the design variables, x, so that the solution is always in the range lb ≤ x ≤ ub. Set Aeq = [] and
beq = [] if no equalities exist.

x = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub,x0)optimizes using an initial feasible point x0.
Set lb = [] and ub = [] if no bounds exist.

x = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub,x0,options) minimizes using the
optimization options specified in options. Use optimoptions to set these options. Set x0 = [] if
no initial point exists.

 intlinprog

15-205

x = intlinprog(problem) uses a problem structure to encapsulate all solver inputs. You can
import a problem structure from an MPS file using mpsread. You can also create a problem
structure from an OptimizationProblem object by using prob2struct.

[x,fval,exitflag,output] = intlinprog(___), for any input arguments described above,
returns fval = f'*x, a value exitflag describing the exit condition, and a structure output
containing information about the optimization process.

Examples

Solve an MILP with Linear Inequalities

Solve the problem

min
x

8x1 + x2 subject to

x2 is an integer
x1 + 2x2 ≥ − 14
−4x1− x2 ≤ − 33
2x1 + x2 ≤ 20 .

Write the objective function vector and vector of integer variables.

f = [8;1];
intcon = 2;

Convert all inequalities into the form A*x <= b by multiplying “greater than” inequalities by -1.

A = [-1,-2;
 -4,-1;
 2,1];
b = [14;-33;20];

Call intlinprog.

x = intlinprog(f,intcon,A,b)

LP: Optimal objective value is 59.000000.

Optimal solution found.

Intlinprog stopped at the root node because the objective value is within a gap
tolerance of the optimal value, options.AbsoluteGapTolerance = 0 (the default
value). The intcon variables are integer within tolerance,
options.IntegerTolerance = 1e-05 (the default value).

x = 2×1

 6.5000
 7.0000

15 Functions

15-206

Solve an MILP with All Types of Constraints

Solve the problem

min
x
−3x1− 2x2− x3 subject to

x3 binary
x1, x2 ≥ 0
x1 + x2 + x3 ≤ 7
4x1 + 2x2 + x3 = 12 .

Write the objective function vector and vector of integer variables.

f = [-3;-2;-1];
intcon = 3;

Write the linear inequality constraints.

A = [1,1,1];
b = 7;

Write the linear equality constraints.

Aeq = [4,2,1];
beq = 12;

Write the bound constraints.

lb = zeros(3,1);
ub = [Inf;Inf;1]; % Enforces x(3) is binary

Call intlinprog.

x = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub)

LP: Optimal objective value is -12.000000.

Optimal solution found.

Intlinprog stopped at the root node because the objective value is within a gap
tolerance of the optimal value, options.AbsoluteGapTolerance = 0 (the default
value). The intcon variables are integer within tolerance,
options.IntegerTolerance = 1e-05 (the default value).

x = 3×1

 0
 5.5000
 1.0000

Use Initial Point

Compare the number of steps to solve an integer programming problem both with and without an
initial feasible point. The problem has eight variables, four linear equality constraints, and has all
variables restricted to be positive.

 intlinprog

15-207

Define the linear equality constraint matrix and vector.

Aeq = [22 13 26 33 21 3 14 26
 39 16 22 28 26 30 23 24
 18 14 29 27 30 38 26 26
 41 26 28 36 18 38 16 26];
beq = [7872
 10466
 11322
 12058];

Set lower bounds that restrict all variables to be nonnegative.

N = 8;
lb = zeros(N,1);

Specify that all variables are integer-valued.

intcon = 1:N;

Set the objective function vector f.

f = [2 10 13 17 7 5 7 3];

Solve the problem without using an initial point, and examine the display to see the number of
branch-and-bound nodes.

[x1,fval1,exitflag1,output1] = intlinprog(f,intcon,[],[],Aeq,beq,lb);

LP: Optimal objective value is 1554.047531.

Cut Generation: Applied 8 strong CG cuts.
 Lower bound is 1591.000000.

Branch and Bound:

 nodes total num int integer relative
explored time (s) solution fval gap (%)
 10000 0.99 0 - -
 18025 1.64 1 2.906000e+03 4.509804e+01
 21857 2.09 2 2.073000e+03 2.270974e+01
 23544 2.25 3 1.854000e+03 1.180593e+01
 24097 2.31 3 1.854000e+03 1.617251e+00
 24293 2.33 3 1.854000e+03 0.000000e+00

Optimal solution found.

Intlinprog stopped because the objective value is within a gap tolerance of the
optimal value, options.AbsoluteGapTolerance = 0 (the default value). The intcon
variables are integer within tolerance, options.IntegerTolerance = 1e-05 (the
default value).

For comparison, find the solution using an initial feasible point.

x0 = [8 62 23 103 53 84 46 34];
[x2,fval2,exitflag2,output2] = intlinprog(f,intcon,[],[],Aeq,beq,lb,[],x0);

LP: Optimal objective value is 1554.047531.

15 Functions

15-208

Cut Generation: Applied 8 strong CG cuts.
 Lower bound is 1591.000000.
 Relative gap is 59.20%.

Branch and Bound:

 nodes total num int integer relative
explored time (s) solution fval gap (%)
 3627 0.36 2 2.154000e+03 2.593968e+01
 5844 0.56 3 1.854000e+03 1.180593e+01
 6204 0.60 3 1.854000e+03 1.455526e+00
 6400 0.61 3 1.854000e+03 0.000000e+00

Optimal solution found.

Intlinprog stopped because the objective value is within a gap tolerance of the
optimal value, options.AbsoluteGapTolerance = 0 (the default value). The intcon
variables are integer within tolerance, options.IntegerTolerance = 1e-05 (the
default value).

• Without an initial point, intlinprog took about 30,000 branch-and-bound steps.
• Using an initial point, intlinprog took about 5,000 steps.

Giving an initial point does not always help. For this problem, giving an initial point saves time and
computational steps. However, for some problems, giving an initial point can cause intlinprog to
take more steps.

Solve an MILP with Nondefault Options

Solve the problem

min
x
−3x1− 2x2− x3 subject to

x3 binary
x1, x2 ≥ 0
x1 + x2 + x3 ≤ 7
4x1 + 2x2 + x3 = 12

without showing iterative display.

Specify the solver inputs.

f = [-3;-2;-1];
intcon = 3;
A = [1,1,1];
b = 7;
Aeq = [4,2,1];
beq = 12;
lb = zeros(3,1);
ub = [Inf;Inf;1]; % enforces x(3) is binary
x0 = [];

Specify no display.

options = optimoptions('intlinprog','Display','off');

 intlinprog

15-209

Run the solver.

x = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub,x0,options)

x = 3×1

 0
 5.5000
 1.0000

Solve MILP Using Problem-Based Approach

This example shows how to set up a problem using the problem-based approach and then solve it
using the solver-based approach. The problem is

min
x
−3x1− 2x2− x3 subject to

x3 binary
x1, x2 ≥ 0
x1 + x2 + x3 ≤ 7
4x1 + 2x2 + x3 = 12

Create an OptimizationProblem object named prob to represent this problem. To specify a binary
variable, create an optimization variable with integer type, a lower bound of 0, and an upper bound of
1.

x = optimvar('x',2,'LowerBound',0);
xb = optimvar('xb','LowerBound',0,'UpperBound',1,'Type','integer');
prob = optimproblem('Objective',-3*x(1)-2*x(2)-xb);
cons1 = sum(x) + xb <= 7;
cons2 = 4*x(1) + 2*x(2) + xb == 12;
prob.Constraints.cons1 = cons1;
prob.Constraints.cons2 = cons2;

Convert the problem object to a problem structure.

problem = prob2struct(prob);

Solve the resulting problem structure.

[sol,fval,exitflag,output] = intlinprog(problem)

LP: Optimal objective value is -12.000000.

Optimal solution found.

Intlinprog stopped at the root node because the objective value is within a gap
tolerance of the optimal value, options.AbsoluteGapTolerance = 0 (the default
value). The intcon variables are integer within tolerance,
options.IntegerTolerance = 1e-05 (the default value).

sol = 3×1

 0

15 Functions

15-210

 5.5000
 1.0000

fval = -12

exitflag = 1

output = struct with fields:
 relativegap: 0
 absolutegap: 0
 numfeaspoints: 1
 numnodes: 0
 constrviolation: 0
 message: 'Optimal solution found....'

Both sol(1) and sol(3) are binary-valued. Which value corresponds to the binary optimization
variable xb?

prob.Variables

ans = struct with fields:
 x: [2x1 optim.problemdef.OptimizationVariable]
 xb: [1x1 optim.problemdef.OptimizationVariable]

The variable xb appears last in the Variables display, so xb corresponds to sol(3) = 1. See
“Algorithms” on page 15-438.

Examine the MILP Solution and Process

Call intlinprog with more outputs to see solution details and process.

The goal is to solve the problem

min
x
−3x1− 2x2− x3 subject to

x3 binary
x1, x2 ≥ 0
x1 + x2 + x3 ≤ 7
4x1 + 2x2 + x3 = 12 .

Specify the solver inputs.

f = [-3;-2;-1];
intcon = 3;
A = [1,1,1];
b = 7;
Aeq = [4,2,1];
beq = 12;
lb = zeros(3,1);
ub = [Inf;Inf;1]; % enforces x(3) is binary

Call intlinprog with all outputs.

[x,fval,exitflag,output] = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub)

 intlinprog

15-211

LP: Optimal objective value is -12.000000.

Optimal solution found.

Intlinprog stopped at the root node because the objective value is within a gap
tolerance of the optimal value, options.AbsoluteGapTolerance = 0 (the default
value). The intcon variables are integer within tolerance,
options.IntegerTolerance = 1e-05 (the default value).

x = 3×1

 0
 5.5000
 1.0000

fval = -12

exitflag = 1

output = struct with fields:
 relativegap: 0
 absolutegap: 0
 numfeaspoints: 1
 numnodes: 0
 constrviolation: 0
 message: 'Optimal solution found....'

The output structure shows numnodes is 0. This means intlinprog solved the problem before
branching. This is one indication that the result is reliable. Also, the absolutegap and
relativegap fields are 0. This is another indication that the result is reliable.

Input Arguments
f — Coefficient vector
real vector | real array

Coefficient vector, specified as a real vector or real array. The coefficient vector represents the
objective function f'*x. The notation assumes that f is a column vector, but you are free to use a row
vector or array. Internally, linprog converts f to the column vector f(:).

If you specify f = [], intlinprog tries to find a feasible point without trying to minimize an
objective function.
Example: f = [4;2;-1.7];
Data Types: double

intcon — Vector of integer constraints
vector of integers

Vector of integer constraints, specified as a vector of positive integers. The values in intcon indicate
the components of the decision variable x that are integer-valued. intcon has values from 1 through
numel(f).

15 Functions

15-212

intcon can also be an array. Internally, intlinprog converts an array intcon to the vector
intcon(:).
Example: intcon = [1,2,7] means x(1), x(2), and x(7) take only integer values.
Data Types: double

A — Linear inequality constraints
real matrix

Linear inequality constraints, specified as a real matrix. A is an M-by-N matrix, where M is the number
of inequalities, and N is the number of variables (length of f). For large problems, pass A as a sparse
matrix.

A encodes the M linear inequalities

A*x <= b,

where x is the column vector of N variables x(:), and b is a column vector with M elements.

For example, consider these inequalities:

x1 + 2x2 ≤ 10
3x1 + 4x2 ≤ 20
5x1 + 6x2 ≤ 30.

Specify the inequalities by entering the following constraints.

A = [1,2;3,4;5,6];
b = [10;20;30];

Example: To specify that the x-components add up to 1 or less, take A = ones(1,N) and b = 1.
Data Types: double

b — Linear inequality constraints
real vector

Linear inequality constraints, specified as a real vector. b is an M-element vector related to the A
matrix. If you pass b as a row vector, solvers internally convert b to the column vector b(:). For
large problems, pass b as a sparse vector.

b encodes the M linear inequalities

A*x <= b,

where x is the column vector of N variables x(:), and A is a matrix of size M-by-N.

For example, consider these inequalities:

x1 + 2x2 ≤ 10
3x1 + 4x2 ≤ 20
5x1 + 6x2 ≤ 30.

Specify the inequalities by entering the following constraints.

A = [1,2;3,4;5,6];
b = [10;20;30];

 intlinprog

15-213

Example: To specify that the x components sum to 1 or less, use A = ones(1,N) and b = 1.
Data Types: double

Aeq — Linear equality constraints
real matrix

Linear equality constraints, specified as a real matrix. Aeq is an Me-by-N matrix, where Me is the
number of equalities, and N is the number of variables (length of f). For large problems, pass Aeq as
a sparse matrix.

Aeq encodes the Me linear equalities

Aeq*x = beq,

where x is the column vector of N variables x(:), and beq is a column vector with Me elements.

For example, consider these equalities:

x1 + 2x2 + 3x3 = 10
2x1 + 4x2 + x3 = 20.

Specify the equalities by entering the following constraints.

Aeq = [1,2,3;2,4,1];
beq = [10;20];

Example: To specify that the x-components sum to 1, take Aeq = ones(1,N) and beq = 1.
Data Types: double

beq — Linear equality constraints
real vector

Linear equality constraints, specified as a real vector. beq is an Me-element vector related to the Aeq
matrix. If you pass beq as a row vector, solvers internally convert beq to the column vector beq(:).
For large problems, pass beq as a sparse vector.

beq encodes the Me linear equalities

Aeq*x = beq,

where x is the column vector of N variables x(:), and Aeq is a matrix of size Me-by-N.

For example, consider these equalities:

x1 + 2x2 + 3x3 = 10
2x1 + 4x2 + x3 = 20.

Specify the equalities by entering the following constraints.

Aeq = [1,2,3;2,4,1];
beq = [10;20];

Example: To specify that the x components sum to 1, use Aeq = ones(1,N) and beq = 1.
Data Types: double

15 Functions

15-214

lb — Lower bounds
[] (default) | real vector or array

Lower bounds, specified as a vector or array of doubles. lb represents the lower bounds elementwise
in lb ≤ x ≤ ub.

Internally, intlinprog converts an array lb to the vector lb(:).
Example: lb = [0;-Inf;4] means x(1) ≥ 0, x(3) ≥ 4.
Data Types: double

ub — Upper bounds
[] (default) | real vector or array

Upper bounds, specified as a vector or array of doubles. ub represents the upper bounds elementwise
in lb ≤ x ≤ ub.

Internally, intlinprog converts an array ub to the vector ub(:).
Example: ub = [Inf;4;10] means x(2) ≤ 4, x(3) ≤ 10.
Data Types: double

x0 — Initial point
[] (default) | real array

Initial point, specified as a real array. The number of elements in x0 is the same as the number of
elements of f, when f exists. Otherwise, the number is the same as the number of columns of A or
Aeq. Internally, the solver converts an array x0 into a vector x0(:).

Providing x0 can change the amount of time intlinprog takes to converge. It is difficult to predict
how x0 affects the solver. For suggestions on using appropriate Heuristics with x0, see “Tips” on
page 15-223.

x0 must be feasible with respect to all constraints. If x0 is not feasible, the solver errors. If you do
not have a feasible x0, set x0 = [].
Example: x0 = 100*rand(size(f))
Data Types: double

options — Options for intlinprog
options created using optimoptions

Options for intlinprog, specified as the output of optimoptions.

Some options are absent from the optimoptions display. These options appear in italics in the
following table. For details, see “View Options” on page 2-66.

 intlinprog

15-215

Option Description Default
AbsoluteGapTo
lerance

Nonnegative real. intlinprog stops if the difference
between the internally calculated upper (U) and lower (L)
bounds on the objective function is less than or equal to
AbsoluteGapTolerance:

U – L <= AbsoluteGapTolerance.

0

BranchRule Rule for choosing the component for branching:

• 'maxpscost' — The fractional component with
maximum pseudocost. See “Branch and Bound” on
page 8-48.

• 'strongpscost' — The fractional component with
maximum pseudocost and a more accurate estimate of
pseudocost than in 'maxpscost'. See “Branch and
Bound” on page 8-48.

• 'reliability' — The fractional component with
maximum pseudocost and an even more accurate
estimate of pseudocost than in 'strongpscost'. See
“Branch and Bound” on page 8-48.

• 'mostfractional' — The component whose
fractional part is closest to 1/2.

• 'maxfun' — The fractional component with a
maximal corresponding component in the absolute
value of the objective vector f.

'reliability'

ConstraintTol
erance

Real from 1e-9 through 1e-3 that is the maximum
discrepancy that linear constraints can have and still be
considered satisfied. ConstraintTolerance is not a
stopping criterion.

1e-4

CutGeneration Level of cut generation (see “Cut Generation” on page 8-
45):

• 'none' — No cuts. Makes CutMaxIterations
irrelevant.

• 'basic' — Normal cut generation.
• 'intermediate' — Use more cut types.
• 'advanced' — Use most cut types.

'basic'

CutMaxIterati
ons

Number of passes through all cut generation methods
before entering the branch-and-bound phase, an integer
from 1 through 50. Disable cut generation by setting the
CutGeneration option to 'none'.

10

Display Level of display (see “Iterative Display” on page 3-14):

• 'off' or 'none' — No iterative display
• 'final' — Show final values only
• 'iter' — Show iterative display

'iter'

15 Functions

15-216

Option Description Default
Heuristics Algorithm for searching for feasible points (see

“Heuristics for Finding Feasible Solutions” on page 8-46):

• 'basic'
• 'intermediate'
• 'advanced'
• 'rss'
• 'rins'
• 'round'
• 'diving'
• 'rss-diving'
• 'rins-diving'
• 'round-diving'
• 'none'

'basic'

HeuristicsMax
Nodes

Strictly positive integer that bounds the number of nodes
intlinprog can explore in its branch-and-bound search
for feasible points. Applies only to 'rss' and 'rins'.
See “Heuristics for Finding Feasible Solutions” on page 8-
46.

50

IntegerPrepro
cess

Types of integer preprocessing (see “Mixed-Integer
Program Preprocessing” on page 8-44):

• 'none' — Use very few integer preprocessing steps.
• 'basic' — Use a moderate number of integer

preprocessing steps.
• 'advanced' — Use all available integer

preprocessing steps.

'basic'

IntegerTolera
nce

Real from 1e-6 through 1e-3, where the maximum
deviation from integer that a component of the solution x
can have and still be considered an integer.
IntegerTolerance is not a stopping criterion.

1e-5

 intlinprog

15-217

Option Description Default
LPMaxIteratio
ns

Strictly positive integer, the maximum number of simplex
algorithm iterations per node during the branch-and-
bound process.

max(3e4,
10*(numberOfEqual
ities +
numberOfInequalit
ies +
numberOfVariables
))

In this expression,
numberOfEqualitie
s means the number of
rows of Aeq,
numberOfInequalit
ies means the number
of rows of A, and
numberOfVariables
means the number of
elements of f.

LPOptimalityT
olerance

Nonnegative real where reduced costs must exceed
LPOptimalityTolerance for a variable to be taken into
the basis.

1e-7

LPPreprocess Type of preprocessing for the solution to the relaxed
linear program (see “Linear Program Preprocessing” on
page 8-44):

• 'none' — No preprocessing.
• 'basic' — Use preprocessing.

'basic'

MaxNodes Strictly positive integer that is the maximum number of
nodes intlinprog explores in its branch-and-bound
process.

1e7

MaxFeasiblePo
ints

Strictly positive integer. intlinprog stops if it finds
MaxFeasiblePoints integer feasible points.

Inf

MaxTime Positive real that is the maximum time in seconds that
intlinprog runs.

7200

NodeSelection Choose the node to explore next.

• 'simplebestproj' — Best projection. See “Branch
and Bound” on page 8-48.

• 'minobj' — Explore the node with the minimum
objective function.

• 'mininfeas' — Explore the node with the minimal
sum of integer infeasibilities. See “Branch and Bound”
on page 8-48.

'simplebestproj'

ObjectiveCutO
ff

Real greater than -Inf. During the branch-and-bound
calculation, intlinprog discards any node where the
linear programming solution has an objective value
exceeding ObjectiveCutOff.

Inf

15 Functions

15-218

Option Description Default
ObjectiveImpr
ovementThresh
old

Nonnegative real. intlinprog changes the current
feasible solution only when it locates another with an
objective function value that is at least
ObjectiveImprovementThreshold lower: (fold –
fnew)/(1 + |fold|) > ObjectiveImprovementThreshold.

0

OutputFcn One or more functions that an optimization function calls
at events. Specify as 'savemilpsolutions', a function
handle, or a cell array of function handles. For custom
output functions, pass function handles. An output
function can stop the solver.

• 'savemilpsolutions' collects the integer-feasible
points in the xIntSol matrix in your workspace,
where each column is one integer feasible point.

For information on writing a custom output function, see
“intlinprog Output Function and Plot Function Syntax” on
page 14-36.

[]

PlotFcn Plots various measures of progress while the algorithm
executes; select from predefined plots or write your own.
Pass 'optimplotmilp', a function handle, or a cell
array of function handles. For custom plot functions, pass
function handles. The default is none ([]):

• 'optimplotmilp' plots the internally-calculated
upper and lower bounds on the objective value of the
solution.

For information on writing a custom plot function, see
“intlinprog Output Function and Plot Function Syntax” on
page 14-36.

[]

RelativeGapTo
lerance

Real from 0 through 1. intlinprog stops if the relative
difference between the internally calculated upper (U)
and lower (L) bounds on the objective function is less
than or equal to RelativeGapTolerance:

(U – L)/(|U| + 1) <= RelativeGapTolerance.

Note Although you specify RelativeGapTolerance as
a decimal number, the iterative display and
output.relativegap report the gap as a percentage,
meaning 100 times the measured relative gap. If the exit
message refers to the relative gap, this value is the
measured relative gap, not a percentage.

1e-4

RootLPAlgorit
hm

Algorithm for solving linear programs:

• 'dual-simplex' — Dual simplex algorithm
• 'primal-simplex' — Primal simplex algorithm

'dual-simplex'

 intlinprog

15-219

Option Description Default
RootLPMaxIter
ations

Nonnegative integer that is the maximum number of
simplex algorithm iterations to solve the initial linear
programming problem.

max(3e4,
10*(numberOfEqual
ities +
numberOfInequalit
ies +
numberOfVariables
))

In this expression,
numberOfEqualitie
s means the number of
rows of Aeq,
numberOfInequalit
ies means the number
of rows of A, and
numberOfVariables
means the number of
elements of f.

Example: options = optimoptions('intlinprog','MaxTime',120)

problem — Structure encapsulating inputs and options
structure

Structure encapsulating the inputs and options, specified with the following fields.

f Vector representing objective f'*x (required)
intcon Vector indicating variables that take integer values (required)
Aineq Matrix in linear inequality constraints Aineq*x ≤ bineq
bineq Vector in linear inequality constraints Aineq*x ≤ bineq
Aeq Matrix in linear equality constraints Aeq*x = beq
beq Vector in linear equality constraints Aeq*x = beq
lb Vector of lower bounds
ub Vector of upper bounds
x0 Initial feasible point
solver 'intlinprog' (required)
options Options created using optimoptions (required)

You must specify at least these fields in the problem structure. Other fields are optional:

• f
• intcon
• solver
• options

Example: problem.f = [1,2,3];
problem.intcon = [2,3];

15 Functions

15-220

problem.options = optimoptions('intlinprog');
problem.Aineq = [-3,-2,-1];
problem.bineq = -20;
problem.lb = [-6.1,-1.2,7.3];
problem.solver = 'intlinprog';

Data Types: struct

Output Arguments
x — Solution
real vector

Solution, returned as a vector that minimizes f'*x subject to all bounds, integer constraints, and
linear constraints.

When a problem is infeasible or unbounded, x is [].

fval — Objective value
real scalar

Objective value, returned as the scalar value f'*x at the solution x.

When a problem is infeasible or unbounded, fval is [].

exitflag — Algorithm stopping condition
integer

Algorithm stopping condition, returned as an integer identifying the reason the algorithm stopped.
The following lists the values of exitflag and the corresponding reasons intlinprog stopped.

3 The solution is feasible with respect to the relative
ConstraintTolerance tolerance, but is not feasible with respect
to the absolute tolerance.

2 intlinprog stopped prematurely. Integer feasible point found.
1 intlinprog converged to the solution x.
0 intlinprog stopped prematurely. No integer feasible point found.
-1 intlinprog stopped by an output function or plot function.
-2 No feasible point found.
-3 Root LP problem is unbounded.
-9 Solver lost feasibility.

The exit message can give more detailed information on the reason intlinprog stopped, such as
exceeding a tolerance.

Exitflags 3 and -9 relate to solutions that have large infeasibilities. These usually arise from linear
constraint matrices that have large condition number, or problems that have large solution
components. To correct these issues, try to scale the coefficient matrices, eliminate redundant linear
constraints, or give tighter bounds on the variables.

output — Solution process summary
structure

 intlinprog

15-221

Solution process summary, returned as a structure containing information about the optimization
process.

relativegap Relative percentage difference between upper (U) and
lower (L) bounds of the objective function that
intlinprog calculates in its branch-and-bound algorithm.

relativegap = 100*(U - L) / (abs(U) + 1)

If intcon = [], relativegap = [].

Note Although you specify RelativeGapTolerance as a
decimal number, the iterative display and
output.relativegap report the gap as a percentage,
meaning 100 times the measured relative gap. If the exit
message refers to the relative gap, this value is the
measured relative gap, not a percentage.

absolutegap Difference between upper and lower bounds of the
objective function that intlinprog calculates in its
branch-and-bound algorithm.

If intcon = [], absolutegap = [].
numfeaspoints Number of integer feasible points found.

If intcon = [], numfeaspoints = []. Also, if the
initial relaxed problem is infeasible, numfeaspoints =
[].

numnodes Number of nodes in branch-and-bound algorithm. If the
solution was found during preprocessing or during the
initial cuts, numnodes = 0.

If intcon = [], numnodes = [].
constrviolation Constraint violation that is positive for violated

constraints.

constrviolation = max([0; norm(Aeq*x-beq,
inf); (lb-x); (x-ub); (Ai*x-bi)])

message Exit message.

Limitations
• Often, some supposedly integer-valued components of the solution x(intCon) are not precisely

integers. intlinprog deems as integers all solution values within IntegerTolerance of an
integer.

To round all supposed integers to be exactly integers, use the round function.

x(intcon) = round(x(intcon));

15 Functions

15-222

Caution Rounding solutions can cause the solution to become infeasible. Check feasibility after
rounding:

max(A*x - b) % See if entries are not too positive, so have small infeasibility
max(abs(Aeq*x - beq)) % See if entries are near enough to zero
max(x - ub) % Positive entries are violated bounds
max(lb - x) % Positive entries are violated bounds

• intlinprog does not enforce that solution components be integer-valued when their absolute
values exceed 2.1e9. When your solution has such components, intlinprog warns you. If you
receive this warning, check the solution to see whether supposedly integer-valued components of
the solution are close to integers.

• intlinprog does not allow components of the problem, such as coefficients in f, A, or ub, to
exceed 1e25 in absolute value. If you try to run intlinprog with such a problem, intlinprog
issues an error.

Tips
• To specify binary variables, set the variables to be integers in intcon, and give them lower

bounds of 0 and upper bounds of 1.
• Save memory by specifying sparse linear constraint matrices A and Aeq. However, you cannot use

sparse matrices for b and beq.
• If you include an x0 argument, intlinprog uses that value in the 'rins' and guided diving

heuristics until it finds a better integer-feasible point. So when you provide x0, you can obtain
good results by setting the 'Heuristics' option to 'rins-diving' or another setting that uses
'rins'.

• To provide logical indices for integer components, meaning a binary vector with 1 indicating an
integer, convert to intcon form using find. For example,

logicalindices = [1,0,0,1,1,0,0];
intcon = find(logicalindices)

intcon =

 1 4 5
• intlinprog replaces bintprog. To update old bintprog code to use intlinprog, make the

following changes:

• Set intcon to 1:numVars, where numVars is the number of variables in your problem.
• Set lb to zeros(numVars,1).
• Set ub to ones(numVars,1).
• Update any relevant options. Use optimoptions to create options for intlinprog.
• Change your call to bintprog as follows:

[x,fval,exitflag,output] = bintprog(f,A,b,Aeq,Beq,x0,options)
% Change your call to:
[x,fval,exitflag,output] = intlinprog(f,intcon,A,b,Aeq,Beq,lb,ub,x0,options)

 intlinprog

15-223

Alternative Functionality
App

The Optimize Live Editor task provides a visual interface for intlinprog.

Compatibility Considerations
Default BranchRule is 'reliability'
Behavior changed in R2019a

The default value of the BranchRule option is 'reliability' instead of 'maxpscost'. In testing,
this value gave better performance on many problems, both in solution times and in number of
explored branching nodes.

On a few problems, the previous branch rule performs better. To get the previous behavior, set the
BranchRule option to 'maxpscost'.

See Also
linprog | mpsread | optimoptions | prob2struct | Optimize

Topics
“Mixed-Integer Linear Programming Basics: Solver-Based” on page 8-54
“Factory, Warehouse, Sales Allocation Model: Solver-Based” on page 8-57
“Traveling Salesman Problem: Solver-Based” on page 8-66
“Solve Sudoku Puzzles Via Integer Programming: Solver-Based” on page 8-89
“Mixed-Integer Quadratic Programming Portfolio Optimization: Solver-Based” on page 8-82
“Optimal Dispatch of Power Generators: Solver-Based” on page 8-72
“Mixed-Integer Linear Programming Algorithms” on page 8-43
“Tuning Integer Linear Programming” on page 8-52
“Solver-Based Optimization Problem Setup”

Introduced in R2014a

15 Functions

15-224

linprog
Solve linear programming problems

Syntax
x = linprog(f,A,b)
x = linprog(f,A,b,Aeq,beq)
x = linprog(f,A,b,Aeq,beq,lb,ub)
x = linprog(f,A,b,Aeq,beq,lb,ub,options)
x = linprog(problem)
[x,fval] = linprog(___)
[x,fval,exitflag,output] = linprog(___)
[x,fval,exitflag,output,lambda] = linprog(___)

Description
Linear programming solver

Finds the minimum of a problem specified by

min
x

f Tx such that
A ⋅ x ≤ b,

Aeq ⋅ x = beq,
lb ≤ x ≤ ub .

f, x, b, beq, lb, and ub are vectors, and A and Aeq are matrices.

Note linprog applies only to the solver-based approach. For a discussion of the two optimization
approaches, see “First Choose Problem-Based or Solver-Based Approach” on page 1-3.

x = linprog(f,A,b) solves min f'*x such that A*x ≤ b.

x = linprog(f,A,b,Aeq,beq) includes equality constraints Aeq*x = beq. Set A = [] and
b = [] if no inequalities exist.

x = linprog(f,A,b,Aeq,beq,lb,ub) defines a set of lower and upper bounds on the design
variables, x, so that the solution is always in the range lb ≤ x ≤ ub. Set Aeq = [] and beq = []
if no equalities exist.

Note If the specified input bounds for a problem are inconsistent, the output fval is [].

x = linprog(f,A,b,Aeq,beq,lb,ub,options) minimizes with the optimization options
specified by options. Use optimoptions to set these options.

x = linprog(problem) finds the minimum for problem, a structure described in problem.

You can import a problem structure from an MPS file using mpsread. You can also create a problem
structure from an OptimizationProblem object by using prob2struct.

 linprog

15-225

[x,fval] = linprog(___), for any input arguments, returns the value of the objective function
fun at the solution x: fval = f'*x.

[x,fval,exitflag,output] = linprog(___) additionally returns a value exitflag that
describes the exit condition, and a structure output that contains information about the optimization
process.

[x,fval,exitflag,output,lambda] = linprog(___) additionally returns a structure lambda
whose fields contain the Lagrange multipliers at the solution x.

Examples

Linear Program, Linear Inequality Constraints

Solve a simple linear program defined by linear inequalities.

For this example, use these linear inequality constraints:

x(1) + x(2) ≤ 2

x(1) + x(2)/4 ≤ 1

x(1)− x(2) ≤ 2

−x(1)/4− x(2) ≤ 1

−x(1)− x(2) ≤ − 1

−x(1) + x(2) ≤ 2 .

A = [1 1
 1 1/4
 1 -1
 -1/4 -1
 -1 -1
 -1 1];

b = [2 1 2 1 -1 2];

Use the objective function −x(1)− x(2)/3.

f = [-1 -1/3];

Solve the linear program.

x = linprog(f,A,b)

Optimal solution found.

x = 2×1

 0.6667
 1.3333

15 Functions

15-226

Linear Program with Linear Inequalities and Equalities

Solve a simple linear program defined by linear inequalities and linear equalities.

For this example, use these linear inequality constraints:

x(1) + x(2) ≤ 2

x(1) + x(2)/4 ≤ 1

x(1)− x(2) ≤ 2

−x(1)/4− x(2) ≤ 1

−x(1)− x(2) ≤ − 1

−x(1) + x(2) ≤ 2 .

A = [1 1
 1 1/4
 1 -1
 -1/4 -1
 -1 -1
 -1 1];

b = [2 1 2 1 -1 2];

Use the linear equality constraint x(1) + x(2)/4 = 1/2.

Aeq = [1 1/4];
beq = 1/2;

Use the objective function −x(1)− x(2)/3.

f = [-1 -1/3];

Solve the linear program.

x = linprog(f,A,b,Aeq,beq)

Optimal solution found.

x = 2×1

 0
 2

Linear Program with All Constraint Types

Solve a simple linear program with linear inequalities, linear equalities, and bounds.

For this example, use these linear inequality constraints:

x(1) + x(2) ≤ 2

 linprog

15-227

x(1) + x(2)/4 ≤ 1

x(1)− x(2) ≤ 2

−x(1)/4− x(2) ≤ 1

−x(1)− x(2) ≤ − 1

−x(1) + x(2) ≤ 2 .

A = [1 1
 1 1/4
 1 -1
 -1/4 -1
 -1 -1
 -1 1];

b = [2 1 2 1 -1 2];

Use the linear equality constraint x(1) + x(2)/4 = 1/2.

Aeq = [1 1/4];
beq = 1/2;

Set these bounds:

−1 ≤ x(1) ≤ 1 . 5

−0 . 5 ≤ x(2) ≤ 1 . 25 .

lb = [-1,-0.5];
ub = [1.5,1.25];

Use the objective function −x(1)− x(2)/3.

f = [-1 -1/3];

Solve the linear program.

x = linprog(f,A,b,Aeq,beq,lb,ub)

Optimal solution found.

x = 2×1

 0.1875
 1.2500

Linear Program Using the 'interior-point' Algorithm

Solve a linear program using the 'interior-point' algorithm.

For this example, use these linear inequality constraints:

x(1) + x(2) ≤ 2

15 Functions

15-228

x(1) + x(2)/4 ≤ 1

x(1)− x(2) ≤ 2

−x(1)/4− x(2) ≤ 1

−x(1)− x(2) ≤ − 1

−x(1) + x(2) ≤ 2 .

A = [1 1
 1 1/4
 1 -1
 -1/4 -1
 -1 -1
 -1 1];

b = [2 1 2 1 -1 2];

Use the linear equality constraint x(1) + x(2)/4 = 1/2.

Aeq = [1 1/4];
beq = 1/2;

Set these bounds:

−1 ≤ x(1) ≤ 1 . 5

−0 . 5 ≤ x(2) ≤ 1 . 25 .

lb = [-1,-0.5];
ub = [1.5,1.25];

Use the objective function −x(1)− x(2)/3.

f = [-1 -1/3];

Set options to use the 'interior-point' algorithm.

options = optimoptions('linprog','Algorithm','interior-point');

Solve the linear program using the 'interior-point' algorithm.

x = linprog(f,A,b,Aeq,beq,lb,ub,options)

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the selected value of the function tolerance,
and constraints are satisfied to within the selected value of the constraint
tolerance.

x = 2×1

 0.1875
 1.2500

 linprog

15-229

Solve LP Using Problem-Based Approach for linprog

This example shows how to set up a problem using the problem-based approach and then solve it
using the solver-based approach. The problem is

max
x

(x + y/3) subject to

x + y ≤ 2
x + y/4 ≤ 1
x− y ≤ 2
x/4 + y ≥ − 1
x + y ≥ 1
−x + y ≤ 2
x + y/4 = 1/2
−1 ≤ x ≤ 1 . 5
−1/2 ≤ y ≤ 1 . 25

Create an OptimizationProblem object named prob to represent this problem.

x = optimvar('x','LowerBound',-1,'UpperBound',1.5);
y = optimvar('y','LowerBound',-1/2,'UpperBound',1.25);
prob = optimproblem('Objective',x + y/3,'ObjectiveSense','max');
prob.Constraints.c1 = x + y <= 2;
prob.Constraints.c2 = x + y/4 <= 1;
prob.Constraints.c3 = x - y <= 2;
prob.Constraints.c4 = x/4 + y >= -1;
prob.Constraints.c5 = x + y >= 1;
prob.Constraints.c6 = -x + y <= 2;
prob.Constraints.c7 = x + y/4 == 1/2;

Convert the problem object to a problem structure.

problem = prob2struct(prob);

Solve the resulting problem structure.

[sol,fval,exitflag,output] = linprog(problem)

Optimal solution found.

sol = 2×1

 0.1875
 1.2500

fval = -0.6042

exitflag = 1

output = struct with fields:
 iterations: 1
 constrviolation: 0
 message: 'Optimal solution found.'
 algorithm: 'dual-simplex'
 firstorderopt: 0

15 Functions

15-230

The returned fval is negative, even though the solution components are positive. Internally,
prob2struct turns the maximization problem into a minimization problem of the negative of the
objective function. See “Maximizing an Objective” on page 2-30.

Which component of sol corresponds to which optimization variable? Examine the Variables
property of prob.

prob.Variables

ans = struct with fields:
 x: [1x1 optim.problemdef.OptimizationVariable]
 y: [1x1 optim.problemdef.OptimizationVariable]

As you might expect, sol(1) corresponds to x, and sol(2) corresponds to y. See “Algorithms” on
page 15-438.

Return the Objective Function Value

Calculate the solution and objective function value for a simple linear program.

The inequality constraints are

x(1) + x(2) ≤ 2

x(1) + x(2)/4 ≤ 1

x(1)− x(2) ≤ 2

−x(1)/4− x(2) ≤ 1

−x(1)− x(2) ≤ − 1

−x(1) + x(2) ≤ 2 .

A = [1 1
 1 1/4
 1 -1
 -1/4 -1
 -1 -1
 -1 1];

b = [2 1 2 1 -1 2];

The objective function is −x(1)− x(2)/3.

f = [-1 -1/3];

Solve the problem and return the objective function value.

[x,fval] = linprog(f,A,b)

Optimal solution found.

x = 2×1

 linprog

15-231

 0.6667
 1.3333

fval = -1.1111

Obtain More Output to Examine the Solution Process

Obtain the exit flag and output structure to better understand the solution process and quality.

For this example, use these linear inequality constraints:

x(1) + x(2) ≤ 2

x(1) + x(2)/4 ≤ 1

x(1)− x(2) ≤ 2

−x(1)/4− x(2) ≤ 1

−x(1)− x(2) ≤ − 1

−x(1) + x(2) ≤ 2 .

A = [1 1
 1 1/4
 1 -1
 -1/4 -1
 -1 -1
 -1 1];

b = [2 1 2 1 -1 2];

Use the linear equality constraint x(1) + x(2)/4 = 1/2.

Aeq = [1 1/4];
beq = 1/2;

Set these bounds:

−1 ≤ x(1) ≤ 1 . 5

−0 . 5 ≤ x(2) ≤ 1 . 25 .

lb = [-1,-0.5];
ub = [1.5,1.25];

Use the objective function −x(1)− x(2)/3.

f = [-1 -1/3];

Set options to use the 'dual-simplex' algorithm.

options = optimoptions('linprog','Algorithm','dual-simplex');

Solve the linear program and request the function value, exit flag, and output structure.

15 Functions

15-232

[x,fval,exitflag,output] = linprog(f,A,b,Aeq,beq,lb,ub,options)

Optimal solution found.

x = 2×1

 0.1875
 1.2500

fval = -0.6042

exitflag = 1

output = struct with fields:
 iterations: 1
 constrviolation: 0
 message: 'Optimal solution found.'
 algorithm: 'dual-simplex'
 firstorderopt: 0

• fval, the objective function value, is larger than “Return the Objective Function Value” on page
15-231, because there are more constraints.

• exitflag = 1 indicates that the solution is reliable.
• output.iterations = 0 indicates that linprog found the solution during presolve, and did not

have to iterate at all.

Obtain Solution and Lagrange Multipliers

Solve a simple linear program and examine the solution and the Lagrange multipliers.

Use the objective function

f (x) = − 5x1− 4x2− 6x3 .

f = [-5; -4; -6];

Use the linear inequality constraints

x1− x2 + x3 ≤ 20

3x1 + 2x2 + 4x3 ≤ 42

3x1 + 2x2 ≤ 30 .

A = [1 -1 1
 3 2 4
 3 2 0];
b = [20;42;30];

Constrain all variables to be positive:

x1 ≥ 0

 linprog

15-233

x2 ≥ 0

x3 ≥ 0 .

lb = zeros(3,1);

Set Aeq and beq to [], indicating that there are no linear equality constraints.

Aeq = [];
beq = [];

Call linprog, obtaining the Lagrange multipliers.

[x,fval,exitflag,output,lambda] = linprog(f,A,b,Aeq,beq,lb);

Optimal solution found.

Examine the solution and Lagrange multipliers.

x,lambda.ineqlin,lambda.lower

x = 3×1

 0
 15.0000
 3.0000

ans = 3×1

 0
 1.5000
 0.5000

ans = 3×1

 1.0000
 0
 0

lambda.ineqlin is nonzero for the second and third components of x. This indicates that the
second and third linear inequality constraints are satisfied with equalities:

3x1 + 2x2 + 4x3 = 42

3x1 + 2x2 = 30 .

Check that this is true:

A*x

ans = 3×1

 -12.0000
 42.0000
 30.0000

15 Functions

15-234

lambda.lower is nonzero for the first component of x. This indicates that x(1) is at its lower bound
of 0.

Input Arguments
f — Coefficient vector
real vector | real array

Coefficient vector, specified as a real vector or real array. The coefficient vector represents the
objective function f'*x. The notation assumes that f is a column vector, but you can use a row vector
or array. Internally, linprog converts f to the column vector f(:).
Example: f = [1,3,5,-6]
Data Types: double

A — Linear inequality constraints
real matrix

Linear inequality constraints, specified as a real matrix. A is an M-by-N matrix, where M is the number
of inequalities, and N is the number of variables (length of f). For large problems, pass A as a sparse
matrix.

A encodes the M linear inequalities

A*x <= b,

where x is the column vector of N variables x(:), and b is a column vector with M elements.

For example, consider these inequalities:

x1 + 2x2 ≤ 10
3x1 + 4x2 ≤ 20
5x1 + 6x2 ≤ 30.

Specify the inequalities by entering the following constraints.

A = [1,2;3,4;5,6];
b = [10;20;30];

Example: To specify that the x-components add up to 1 or less, take A = ones(1,N) and b = 1.
Data Types: double

Aeq — Linear equality constraints
real matrix

Linear equality constraints, specified as a real matrix. Aeq is an Me-by-N matrix, where Me is the
number of equalities, and N is the number of variables (length of f). For large problems, pass Aeq as
a sparse matrix.

Aeq encodes the Me linear equalities

Aeq*x = beq,

where x is the column vector of N variables x(:), and beq is a column vector with Me elements.

 linprog

15-235

For example, consider these equalities:

x1 + 2x2 + 3x3 = 10
2x1 + 4x2 + x3 = 20.

Specify the equalities by entering the following constraints.

Aeq = [1,2,3;2,4,1];
beq = [10;20];

Example: To specify that the x-components sum to 1, take Aeq = ones(1,N) and beq = 1.
Data Types: double

b — Linear inequality constraints
real vector

Linear inequality constraints, specified as a real vector. b is an M-element vector related to the A
matrix. If you pass b as a row vector, solvers internally convert b to the column vector b(:). For
large problems, pass b as a sparse vector.

b encodes the M linear inequalities

A*x <= b,

where x is the column vector of N variables x(:), and A is a matrix of size M-by-N.

For example, consider these inequalities:

x1 + 2x2 ≤ 10
3x1 + 4x2 ≤ 20
5x1 + 6x2 ≤ 30.

Specify the inequalities by entering the following constraints.

A = [1,2;3,4;5,6];
b = [10;20;30];

Example: To specify that the x components sum to 1 or less, use A = ones(1,N) and b = 1.
Data Types: double

beq — Linear equality constraints
real vector

Linear equality constraints, specified as a real vector. beq is an Me-element vector related to the Aeq
matrix. If you pass beq as a row vector, solvers internally convert beq to the column vector beq(:).
For large problems, pass beq as a sparse vector.

beq encodes the Me linear equalities

Aeq*x = beq,

where x is the column vector of N variables x(:), and Aeq is a matrix of size Me-by-N.

For example, consider these equalities:

x1 + 2x2 + 3x3 = 10

15 Functions

15-236

2x1 + 4x2 + x3 = 20.

Specify the equalities by entering the following constraints.

Aeq = [1,2,3;2,4,1];
beq = [10;20];

Example: To specify that the x components sum to 1, use Aeq = ones(1,N) and beq = 1.
Data Types: double

lb — Lower bounds
real vector | real array

Lower bounds, specified as a real vector or real array. If the length of f is equal to the length of lb,
then lb specifies that

x(i) >= lb(i) for all i.

If numel(lb) < numel(f), then lb specifies that

x(i) >= lb(i) for 1 <= i <= numel(lb).

In this case, solvers issue a warning.
Example: To specify that all x-components are positive, use lb = zeros(size(f)).
Data Types: double

ub — Upper bounds
real vector | real array

Upper bounds, specified as a real vector or real array. If the length of f is equal to the length of ub,
then ub specifies that

x(i) <= ub(i) for all i.

If numel(ub) < numel(f), then ub specifies that

x(i) <= ub(i) for 1 <= i <= numel(ub).

In this case, solvers issue a warning.
Example: To specify that all x-components are less than 1, use ub = ones(size(f)).
Data Types: double

options — Optimization options
output of optimoptions | structure as optimset returns

Optimization options, specified as the output of optimoptions or a structure as optimset returns.

Some options apply to all algorithms, and others are relevant for particular algorithms. See
“Optimization Options Reference” on page 14-6 for detailed information.

Some options are absent from the optimoptions display. These options appear in italics in the
following table. For details, see “View Options” on page 2-66.

 linprog

15-237

All Algorithms
Algorithm Choose the optimization algorithm:

• 'dual-simplex' (default)
• 'interior-point-legacy'
• 'interior-point'

For information on choosing the algorithm, see “Linear Programming
Algorithms” on page 2-9.

Diagnostics Display diagnostic information about the function to be minimized or
solved. Choose 'off' (default) or 'on'.

Display Level of display (see “Iterative Display” on page 3-14):

• 'final' (default) displays just the final output.
• 'off' or 'none' displays no output.
• 'iter' displays output at each iteration.

MaxIterations Maximum number of iterations allowed, a positive integer. The default
is:

• 85 for the 'interior-point-legacy' algorithm
• 200 for the 'interior-point' algorithm
• 10*(numberOfEqualities + numberOfInequalities +

numberOfVariables) for the 'dual-simplex' algorithm

See “Tolerances and Stopping Criteria” on page 2-68 and “Iterations
and Function Counts” on page 3-9.

For optimset, the name is MaxIter. See “Current and Legacy Option
Names” on page 14-23.

OptimalityTolerance Termination tolerance on the dual feasibility, a positive scalar. The
default is:

• 1e-8 for the 'interior-point-legacy' algorithm
• 1e-7 for the 'dual-simplex' algorithm
• 1e-6 for the 'interior-point' algorithm

For optimset, the name is TolFun. See “Current and Legacy Option
Names” on page 14-23.

interior-point Algorithm
ConstraintTolerance Feasibility tolerance for constraints, a nonnegative scalar.

ConstraintTolerance measures primal feasibility tolerance. The
default is 1e-6.

For optimset, the name is TolCon. See “Current and Legacy Option
Names” on page 14-23.

Preprocess Level of LP preprocessing prior to algorithm iterations. Specify
'basic' (default) or 'none'.

Dual-Simplex Algorithm

15 Functions

15-238

ConstraintTolerance Feasibility tolerance for constraints, a scalar from 1e-9 through 1e-3.
ConstraintTolerance measures primal feasibility tolerance. The
default is 1e-4.

For optimset, the name is TolCon. See “Current and Legacy Option
Names” on page 14-23.

MaxTime Maximum amount of time in seconds that the algorithm runs. The
default is Inf.

Preprocess Level of LP preprocessing prior to dual simplex algorithm iterations.
Specify 'basic' (default) or 'none'.

Example: options = optimoptions('linprog','Algorithm','interior-
point','Display','iter')

problem — Problem structure
structure

Problem structure, specified as a structure with the following fields.

Field Name Entry
f Linear objective function vector f
Aineq Matrix for linear inequality constraints
bineq Vector for linear inequality constraints
Aeq Matrix for linear equality constraints
beq Vector for linear equality constraints
lb Vector of lower bounds
ub Vector of upper bounds
solver 'linprog'
options Options created with optimoptions

You must supply at least the solver field in the problem structure.
Data Types: struct

Output Arguments
x — Solution
real vector | real array

Solution, returned as a real vector or real array. The size of x is the same as the size of f.

fval — Objective function value at the solution
real number

Objective function value at the solution, returned as a real number. Generally, fval = f'*x.

exitflag — Reason linprog stopped
integer

Reason linprog stopped, returned as an integer.

 linprog

15-239

3 The solution is feasible with respect to the relative ConstraintTolerance
tolerance, but is not feasible with respect to the absolute tolerance.

1 Function converged to a solution x.
0 Number of iterations exceeded options.MaxIterations or solution time

in seconds exceeded options.MaxTime.
-2 No feasible point was found.
-3 Problem is unbounded.
-4 NaN value was encountered during execution of the algorithm.
-5 Both primal and dual problems are infeasible.
-7 Search direction became too small. No further progress could be made.
-9 Solver lost feasibility.

Exitflags 3 and -9 relate to solutions that have large infeasibilities. These usually arise from linear
constraint matrices that have large condition number, or problems that have large solution
components. To correct these issues, try to scale the coefficient matrices, eliminate redundant linear
constraints, or give tighter bounds on the variables.

output — Information about the optimization process
structure

Information about the optimization process, returned as a structure with these fields.

iterations Number of iterations
algorithm Optimization algorithm used
cgiterations 0 (interior-point algorithm only, included for backward

compatibility)
message Exit message
constrviolation Maximum of constraint functions
firstorderopt First-order optimality measure

lambda — Lagrange multipliers at the solution
structure

Lagrange multipliers at the solution, returned as a structure with these fields.

lower Lower bounds corresponding to lb
upper Upper bounds corresponding to ub
ineqlin Linear inequalities corresponding to A and b
eqlin Linear equalities corresponding to Aeq and beq

The Lagrange multipliers for linear constraints satisfy this equation with length(f) components:

f+ATλineqlin + AeqTλeqlin + λupper− λlower = 0,

based on the Lagrangian

fTx + λineqlin
T Ax− b + λeqlin

T Aeq x− beq + λupper
T x− ub + λlower

T lb−x .

15 Functions

15-240

This sign convention matches that of nonlinear solvers (see “Constrained Optimality Theory” on page
3-12). However, this sign is the opposite of the sign in much linear programming literature, so a
linprog Lagrange multiplier is the negative of the associated "shadow price."

Algorithms
Dual-Simplex Algorithm

For a description, see “Dual-Simplex Algorithm” on page 8-9.

Interior-Point-Legacy Algorithm

The 'interior-point-legacy' method is based on LIPSOL (Linear Interior Point Solver, [3]),
which is a variant of Mehrotra's predictor-corrector algorithm [2], a primal-dual interior-point
method. A number of preprocessing steps occur before the algorithm begins to iterate. See “Interior-
Point-Legacy Linear Programming” on page 8-6.

The first stage of the algorithm might involve some preprocessing of the constraints (see “Interior-
Point-Legacy Linear Programming” on page 8-6). Several conditions might cause linprog to exit
with an infeasibility message. In each case, linprog returns a negative exitflag, indicating to
indicate failure.

• If a row of all zeros is detected in Aeq, but the corresponding element of beq is not zero, then the
exit message is

Exiting due to infeasibility: An all-zero row in the
constraint matrix does not have a zero in corresponding
right-hand-side entry.

• If one of the elements of x is found not to be bounded below, then the exit message is

Exiting due to infeasibility: Objective f'*x is unbounded below.

• If one of the rows of Aeq has only one nonzero element, then the associated value in x is called a
singleton variable. In this case, the value of that component of x can be computed from Aeq and
beq. If the value computed violates another constraint, then the exit message is

Exiting due to infeasibility: Singleton variables in
equality constraints are not feasible.

• If the singleton variable can be solved for, but the solution violates the upper or lower bounds,
then the exit message is

Exiting due to infeasibility: Singleton variables in
the equality constraints are not within bounds.

Note The preprocessing steps are cumulative. For example, even if your constraint matrix does not
have a row of all zeros to begin with, other preprocessing steps can cause such a row to occur.

When the preprocessing finishes, the iterative part of the algorithm begins until the stopping criteria
are met. (For more information about residuals, the primal problem, the dual problem, and the
related stopping criteria, see “Interior-Point-Legacy Linear Programming” on page 8-6.) If the
residuals are growing instead of getting smaller, or the residuals are neither growing nor shrinking,
one of the two following termination messages is displayed, respectively,

 linprog

15-241

One or more of the residuals, duality gap, or total relative error
has grown 100000 times greater than its minimum value so far:

or
One or more of the residuals, duality gap, or total relative error
has stalled:

After one of these messages is displayed, it is followed by one of the following messages indicating
that the dual, the primal, or both appear to be infeasible.

• The dual appears to be infeasible (and the primal unbounded). (The primal
residual < OptimalityTolerance.)

• The primal appears to be infeasible (and the dual unbounded). (The dual
residual < OptimalityTolerance.)

• The dual appears to be infeasible (and the primal unbounded) since the dual
residual > sqrt(OptimalityTolerance). (The primal residual <
10*OptimalityTolerance.)

• The primal appears to be infeasible (and the dual unbounded) since the
primal residual > sqrt(OptimalityTolerance). (The dual residual <
10*OptimalityTolerance.)

• The dual appears to be infeasible and the primal unbounded since the primal
objective < -1e+10 and the dual objective < 1e+6.

• The primal appears to be infeasible and the dual unbounded since the dual
objective > 1e+10 and the primal objective > -1e+6.

• Both the primal and the dual appear to be infeasible.

For example, the primal (objective) can be unbounded and the primal residual, which is a measure of
primal constraint satisfaction, can be small.

Interior-Point Algorithm

The 'interior-point' algorithm is similar to 'interior-point-legacy', but with a more
efficient factorization routine, and with different preprocessing. See “Interior-Point linprog
Algorithm” on page 8-2.

Alternative Functionality
App

The Optimize Live Editor task provides a visual interface for linprog.

References
[1] Dantzig, G.B., A. Orden, and P. Wolfe. “Generalized Simplex Method for Minimizing a Linear Form

Under Linear Inequality Restraints.” Pacific Journal Math., Vol. 5, 1955, pp. 183–195.

[2] Mehrotra, S. “On the Implementation of a Primal-Dual Interior Point Method.” SIAM Journal on
Optimization, Vol. 2, 1992, pp. 575–601.

[3] Zhang, Y., “Solving Large-Scale Linear Programs by Interior-Point Methods Under the MATLAB
Environment.” Technical Report TR96-01, Department of Mathematics and Statistics,
University of Maryland, Baltimore County, Baltimore, MD, July 1995.

15 Functions

15-242

See Also
intlinprog | mpsread | optimoptions | prob2struct | quadprog | Optimize

Topics
“Set Up a Linear Program, Solver-Based” on page 1-21
“Typical Linear Programming Problem” on page 8-13
“Maximize Long-Term Investments Using Linear Programming: Solver-Based” on page 8-15
“Solver-Based Optimization Problem Setup”
“Linear Programming Algorithms” on page 8-2

Introduced before R2006a

 linprog

15-243

lsqcurvefit
Solve nonlinear curve-fitting (data-fitting) problems in least-squares sense

Syntax
x = lsqcurvefit(fun,x0,xdata,ydata)
x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub)
x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub,options)
x = lsqcurvefit(problem)
[x,resnorm] = lsqcurvefit(___)
[x,resnorm,residual,exitflag,output] = lsqcurvefit(___)
[x,resnorm,residual,exitflag,output,lambda,jacobian] = lsqcurvefit(___)

Description
Nonlinear least-squares solver

Find coefficients x that solve the problem

min
x

F(x, xdata)− ydata 2
2 = min

x
∑
i

F x, xdatai − ydatai
2,

given input data xdata, and the observed output ydata, where xdata and ydata are matrices or
vectors, and F (x, xdata) is a matrix-valued or vector-valued function of the same size as ydata.

Optionally, the components of x can have lower and upper bounds lb, and ub. The arguments x, lb,
and ub can be vectors or matrices; see “Matrix Arguments” on page 2-31.

The lsqcurvefit function uses the same algorithm as lsqnonlin. lsqcurvefit simply provides a
convenient interface for data-fitting problems.

Rather than compute the sum of squares, lsqcurvefit requires the user-defined function to
compute the vector-valued function

F(x, xdata) =

F x, xdata(1)
F x, xdata(2)

⋮
F x, xdata(k)

.

x = lsqcurvefit(fun,x0,xdata,ydata) starts at x0 and finds coefficients x to best fit the
nonlinear function fun(x,xdata) to the data ydata (in the least-squares sense). ydata must be the
same size as the vector (or matrix) F returned by fun.

Note “Passing Extra Parameters” on page 2-57 explains how to pass extra parameters to the vector
function fun(x), if necessary.

15 Functions

15-244

x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub) defines a set of lower and upper bounds on the
design variables in x, so that the solution is always in the range lb ≤ x ≤ ub. You can fix the
solution component x(i) by specifying lb(i) = ub(i).

Note If the specified input bounds for a problem are inconsistent, the output x is x0 and the outputs
resnorm and residual are [].

Components of x0 that violate the bounds lb ≤ x ≤ ub are reset to the interior of the box defined
by the bounds. Components that respect the bounds are not changed.

x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub,options) minimizes with the optimization
options specified in options. Use optimoptions to set these options. Pass empty matrices for lb
and ub if no bounds exist.

x = lsqcurvefit(problem) finds the minimum for problem, a structure described in problem.

[x,resnorm] = lsqcurvefit(___), for any input arguments, returns the value of the squared 2-
norm of the residual at x: sum((fun(x,xdata)-ydata).^2).

[x,resnorm,residual,exitflag,output] = lsqcurvefit(___) additionally returns the
value of the residual fun(x,xdata)-ydata at the solution x, a value exitflag that describes the
exit condition, and a structure output that contains information about the optimization process.

[x,resnorm,residual,exitflag,output,lambda,jacobian] = lsqcurvefit(___)
additionally returns a structure lambda whose fields contain the Lagrange multipliers at the solution
x, and the Jacobian of fun at the solution x.

Examples

Simple Exponential Fit

Suppose that you have observation time data xdata and observed response data ydata, and you
want to find parameters x(1) and x(2) to fit a model of the form

ydata = x(1)exp x(2)xdata .

Input the observation times and responses.

xdata = ...
 [0.9 1.5 13.8 19.8 24.1 28.2 35.2 60.3 74.6 81.3];
ydata = ...
 [455.2 428.6 124.1 67.3 43.2 28.1 13.1 -0.4 -1.3 -1.5];

Create a simple exponential decay model.

fun = @(x,xdata)x(1)*exp(x(2)*xdata);

Fit the model using the starting point x0 = [100,-1].

x0 = [100,-1];
x = lsqcurvefit(fun,x0,xdata,ydata)

Local minimum possible.

 lsqcurvefit

15-245

lsqcurvefit stopped because the final change in the sum of squares relative to
its initial value is less than the value of the function tolerance.

x = 1×2

 498.8309 -0.1013

Plot the data and the fitted curve.

times = linspace(xdata(1),xdata(end));
plot(xdata,ydata,'ko',times,fun(x,times),'b-')
legend('Data','Fitted exponential')
title('Data and Fitted Curve')

Best Fit with Bound Constraints

Find the best exponential fit to data where the fitting parameters are constrained.

Generate data from an exponential decay model plus noise. The model is

y = exp(− 1 . 3t) + ε,

with t ranging from 0 through 3, and ε normally distributed noise with mean 0 and standard deviation
0.05.

15 Functions

15-246

rng default % for reproducibility
xdata = linspace(0,3);
ydata = exp(-1.3*xdata) + 0.05*randn(size(xdata));

The problem is: given the data (xdata, ydata), find the exponential decay model
y = x(1)exp(x(2)xdata) that best fits the data, with the parameters bounded as follows:

0 ≤ x(1) ≤ 3/4

−2 ≤ x(2) ≤ − 1 .

lb = [0,-2];
ub = [3/4,-1];

Create the model.

fun = @(x,xdata)x(1)*exp(x(2)*xdata);

Create an initial guess.

x0 = [1/2,-2];

Solve the bounded fitting problem.

x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub)

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

x = 1×2

 0.7500 -1.0000

Examine how well the resulting curve fits the data. Because the bounds keep the solution away from
the true values, the fit is mediocre.

plot(xdata,ydata,'ko',xdata,fun(x,xdata),'b-')
legend('Data','Fitted exponential')
title('Data and Fitted Curve')

 lsqcurvefit

15-247

Compare Algorithms

Compare the results of fitting with the default 'trust-region-reflective' algorithm and the
'levenberg-marquardt' algorithm.

Suppose that you have observation time data xdata and observed response data ydata, and you
want to find parameters x(1) and x(2) to fit a model of the form

ydata = x(1)exp x(2)xdata .

Input the observation times and responses.

xdata = ...
 [0.9 1.5 13.8 19.8 24.1 28.2 35.2 60.3 74.6 81.3];
ydata = ...
 [455.2 428.6 124.1 67.3 43.2 28.1 13.1 -0.4 -1.3 -1.5];

Create a simple exponential decay model.

fun = @(x,xdata)x(1)*exp(x(2)*xdata);

Fit the model using the starting point x0 = [100,-1].

x0 = [100,-1];
x = lsqcurvefit(fun,x0,xdata,ydata)

15 Functions

15-248

Local minimum possible.

lsqcurvefit stopped because the final change in the sum of squares relative to
its initial value is less than the value of the function tolerance.

x = 1×2

 498.8309 -0.1013

Compare the solution with that of a 'levenberg-marquardt' fit.

options = optimoptions('lsqcurvefit','Algorithm','levenberg-marquardt');
lb = [];
ub = [];
x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub,options)

Local minimum possible.
lsqcurvefit stopped because the relative size of the current step is less than
the value of the step size tolerance.

x = 1×2

 498.8309 -0.1013

The two algorithms converged to the same solution. Plot the data and the fitted exponential model.

times = linspace(xdata(1),xdata(end));
plot(xdata,ydata,'ko',times,fun(x,times),'b-')
legend('Data','Fitted exponential')
title('Data and Fitted Curve')

 lsqcurvefit

15-249

Compare Algorithms and Examine Solution Process

Compare the results of fitting with the default 'trust-region-reflective' algorithm and the
'levenberg-marquardt' algorithm. Examine the solution process to see which is more efficient in
this case.

Suppose that you have observation time data xdata and observed response data ydata, and you
want to find parameters x(1) and x(2) to fit a model of the form

ydata = x(1)exp x(2)xdata .

Input the observation times and responses.

xdata = ...
 [0.9 1.5 13.8 19.8 24.1 28.2 35.2 60.3 74.6 81.3];
ydata = ...
 [455.2 428.6 124.1 67.3 43.2 28.1 13.1 -0.4 -1.3 -1.5];

Create a simple exponential decay model.

fun = @(x,xdata)x(1)*exp(x(2)*xdata);

Fit the model using the starting point x0 = [100,-1].

15 Functions

15-250

x0 = [100,-1];
[x,resnorm,residual,exitflag,output] = lsqcurvefit(fun,x0,xdata,ydata);

Local minimum possible.

lsqcurvefit stopped because the final change in the sum of squares relative to
its initial value is less than the value of the function tolerance.

Compare the solution with that of a 'levenberg-marquardt' fit.

options = optimoptions('lsqcurvefit','Algorithm','levenberg-marquardt');
lb = [];
ub = [];
[x2,resnorm2,residual2,exitflag2,output2] = lsqcurvefit(fun,x0,xdata,ydata,lb,ub,options);

Local minimum possible.
lsqcurvefit stopped because the relative size of the current step is less than
the value of the step size tolerance.

Are the solutions equivalent?

norm(x-x2)

ans = 2.0630e-06

Yes, the solutions are equivalent.

Which algorithm took fewer function evaluations to arrive at the solution?

fprintf(['The ''trust-region-reflective'' algorithm took %d function evaluations,\n',...
 'and the ''levenberg-marquardt'' algorithm took %d function evaluations.\n'],...
 output.funcCount,output2.funcCount)

The 'trust-region-reflective' algorithm took 87 function evaluations,
and the 'levenberg-marquardt' algorithm took 72 function evaluations.

Plot the data and the fitted exponential model.

times = linspace(xdata(1),xdata(end));
plot(xdata,ydata,'ko',times,fun(x,times),'b-')
legend('Data','Fitted exponential')
title('Data and Fitted Curve')

 lsqcurvefit

15-251

The fit looks good. How large are the residuals?

fprintf(['The ''trust-region-reflective'' algorithm has residual norm %f,\n',...
 'and the ''levenberg-marquardt'' algorithm has residual norm %f.\n'],...
 resnorm,resnorm2)

The 'trust-region-reflective' algorithm has residual norm 9.504887,
and the 'levenberg-marquardt' algorithm has residual norm 9.504887.

Input Arguments
fun — Function you want to fit
function handle | name of function

Function you want to fit, specified as a function handle or the name of a function. fun is a function
that takes two inputs: a vector or matrix x, and a vector or matrix xdata. fun returns a vector or
matrix F, the objective function evaluated at x and xdata. The function fun can be specified as a
function handle for a function file:

x = lsqcurvefit(@myfun,x0,xdata,ydata)

where myfun is a MATLAB function such as

function F = myfun(x,xdata)
F = ... % Compute function values at x, xdata

15 Functions

15-252

fun can also be a function handle for an anonymous function.

f = @(x,xdata)x(1)*xdata.^2+x(2)*sin(xdata);
x = lsqcurvefit(f,x0,xdata,ydata);

lsqcurvefit passes x to your objective function in the shape of the x0 argument. For example, if x0
is a 5-by-3 array, then lsqcurvefit passes x to fun as a 5-by-3 array.

Note fun should return fun(x,xdata), and not the sum-of-squares sum((fun(x,xdata)-
ydata).^2). lsqcurvefit implicitly computes the sum of squares of the components of
fun(x,xdata)-ydata. See “Examples” on page 15-0 .

If the Jacobian can also be computed and the 'SpecifyObjectiveGradient' option is true, set by

options = optimoptions('lsqcurvefit','SpecifyObjectiveGradient',true)

then the function fun must return a second output argument with the Jacobian value J (a matrix) at
x. By checking the value of nargout, the function can avoid computing J when fun is called with
only one output argument (in the case where the optimization algorithm only needs the value of F but
not J).
function [F,J] = myfun(x,xdata)
F = ... % objective function values at x
if nargout > 1 % two output arguments
 J = ... % Jacobian of the function evaluated at x
end

If fun returns a vector (matrix) of m components and x has n elements, where n is the number of
elements of x0, the Jacobian J is an m-by-n matrix where J(i,j) is the partial derivative of F(i)
with respect to x(j). (The Jacobian J is the transpose of the gradient of F.) For more information,
see “Writing Vector and Matrix Objective Functions” on page 2-26.
Example: @(x,xdata)x(1)*exp(-x(2)*xdata)
Data Types: char | function_handle | string

x0 — Initial point
real vector | real array

Initial point, specified as a real vector or real array. Solvers use the number of elements in x0 and the
size of x0 to determine the number and size of variables that fun accepts.
Example: x0 = [1,2,3,4]
Data Types: double

xdata — Input data for model
real vector | real array

Input data for model, specified as a real vector or real array. The model is

ydata = fun(x,xdata),

where xdata and ydata are fixed arrays, and x is the array of parameters that lsqcurvefit
changes to search for a minimum sum of squares.
Example: xdata = [1,2,3,4]

 lsqcurvefit

15-253

Data Types: double

ydata — Response data for model
real vector | real array

Response data for model, specified as a real vector or real array. The model is

ydata = fun(x,xdata),

where xdata and ydata are fixed arrays, and x is the array of parameters that lsqcurvefit
changes to search for a minimum sum of squares.

The ydata array must be the same size and shape as the array fun(x0,xdata).
Example: ydata = [1,2,3,4]
Data Types: double

lb — Lower bounds
real vector | real array

Lower bounds, specified as a real vector or real array. If the number of elements in x0 is equal to the
number of elements in lb, then lb specifies that

x(i) >= lb(i) for all i.

If numel(lb) < numel(x0), then lb specifies that

x(i) >= lb(i) for 1 <= i <= numel(lb).

If lb has fewer elements than x0, solvers issue a warning.
Example: To specify that all x components are positive, use lb = zeros(size(x0)).
Data Types: double

ub — Upper bounds
real vector | real array

Upper bounds, specified as a real vector or real array. If the number of elements in x0 is equal to the
number of elements in ub, then ub specifies that

x(i) <= ub(i) for all i.

If numel(ub) < numel(x0), then ub specifies that

x(i) <= ub(i) for 1 <= i <= numel(ub).

If ub has fewer elements than x0, solvers issue a warning.
Example: To specify that all x components are less than 1, use ub = ones(size(x0)).
Data Types: double

options — Optimization options
output of optimoptions | structure such as optimset returns

Optimization options, specified as the output of optimoptions or a structure such as optimset
returns.

15 Functions

15-254

Some options apply to all algorithms, and others are relevant for particular algorithms. See
“Optimization Options Reference” on page 14-6 for detailed information.

Some options are absent from the optimoptions display. These options appear in italics in the
following table. For details, see “View Options” on page 2-66.

All Algorithms
Algorithm Choose between 'trust-region-reflective' (default) and

'levenberg-marquardt'.

The Algorithm option specifies a preference for which algorithm to
use. It is only a preference, because certain conditions must be met to
use each algorithm. For the trust-region-reflective algorithm, the
nonlinear system of equations cannot be underdetermined; that is, the
number of equations (the number of elements of F returned by fun)
must be at least as many as the length of x. For more information on
choosing the algorithm, see “Choosing the Algorithm” on page 2-6.

CheckGradients Compare user-supplied derivatives (gradients of objective or
constraints) to finite-differencing derivatives. Choices are false
(default) or true.

For optimset, the name is DerivativeCheck and the values are
'on' or 'off'. See “Current and Legacy Option Names” on page 14-
23.

Diagnostics Display diagnostic information about the function to be minimized or
solved. Choices are 'off' (default) or 'on'.

DiffMaxChange Maximum change in variables for finite-difference gradients (a positive
scalar). The default is Inf.

DiffMinChange Minimum change in variables for finite-difference gradients (a positive
scalar). The default is 0.

Display Level of display (see “Iterative Display” on page 3-14):

• 'off' or 'none' displays no output.
• 'iter' displays output at each iteration, and gives the default exit

message.
• 'iter-detailed' displays output at each iteration, and gives the

technical exit message.
• 'final' (default) displays just the final output, and gives the

default exit message.
• 'final-detailed' displays just the final output, and gives the

technical exit message.

 lsqcurvefit

15-255

FiniteDifferenceStepSi
ze

Scalar or vector step size factor for finite differences. When you set
FiniteDifferenceStepSize to a vector v, the forward finite
differences delta are

delta = v.*sign′(x).*max(abs(x),TypicalX);

where sign′(x) = sign(x) except sign′(0) = 1. Central finite
differences are

delta = v.*max(abs(x),TypicalX);

Scalar FiniteDifferenceStepSize expands to a vector. The default
is sqrt(eps) for forward finite differences, and eps^(1/3) for
central finite differences.

For optimset, the name is FinDiffRelStep. See “Current and
Legacy Option Names” on page 14-23.

FiniteDifferenceType Finite differences, used to estimate gradients, are either 'forward'
(default), or 'central' (centered). 'central' takes twice as many
function evaluations, but should be more accurate.

The algorithm is careful to obey bounds when estimating both types of
finite differences. So, for example, it could take a backward, rather
than a forward, difference to avoid evaluating at a point outside
bounds.

For optimset, the name is FinDiffType. See “Current and Legacy
Option Names” on page 14-23.

FunctionTolerance Termination tolerance on the function value, a positive scalar. The
default is 1e-6. See “Tolerances and Stopping Criteria” on page 2-68.

For optimset, the name is TolFun. See “Current and Legacy Option
Names” on page 14-23.

FunValCheck Check whether function values are valid. 'on' displays an error when
the function returns a value that is complex, Inf, or NaN. The default
'off' displays no error.

MaxFunctionEvaluations Maximum number of function evaluations allowed, a positive integer.
The default is 100*numberOfVariables for the 'trust-region-
reflective' algorithm, and 200*numberOfVariables for the
'levenberg-marquardt' algorithm. See “Tolerances and Stopping
Criteria” on page 2-68 and “Iterations and Function Counts” on page 3-
9.

For optimset, the name is MaxFunEvals. See “Current and Legacy
Option Names” on page 14-23.

MaxIterations Maximum number of iterations allowed, a positive integer. The default
is 400. See “Tolerances and Stopping Criteria” on page 2-68 and
“Iterations and Function Counts” on page 3-9.

For optimset, the name is MaxIter. See “Current and Legacy Option
Names” on page 14-23.

15 Functions

15-256

OptimalityTolerance Termination tolerance on the first-order optimality (a positive scalar).
The default is 1e-6. See “First-Order Optimality Measure” on page 3-
11.

Internally, the 'levenberg-marquardt' algorithm uses an optimality
tolerance (stopping criterion) of 1e-4 times FunctionTolerance and
does not use OptimalityTolerance.

For optimset, the name is TolFun. See “Current and Legacy Option
Names” on page 14-23.

OutputFcn Specify one or more user-defined functions that an optimization
function calls at each iteration. Pass a function handle or a cell array of
function handles. The default is none ([]). See “Output Function and
Plot Function Syntax” on page 14-28.

PlotFcn Plots various measures of progress while the algorithm executes; select
from predefined plots or write your own. Pass a name, a function
handle, or a cell array of names or function handles. For custom plot
functions, pass function handles. The default is none ([]):

• 'optimplotx' plots the current point.
• 'optimplotfunccount' plots the function count.
• 'optimplotfval' plots the function value.
• 'optimplotresnorm' plots the norm of the residuals.
• 'optimplotstepsize' plots the step size.
• 'optimplotfirstorderopt' plots the first-order optimality

measure.

Custom plot functions use the same syntax as output functions. See
“Output Functions for Optimization Toolbox” on page 3-30 and “Output
Function and Plot Function Syntax” on page 14-28.

For optimset, the name is PlotFcns. See “Current and Legacy
Option Names” on page 14-23.

SpecifyObjectiveGradie
nt

If false (default), the solver approximates the Jacobian using finite
differences. If true, the solver uses a user-defined Jacobian (defined in
fun), or Jacobian information (when using JacobMult), for the
objective function.

For optimset, the name is Jacobian, and the values are 'on' or
'off'. See “Current and Legacy Option Names” on page 14-23.

StepTolerance Termination tolerance on x, a positive scalar. The default is 1e-6. See
“Tolerances and Stopping Criteria” on page 2-68.

For optimset, the name is TolX. See “Current and Legacy Option
Names” on page 14-23.

TypicalX Typical x values. The number of elements in TypicalX is equal to the
number of elements in x0, the starting point. The default value is
ones(numberofvariables,1). The solver uses TypicalX for
scaling finite differences for gradient estimation.

 lsqcurvefit

15-257

UseParallel When true, the solver estimates gradients in parallel. Disable by
setting to the default, false. See “Parallel Computing”.

Trust-Region-Reflective Algorithm
JacobianMultiplyFcn Jacobian multiply function, specified as a function handle. For large-

scale structured problems, this function computes the Jacobian matrix
product J*Y, J'*Y, or J'*(J*Y) without actually forming J. The
function is of the form

W = jmfun(Jinfo,Y,flag)

where Jinfo contains the matrix used to compute J*Y (or J'*Y, or
J'*(J*Y)). The first argument Jinfo must be the same as the second
argument returned by the objective function fun, for example, by

[F,Jinfo] = fun(x)

Y is a matrix that has the same number of rows as there are
dimensions in the problem. flag determines which product to
compute:

• If flag == 0 then W = J'*(J*Y).
• If flag > 0 then W = J*Y.
• If flag < 0 then W = J'*Y.

In each case, J is not formed explicitly. The solver uses Jinfo to
compute the preconditioner. See “Passing Extra Parameters” on page
2-57 for information on how to supply values for any additional
parameters jmfun needs.

Note 'SpecifyObjectiveGradient' must be set to true for the
solver to pass Jinfo from fun to jmfun.

See “Minimization with Dense Structured Hessian, Linear Equalities”
on page 5-99 and “Jacobian Multiply Function with Linear Least
Squares” on page 11-31 for similar examples.

For optimset, the name is JacobMult. See “Current and Legacy
Option Names” on page 14-23.

15 Functions

15-258

JacobPattern Sparsity pattern of the Jacobian for finite differencing. Set
JacobPattern(i,j) = 1 when fun(i) depends on x(j).
Otherwise, set JacobPattern(i,j) = 0. In other words,
JacobPattern(i,j) = 1 when you can have ∂fun(i)/∂x(j) ≠ 0.

Use JacobPattern when it is inconvenient to compute the Jacobian
matrix J in fun, though you can determine (say, by inspection) when
fun(i) depends on x(j). The solver can approximate J via sparse
finite differences when you give JacobPattern.

If the structure is unknown, do not set JacobPattern. The default
behavior is as if JacobPattern is a dense matrix of ones. Then the
solver computes a full finite-difference approximation in each iteration.
This can be expensive for large problems, so it is usually better to
determine the sparsity structure.

MaxPCGIter Maximum number of PCG (preconditioned conjugate gradient)
iterations, a positive scalar. The default is
max(1,numberOfVariables/2). For more information, see “Large
Scale Nonlinear Least Squares” on page 11-5.

PrecondBandWidth Upper bandwidth of preconditioner for PCG, a nonnegative integer. The
default PrecondBandWidth is Inf, which means a direct factorization
(Cholesky) is used rather than the conjugate gradients (CG). The direct
factorization is computationally more expensive than CG, but produces
a better quality step towards the solution. Set PrecondBandWidth to
0 for diagonal preconditioning (upper bandwidth of 0). For some
problems, an intermediate bandwidth reduces the number of PCG
iterations.

SubproblemAlgorithm Determines how the iteration step is calculated. The default,
'factorization', takes a slower but more accurate step than 'cg'.
See “Trust-Region-Reflective Least Squares” on page 11-3.

TolPCG Termination tolerance on the PCG iteration, a positive scalar. The
default is 0.1.

Levenberg-Marquardt Algorithm
InitDamping Initial value of the Levenberg-Marquardt parameter, a positive scalar.

Default is 1e-2. For details, see “Levenberg-Marquardt Method” on
page 11-6.

ScaleProblem 'jacobian' can sometimes improve the convergence of a poorly
scaled problem; the default is 'none'.

Example: options = optimoptions('lsqcurvefit','FiniteDifferenceType','central')

problem — Problem structure
structure

Problem structure, specified as a structure with the following fields:

Field Name Entry
objective Objective function of x and xdata
x0 Initial point for x, active set algorithm only

 lsqcurvefit

15-259

Field Name Entry
xdata Input data for objective function
ydata Output data to be matched by objective function
lb Vector of lower bounds
ub Vector of upper bounds
solver 'lsqcurvefit'
options Options created with optimoptions

You must supply at least the objective, x0, solver, xdata, ydata, and options fields in the
problem structure.
Data Types: struct

Output Arguments
x — Solution
real vector | real array

Solution, returned as a real vector or real array. The size of x is the same as the size of x0. Typically,
x is a local solution to the problem when exitflag is positive. For information on the quality of the
solution, see “When the Solver Succeeds” on page 4-18.

resnorm — Squared norm of the residual
nonnegative real

Squared norm of the residual, returned as a nonnegative real. resnorm is the squared 2-norm of the
residual at x: sum((fun(x,xdata)-ydata).^2).

residual — Value of objective function at solution
array

Value of objective function at solution, returned as an array. In general, residual =
fun(x,xdata)-ydata.

exitflag — Reason the solver stopped
integer

Reason the solver stopped, returned as an integer.

1 Function converged to a solution x.
2 Change in x is less than the specified tolerance, or Jacobian at x

is undefined.
3 Change in the residual is less than the specified tolerance.
4 Relative magnitude of search direction is smaller than the step

tolerance.
0 Number of iterations exceeds options.MaxIterations or

number of function evaluations exceeded
options.MaxFunctionEvaluations.

-1 A plot function or output function stopped the solver.

15 Functions

15-260

-2 Problem is infeasible: the bounds lb and ub are inconsistent.

output — Information about the optimization process
structure

Information about the optimization process, returned as a structure with fields:

firstorderopt Measure of first-order optimality
iterations Number of iterations taken
funcCount The number of function evaluations
cgiterations Total number of PCG iterations (trust-region-reflective algorithm

only)
stepsize Final displacement in x
algorithm Optimization algorithm used
message Exit message

lambda — Lagrange multipliers at the solution
structure

Lagrange multipliers at the solution, returned as a structure with fields:

lower Lower bounds lb
upper Upper bounds ub

jacobian — Jacobian at the solution
real matrix

Jacobian at the solution, returned as a real matrix. jacobian(i,j) is the partial derivative of
fun(i) with respect to x(j) at the solution x.

Limitations
• The trust-region-reflective algorithm does not solve underdetermined systems; it requires that the

number of equations, i.e., the row dimension of F, be at least as great as the number of variables.
In the underdetermined case, lsqcurvefit uses the Levenberg-Marquardt algorithm.

• lsqcurvefit can solve complex-valued problems directly. Note that bound constraints do not
make sense for complex values. For a complex problem with bound constraints, split the variables
into real and imaginary parts. See “Fit a Model to Complex-Valued Data” on page 11-51.

• The preconditioner computation used in the preconditioned conjugate gradient part of the trust-
region-reflective method forms JTJ (where J is the Jacobian matrix) before computing the
preconditioner. Therefore, a row of J with many nonzeros, which results in a nearly dense product
JTJ, can lead to a costly solution process for large problems.

• If components of x have no upper (or lower) bounds, lsqcurvefit prefers that the corresponding
components of ub (or lb) be set to inf (or -inf for lower bounds) as opposed to an arbitrary but
very large positive (or negative for lower bounds) number.

You can use the trust-region reflective algorithm in lsqnonlin, lsqcurvefit, and fsolve with
small- to medium-scale problems without computing the Jacobian in fun or providing the Jacobian
sparsity pattern. (This also applies to using fmincon or fminunc without computing the Hessian or

 lsqcurvefit

15-261

supplying the Hessian sparsity pattern.) How small is small- to medium-scale? No absolute answer is
available, as it depends on the amount of virtual memory in your computer system configuration.

Suppose your problem has m equations and n unknowns. If the command J = sparse(ones(m,n))
causes an Out of memory error on your machine, then this is certainly too large a problem. If it
does not result in an error, the problem might still be too large. You can find out only by running it
and seeing if MATLAB runs within the amount of virtual memory available on your system.

Algorithms
The Levenberg-Marquardt and trust-region-reflective methods are based on the nonlinear least-
squares algorithms also used in fsolve.

• The default trust-region-reflective algorithm is a subspace trust-region method and is based on the
interior-reflective Newton method described in [1] and [2]. Each iteration involves the
approximate solution of a large linear system using the method of preconditioned conjugate
gradients (PCG). See “Trust-Region-Reflective Least Squares” on page 11-3.

• The Levenberg-Marquardt method is described in references [4], [5], and [6]. See “Levenberg-
Marquardt Method” on page 11-6.

Alternative Functionality
App

The Optimize Live Editor task provides a visual interface for lsqcurvefit.

References
[1] Coleman, T.F. and Y. Li. “An Interior, Trust Region Approach for Nonlinear Minimization Subject to

Bounds.” SIAM Journal on Optimization, Vol. 6, 1996, pp. 418–445.

[2] Coleman, T.F. and Y. Li. “On the Convergence of Reflective Newton Methods for Large-Scale
Nonlinear Minimization Subject to Bounds.” Mathematical Programming, Vol. 67, Number 2,
1994, pp. 189–224.

[3] Dennis, J. E. Jr. “Nonlinear Least-Squares.” State of the Art in Numerical Analysis, ed. D. Jacobs,
Academic Press, pp. 269–312.

[4] Levenberg, K. “A Method for the Solution of Certain Problems in Least-Squares.” Quarterly
Applied Mathematics 2, 1944, pp. 164–168.

[5] Marquardt, D. “An Algorithm for Least-squares Estimation of Nonlinear Parameters.” SIAM
Journal Applied Mathematics, Vol. 11, 1963, pp. 431–441.

[6] Moré, J. J. “The Levenberg-Marquardt Algorithm: Implementation and Theory.” Numerical
Analysis, ed. G. A. Watson, Lecture Notes in Mathematics 630, Springer Verlag, 1977, pp.
105–116.

[7] Moré, J. J., B. S. Garbow, and K. E. Hillstrom. User Guide for MINPACK 1. Argonne National
Laboratory, Rept. ANL–80–74, 1980.

[8] Powell, M. J. D. “A Fortran Subroutine for Solving Systems of Nonlinear Algebraic Equations.”
Numerical Methods for Nonlinear Algebraic Equations, P. Rabinowitz, ed., Ch.7, 1970.

15 Functions

15-262

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

• lsqcurvefit and lsqnonlin support code generation using either the codegen function or the
MATLAB Coder app. You must have a MATLAB Coder license to generate code.

• The target hardware must support standard double-precision floating-point computations. You
cannot generate code for single-precision or fixed-point computations.

• Code generation targets do not use the same math kernel libraries as MATLAB solvers. Therefore,
code generation solutions can vary from solver solutions, especially for poorly conditioned
problems.

• All code for generation must be MATLAB code. In particular, you cannot use a custom black-box
function as an objective function for lsqcurvefit or lsqnonlin. You can use coder.ceval to
evaluate a custom function coded in C or C++. However, the custom function must be called in a
MATLAB function.

• lsqcurvefit and lsqnonlin do not support the problem argument for code generation.

[x,fval] = lsqnonlin(problem) % Not supported
• You must specify the objective function by using function handles, not strings or character names.

x = lsqnonlin(@fun,x0,lb,ub,options) % Supported
% Not supported: lsqnonlin('fun',...) or lsqnonlin("fun",...)

• All input matrices lb and ub must be full, not sparse. You can convert sparse matrices to full by
using the full function.

• The lb and ub arguments must have the same number of entries as the x0 argument or must be
empty [].

• For advanced code optimization involving embedded processors, you also need an Embedded
Coder license.

• You must include options for lsqcurvefit or lsqnonlin and specify them using
optimoptions. The options must include the Algorithm option, set to 'levenberg-
marquardt'.

options = optimoptions('lsqnonlin','Algorithm','levenberg-marquardt');
[x,fval,exitflag] = lsqnonlin(fun,x0,lb,ub,options);

• Code generation supports these options:

• Algorithm — Must be 'levenberg-marquardt'
• FiniteDifferenceStepSize
• FiniteDifferenceType
• FunctionTolerance
• MaxFunctionEvaluations
• MaxIterations
• SpecifyObjectiveGradient
• StepTolerance
• TypicalX

• Generated code has limited error checking for options. The recommended way to update an option
is to use optimoptions, not dot notation.

 lsqcurvefit

15-263

opts = optimoptions('lsqnonlin','Algorithm','levenberg-marquardt');
opts = optimoptions(opts,'MaxIterations',1e4); % Recommended
opts.MaxIterations = 1e4; % Not recommended

• Do not load options from a file. Doing so can cause code generation to fail. Instead, create options
in your code.

• Usually, if you specify an option that is not supported, the option is silently ignored during code
generation. However, if you specify a plot function or output function by using dot notation, code
generation can issue an error. For reliability, specify only supported options.

• Because output functions and plot functions are not supported, solvers do not return the exit flag –
1.

For an example, see “Generate Code for lsqcurvefit or lsqnonlin” on page 11-105.

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

options = optimoptions('solvername','UseParallel',true)

For more information, see “Using Parallel Computing in Optimization Toolbox” on page 13-5.

See Also
fsolve | lsqnonlin | optimoptions | Optimize

Topics
“Nonlinear Least Squares (Curve Fitting)”
“Solver-Based Optimization Problem Setup”
“Least-Squares (Model Fitting) Algorithms” on page 11-2

Introduced before R2006a

15 Functions

15-264

lsqlin
Solve constrained linear least-squares problems

Syntax
x = lsqlin(C,d,A,b)
x = lsqlin(C,d,A,b,Aeq,beq,lb,ub)
x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,options)
x = lsqlin(problem)
[x,resnorm,residual,exitflag,output,lambda] = lsqlin(___)

[wsout,resnorm,residual,exitflag,output,lambda] = lsqlin(C,d,A,b,Aeq,beq,lb,
ub,ws)

Description
Linear least-squares solver with bounds or linear constraints.

Solves least-squares curve fitting problems of the form

min
x

1
2 C ⋅ x− d 2

2 such that
A ⋅ x ≤ b,

Aeq ⋅ x = beq,
lb ≤ x ≤ ub .

Note lsqlin applies only to the solver-based approach. For a discussion of the two optimization
approaches, see “First Choose Problem-Based or Solver-Based Approach” on page 1-3.

x = lsqlin(C,d,A,b) solves the linear system C*x = d in the least-squares sense, subject to
A*x ≤ b.

x = lsqlin(C,d,A,b,Aeq,beq,lb,ub) adds linear equality constraints Aeq*x = beq and
bounds lb ≤ x ≤ ub. If you do not need certain constraints such as Aeq and beq, set them to []. If
x(i) is unbounded below, set lb(i) = -Inf, and if x(i) is unbounded above, set ub(i) = Inf.

x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,options) minimizes with an initial point x0 and the
optimization options specified in options. Use optimoptions to set these options. If you do not
want to include an initial point, set the x0 argument to [].

x = lsqlin(problem) finds the minimum for problem, a structure described in problem. Create
the problem structure using dot notation or the struct function. Or create a problem structure
from an OptimizationProblem object by using prob2struct.

[x,resnorm,residual,exitflag,output,lambda] = lsqlin(___), for any input arguments
described above, returns:

• The squared 2-norm of the residual resnorm = C ⋅ x− d 2
2

• The residual residual = C*x - d

 lsqlin

15-265

• A value exitflag describing the exit condition
• A structure output containing information about the optimization process
• A structure lambda containing the Lagrange multipliers

The factor ½ in the definition of the problem affects the values in the lambda structure.

[wsout,resnorm,residual,exitflag,output,lambda] = lsqlin(C,d,A,b,Aeq,beq,lb,
ub,ws) starts lsqlin from the data in the warm start object ws, using the options in ws. The
returned argument wsout contains the solution point in wsout.X. By using wsout as the initial warm
start object in a subsequent solver call, lsqlin can work faster.

Examples

Least Squares with Linear Inequality Constraints

Find the x that minimizes the norm of C*x - d for an overdetermined problem with linear inequality
constraints.

Specify the problem and constraints.

C = [0.9501 0.7620 0.6153 0.4057
 0.2311 0.4564 0.7919 0.9354
 0.6068 0.0185 0.9218 0.9169
 0.4859 0.8214 0.7382 0.4102
 0.8912 0.4447 0.1762 0.8936];
d = [0.0578
 0.3528
 0.8131
 0.0098
 0.1388];
A = [0.2027 0.2721 0.7467 0.4659
 0.1987 0.1988 0.4450 0.4186
 0.6037 0.0152 0.9318 0.8462];
b = [0.5251
 0.2026
 0.6721];

Call lsqlin to solve the problem.

x = lsqlin(C,d,A,b)

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

x = 4×1

 0.1299
 -0.5757
 0.4251
 0.2438

15 Functions

15-266

Least Squares with Linear Constraints and Bounds

Find the x that minimizes the norm of C*x - d for an overdetermined problem with linear equality
and inequality constraints and bounds.

Specify the problem and constraints.

C = [0.9501 0.7620 0.6153 0.4057
 0.2311 0.4564 0.7919 0.9354
 0.6068 0.0185 0.9218 0.9169
 0.4859 0.8214 0.7382 0.4102
 0.8912 0.4447 0.1762 0.8936];
d = [0.0578
 0.3528
 0.8131
 0.0098
 0.1388];
A =[0.2027 0.2721 0.7467 0.4659
 0.1987 0.1988 0.4450 0.4186
 0.6037 0.0152 0.9318 0.8462];
b =[0.5251
 0.2026
 0.6721];
Aeq = [3 5 7 9];
beq = 4;
lb = -0.1*ones(4,1);
ub = 2*ones(4,1);

Call lsqlin to solve the problem.

x = lsqlin(C,d,A,b,Aeq,beq,lb,ub)

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

x = 4×1

 -0.1000
 -0.1000
 0.1599
 0.4090

Linear Least Squares with Nondefault Options

This example shows how to use nondefault options for linear least squares.

Set options to use the 'interior-point' algorithm and to give iterative display.

options = optimoptions('lsqlin','Algorithm','interior-point','Display','iter');

 lsqlin

15-267

Set up a linear least-squares problem.

C = [0.9501 0.7620 0.6153 0.4057
 0.2311 0.4564 0.7919 0.9354
 0.6068 0.0185 0.9218 0.9169
 0.4859 0.8214 0.7382 0.4102
 0.8912 0.4447 0.1762 0.8936];
d = [0.0578
 0.3528
 0.8131
 0.0098
 0.1388];
A = [0.2027 0.2721 0.7467 0.4659
 0.1987 0.1988 0.4450 0.4186
 0.6037 0.0152 0.9318 0.8462];
b = [0.5251
 0.2026
 0.6721];

Run the problem.

x = lsqlin(C,d,A,b,[],[],[],[],[],options)

 Iter Fval Primal Infeas Dual Infeas Complementarity
 0 -7.687420e-02 1.600492e+00 6.150431e-01 1.000000e+00
 1 -7.687419e-02 8.002458e-04 3.075216e-04 2.430833e-01
 2 -3.162837e-01 4.001229e-07 1.537608e-07 5.945636e-02
 3 -3.760545e-01 2.000615e-10 2.036997e-08 1.370933e-02
 4 -3.912129e-01 9.997558e-14 1.006816e-08 2.548273e-03
 5 -3.948062e-01 2.220446e-16 2.955101e-09 4.295807e-04
 6 -3.953277e-01 2.775558e-17 1.237758e-09 3.102850e-05
 7 -3.953581e-01 2.775558e-17 1.645863e-10 1.138719e-07
 8 -3.953582e-01 2.775558e-17 2.400025e-13 5.693290e-11

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

x = 4×1

 0.1299
 -0.5757
 0.4251
 0.2438

Return All Outputs

Obtain and interpret all lsqlin outputs.

Define a problem with linear inequality constraints and bounds. The problem is overdetermined
because there are four columns in the C matrix but five rows. This means the problem has four
unknowns and five conditions, even before including the linear constraints and bounds.

15 Functions

15-268

C = [0.9501 0.7620 0.6153 0.4057
 0.2311 0.4564 0.7919 0.9354
 0.6068 0.0185 0.9218 0.9169
 0.4859 0.8214 0.7382 0.4102
 0.8912 0.4447 0.1762 0.8936];
d = [0.0578
 0.3528
 0.8131
 0.0098
 0.1388];
A = [0.2027 0.2721 0.7467 0.4659
 0.1987 0.1988 0.4450 0.4186
 0.6037 0.0152 0.9318 0.8462];
b = [0.5251
 0.2026
 0.6721];
lb = -0.1*ones(4,1);
ub = 2*ones(4,1);

Set options to use the 'interior-point' algorithm.

options = optimoptions('lsqlin','Algorithm','interior-point');

The 'interior-point' algorithm does not use an initial point, so set x0 to [].

x0 = [];

Call lsqlin with all outputs.

[x,resnorm,residual,exitflag,output,lambda] = ...
 lsqlin(C,d,A,b,[],[],lb,ub,x0,options)

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

x = 4×1

 -0.1000
 -0.1000
 0.2152
 0.3502

resnorm = 0.1672

residual = 5×1

 0.0455
 0.0764
 -0.3562
 0.1620
 0.0784

exitflag = 1

 lsqlin

15-269

output = struct with fields:
 message: 'Minimum found that satisfies the constraints....'
 algorithm: 'interior-point'
 firstorderopt: 4.3374e-11
 constrviolation: 0
 iterations: 6
 linearsolver: 'dense'
 cgiterations: []

lambda = struct with fields:
 ineqlin: [3x1 double]
 eqlin: [0x1 double]
 lower: [4x1 double]
 upper: [4x1 double]

Examine the nonzero Lagrange multiplier fields in more detail. First examine the Lagrange
multipliers for the linear inequality constraint.

lambda.ineqlin

ans = 3×1

 0.0000
 0.2392
 0.0000

Lagrange multipliers are nonzero exactly when the solution is on the corresponding constraint
boundary. In other words, Lagrange multipliers are nonzero when the corresponding constraint is
active. lambda.ineqlin(2) is nonzero. This means that the second element in A*x should equal the
second element in b, because the constraint is active.

[A(2,:)*x,b(2)]

ans = 1×2

 0.2026 0.2026

Now examine the Lagrange multipliers for the lower and upper bound constraints.

lambda.lower

ans = 4×1

 0.0409
 0.2784
 0.0000
 0.0000

lambda.upper

ans = 4×1

 0
 0

15 Functions

15-270

 0
 0

The first two elements of lambda.lower are nonzero. You see that x(1) and x(2) are at their lower
bounds, -0.1. All elements of lambda.upper are essentially zero, and you see that all components
of x are less than their upper bound, 2.

Return Warm Start Object

Create a warm start object so you can solve a modified problem quickly. Set options to turn off
iterative display to support warm start.
rng default % For reproducibility
options = optimoptions('lsqlin','Algorithm','active-set','Display','off');
n = 15;
x0 = 5*rand(n,1);
ws = optimwarmstart(x0,options);

Create and solve the first problem. Find the solution time.

r = 1:n-1; % Index for making vectors
v(n) = (-1)^(n+1)/n; % Allocating the vector v
v(r) =(-1).^(r+1)./r;
C = gallery('circul',v);
C = [C;C];
r = 1:2*n;
d(r) = n-r;
lb = -5*ones(1,n);
ub = 5*ones(1,n);
tic
[ws,fval,~,exitflag,output] = lsqlin(C,d,[],[],[],[],lb,ub,ws)
toc

Elapsed time is 0.005117 seconds.

Add a linear constraint and solve again.

A = ones(1,n);
b = -10;
tic
[ws,fval,~,exitflag,output] = lsqlin(C,d,A,b,[],[],lb,ub,ws)
toc

Elapsed time is 0.001491 seconds.

Input Arguments
C — Multiplier matrix
real matrix

Multiplier matrix, specified as a matrix of doubles. C represents the multiplier of the solution x in the
expression C*x - d. C is M-by-N, where M is the number of equations, and N is the number of
elements of x.
Example: C = [1,4;2,5;7,8]

 lsqlin

15-271

Data Types: double

d — Constant vector
real vector

Constant vector, specified as a vector of doubles. d represents the additive constant term in the
expression C*x - d. d is M-by-1, where M is the number of equations.
Example: d = [5;0;-12]
Data Types: double

A — Linear inequality constraints
real matrix

Linear inequality constraints, specified as a real matrix. A is an M-by-N matrix, where M is the number
of inequalities, and N is the number of variables (number of elements in x0). For large problems, pass
A as a sparse matrix.

A encodes the M linear inequalities

A*x <= b,

where x is the column vector of N variables x(:), and b is a column vector with M elements.

For example, consider these inequalities:

x1 + 2x2 ≤ 10
3x1 + 4x2 ≤ 20
5x1 + 6x2 ≤ 30,

Specify the inequalities by entering the following constraints.

A = [1,2;3,4;5,6];
b = [10;20;30];

Example: To specify that the x components sum to 1 or less, use A = ones(1,N) and b = 1.
Data Types: double

b — Linear inequality constraints
real vector

Linear inequality constraints, specified as a real vector. b is an M-element vector related to the A
matrix. If you pass b as a row vector, solvers internally convert b to the column vector b(:). For
large problems, pass b as a sparse vector.

b encodes the M linear inequalities

A*x <= b,

where x is the column vector of N variables x(:), and A is a matrix of size M-by-N.

For example, consider these inequalities:

x1 + 2x2 ≤ 10
3x1 + 4x2 ≤ 20

15 Functions

15-272

5x1 + 6x2 ≤ 30.

Specify the inequalities by entering the following constraints.

A = [1,2;3,4;5,6];
b = [10;20;30];

Example: To specify that the x components sum to 1 or less, use A = ones(1,N) and b = 1.
Data Types: double

Aeq — Linear equality constraints
real matrix

Linear equality constraints, specified as a real matrix. Aeq is an Me-by-N matrix, where Me is the
number of equalities, and N is the number of variables (number of elements in x0). For large
problems, pass Aeq as a sparse matrix.

Aeq encodes the Me linear equalities

Aeq*x = beq,

where x is the column vector of N variables x(:), and beq is a column vector with Me elements.

For example, consider these inequalities:

x1 + 2x2 + 3x3 = 10
2x1 + 4x2 + x3 = 20,

Specify the inequalities by entering the following constraints.

Aeq = [1,2,3;2,4,1];
beq = [10;20];

Example: To specify that the x components sum to 1, use Aeq = ones(1,N) and beq = 1.
Data Types: double

beq — Linear equality constraints
real vector

Linear equality constraints, specified as a real vector. beq is an Me-element vector related to the Aeq
matrix. If you pass beq as a row vector, solvers internally convert beq to the column vector beq(:).
For large problems, pass beq as a sparse vector.

beq encodes the Me linear equalities

Aeq*x = beq,

where x is the column vector of N variables x(:), and Aeq is a matrix of size Me-by-N.

For example, consider these equalities:

x1 + 2x2 + 3x3 = 10
2x1 + 4x2 + x3 = 20.

Specify the equalities by entering the following constraints.

 lsqlin

15-273

Aeq = [1,2,3;2,4,1];
beq = [10;20];

Example: To specify that the x components sum to 1, use Aeq = ones(1,N) and beq = 1.
Data Types: double

lb — Lower bounds
[] (default) | real vector or array

Lower bounds, specified as a vector or array of doubles. lb represents the lower bounds elementwise
in lb ≤ x ≤ ub.

Internally, lsqlin converts an array lb to the vector lb(:).
Example: lb = [0;-Inf;4] means x(1) ≥ 0, x(3) ≥ 4.
Data Types: double

ub — Upper bounds
[] (default) | real vector or array

Upper bounds, specified as a vector or array of doubles. ub represents the upper bounds elementwise
in lb ≤ x ≤ ub.

Internally, lsqlin converts an array ub to the vector ub(:).
Example: ub = [Inf;4;10] means x(2) ≤ 4, x(3) ≤ 10.
Data Types: double

x0 — Initial point
[] (default) | real vector or array

Initial point for the solution process, specified as a real vector or array. The 'trust-region-
reflective' and 'active-set' algorithms use x0 (optional).

If you do not specify x0 for the 'trust-region-reflective' or 'active-set' algorithm,
lsqlin sets x0 to the zero vector. If any component of this zero vector x0 violates the bounds,
lsqlin sets x0 to a point in the interior of the box defined by the bounds.
Example: x0 = [4;-3]
Data Types: double

options — Options for lsqlin
options created using optimoptions | structure such as created by optimset

Options for lsqlin, specified as the output of the optimoptions function or as a structure such as
created by optimset.

Some options are absent from the optimoptions display. These options appear in italics in the
following table. For details, see “View Options” on page 2-66.

15 Functions

15-274

All Algorithms

Algorithm Choose the algorithm:

• 'interior-point' (default)
• 'trust-region-reflective'
• 'active-set'

The 'trust-region-reflective' algorithm allows only upper and lower
bounds, no linear inequalities or equalities. If you specify both the 'trust-
region-reflective' algorithm and linear constraints, lsqlin uses the
'interior-point' algorithm.

The 'trust-region-reflective' algorithm does not allow equal upper
and lower bounds.

When the problem has no constraints, lsqlin calls mldivide internally.

If you have a large number of linear constraints and not a large number of
variables, try the 'active-set' algorithm.

For more information on choosing the algorithm, see “Choosing the
Algorithm” on page 2-6.

Diagnostics Display diagnostic information about the function to be minimized or solved.
The choices are 'on' or the default 'off'.

Display Level of display returned to the command line.

• 'off' or 'none' displays no output.
• 'final' displays just the final output (default).

The 'interior-point' algorithm allows additional values:

• 'iter' gives iterative display.
• 'iter-detailed' gives iterative display with a detailed exit message.
• 'final-detailed' displays just the final output, with a detailed exit

message.
MaxIterations Maximum number of iterations allowed, a positive integer. The default value

is 2000 for the 'active-set' algorithm, and 200 for the other algorithms.

For optimset, the option name is MaxIter. See “Current and Legacy
Option Names” on page 14-23.

 lsqlin

15-275

trust-region-reflective Algorithm Options

FunctionTolerance Termination tolerance on the function value, a positive scalar. The
default is 100*eps, about 2.2204e-14.

For optimset, the option name is TolFun. See “Current and Legacy
Option Names” on page 14-23.

JacobianMultiplyFcn Jacobian multiply function, specified as a function handle. For large-
scale structured problems, this function should compute the Jacobian
matrix product C*Y, C'*Y, or C'*(C*Y) without actually forming C.
Write the function in the form

W = jmfun(Jinfo,Y,flag)

where Jinfo contains a matrix used to compute C*Y (or C'*Y, or
C'*(C*Y)).

jmfun must compute one of three different products, depending on the
value of flag that lsqlin passes:

• If flag == 0 then W = C'*(C*Y).
• If flag > 0 then W = C*Y.
• If flag < 0 then W = C'*Y.

In each case, jmfun need not form C explicitly. lsqlin uses Jinfo to
compute the preconditioner. See “Passing Extra Parameters” on page 2-
57 for information on how to supply extra parameters if necessary.

See “Jacobian Multiply Function with Linear Least Squares” on page 11-
31 for an example.

For optimset, the option name is JacobMult. See “Current and
Legacy Option Names” on page 14-23.

MaxPCGIter Maximum number of PCG (preconditioned conjugate gradient)
iterations, a positive scalar. The default is
max(1,floor(numberOfVariables/2)). For more information, see
“Trust-Region-Reflective Algorithm” on page 15-281.

OptimalityTolerance Termination tolerance on the first-order optimality, a positive scalar. The
default is 100*eps, about 2.2204e-14. See “First-Order Optimality
Measure” on page 3-11.

For optimset, the option name is TolFun. See “Current and Legacy
Option Names” on page 14-23.

PrecondBandWidth Upper bandwidth of preconditioner for PCG (preconditioned conjugate
gradient). By default, diagonal preconditioning is used (upper
bandwidth of 0). For some problems, increasing the bandwidth reduces
the number of PCG iterations. Setting PrecondBandWidth to Inf uses
a direct factorization (Cholesky) rather than the conjugate gradients
(CG). The direct factorization is computationally more expensive than
CG, but produces a better quality step toward the solution. For more
information, see “Trust-Region-Reflective Algorithm” on page 15-281.

15 Functions

15-276

SubproblemAlgorithm Determines how the iteration step is calculated. The default, 'cg',
takes a faster but less accurate step than 'factorization'. See
“Trust-Region-Reflective Least Squares” on page 11-3.

TolPCG Termination tolerance on the PCG (preconditioned conjugate gradient)
iteration, a positive scalar. The default is 0.1.

TypicalX Typical x values. The number of elements in TypicalX is equal to the
number of variables. The default value is
ones(numberofvariables,1). lsqlin uses TypicalX internally for
scaling. TypicalX has an effect only when x has unbounded
components, and when a TypicalX value for an unbounded component
is larger than 1.

interior-point Algorithm Options

ConstraintTolerance Tolerance on the constraint violation, a positive scalar. The default is
1e-8.

For optimset, the option name is TolCon. See “Current and Legacy
Option Names” on page 14-23.

LinearSolver Type of internal linear solver in algorithm:

• 'auto' (default) — Use 'sparse' if the C matrix is sparse,
'dense' otherwise.

• 'sparse' — Use sparse linear algebra. See “Sparse Matrices”.
• 'dense' — Use dense linear algebra.

OptimalityTolerance Termination tolerance on the first-order optimality, a positive scalar. The
default is 1e-8. See “First-Order Optimality Measure” on page 3-11.

For optimset, the option name is TolFun. See “Current and Legacy
Option Names” on page 14-23.

StepTolerance Termination tolerance on x, a positive scalar. The default is 1e-12.

For optimset, the option name is TolX. See “Current and Legacy
Option Names” on page 14-23.

 lsqlin

15-277

'active-set' Algorithm Options

ConstraintTolerance Tolerance on the constraint violation, a positive scalar. The default
value is 1e-8.

For optimset, the option name is TolCon. See “Current and Legacy
Option Names” on page 14-23.

ObjectiveLimit A tolerance (stopping criterion) that is a scalar. If the objective
function value goes below ObjectiveLimit and the current point is
feasible, the iterations halt because the problem is unbounded,
presumably. The default value is -1e20.

OptimalityTolerance Termination tolerance on the first-order optimality, a positive scalar.
The default value is 1e-8. See “First-Order Optimality Measure” on
page 3-11.

For optimset, the name is TolFun. See “Current and Legacy Option
Names” on page 14-23.

StepTolerance Termination tolerance on x, a positive scalar. The default value is
1e-8.

For optimset, the option name is TolX. See “Current and Legacy
Option Names” on page 14-23.

problem — Optimization problem
structure

Optimization problem, specified as a structure with the following fields.

C Matrix multiplier in the term C*x - d
d Additive constant in the term C*x - d
Aineq Matrix for linear inequality constraints
bineq Vector for linear inequality constraints
Aeq Matrix for linear equality constraints
beq Vector for linear equality constraints
lb Vector of lower bounds
ub Vector of upper bounds
x0 Initial point for x
solver 'lsqlin'
options Options created with optimoptions

Note You cannot use warm start with the problem argument.

Data Types: struct

ws — Warm start object
object created using optimwarmstart

15 Functions

15-278

Warm start object, specified as an object created using optimwarmstart. The warm start object
contains the start point and options, and optional data for memory size in code generation. See
“Warm Start Best Practices” on page 10-71.
Example: ws = optimwarmstart(x0,options)

Output Arguments
x — Solution
real vector

Solution, returned as a vector that minimizes the norm of C*x-d subject to all bounds and linear
constraints.

wsout — Solution warm start object
LsqlinWarmStart object

Solution warm start object, returned as a LsqlinWarmStart object. The solution point is wsout.X.

You can use wsout as the input warm start object in a subsequent lsqlin call.

resnorm — Objective value
real scalar

Objective value, returned as the scalar value norm(C*x-d)^2.

residual — Solution residuals
real vector

Solution residuals, returned as the vector C*x-d.

exitflag — Algorithm stopping condition
integer

Algorithm stopping condition, returned as an integer identifying the reason the algorithm stopped.
The following lists the values of exitflag and the corresponding reasons lsqlin stopped.

3 Change in the residual was smaller than the specified tolerance
options.FunctionTolerance. (trust-region-reflective
algorithm)

2 Step size smaller than options.StepTolerance, constraints
satisfied. (interior-point algorithm)

1 Function converged to a solution x.
0 Number of iterations exceeded options.MaxIterations.
-2 The problem is infeasible. Or, for the interior-point algorithm,

step size smaller than options.StepTolerance, but constraints
are not satisfied.

-3 The problem is unbounded.
-4 Ill-conditioning prevents further optimization.
-8 Unable to compute a step direction.

 lsqlin

15-279

The exit message for the interior-point algorithm can give more details on the reason lsqlin
stopped, such as exceeding a tolerance. See “Exit Flags and Exit Messages” on page 3-3.

output — Solution process summary
structure

Solution process summary, returned as a structure containing information about the optimization
process.

iterations Number of iterations the solver took.
algorithm One of these algorithms:

• 'interior-point'
• 'trust-region-reflective'
• 'mldivide' for an unconstrained problem

For an unconstrained problem, iterations = 0, and the
remaining entries in the output structure are empty.

constrviolation Constraint violation that is positive for violated constraints
(not returned for the 'trust-region-reflective'
algorithm).

constrviolation = max([0;norm(Aeq*x-beq,
inf);(lb-x);(x-ub);(A*x-b)])

message Exit message.
firstorderopt First-order optimality at the solution. See “First-Order

Optimality Measure” on page 3-11.
linearsolver Type of internal linear solver, 'dense' or 'sparse'

('interior-point' algorithm only)
cgiterations Number of conjugate gradient iterations the solver

performed. Nonempty only for the 'trust-region-
reflective' algorithm.

See “Output Structures” on page 3-21.

lambda — Lagrange multipliers
structure

Lagrange multipliers, returned as a structure with the following fields.

lower Lower bounds lb
upper Upper bounds ub
ineqlin Linear inequalities
eqlin Linear equalities

See “Lagrange Multiplier Structures” on page 3-22.

15 Functions

15-280

Tips
• For problems with no constraints, you can use mldivide (matrix left division). When you have no

constraints, lsqlin returns x = C\d.
• Because the problem being solved is always convex, lsqlin finds a global, although not

necessarily unique, solution.
• If your problem has many linear constraints and few variables, try using the 'active-set'

algorithm. See “Quadratic Programming with Many Linear Constraints” on page 10-66.
• Better numerical results are likely if you specify equalities explicitly, using Aeq and beq, instead of

implicitly, using lb and ub.
• The trust-region-reflective algorithm does not allow equal upper and lower bounds. Use

another algorithm for this case.
• If the specified input bounds for a problem are inconsistent, the output x is x0 and the outputs

resnorm and residual are [].
• You can solve some large structured problems, including those where the C matrix is too large to
fit in memory, using the trust-region-reflective algorithm with a Jacobian multiply
function. For information, see trust-region-reflective Algorithm Options.

Algorithms
Trust-Region-Reflective Algorithm

This method is a subspace trust-region method based on the interior-reflective Newton method
described in [1]. Each iteration involves the approximate solution of a large linear system using the
method of preconditioned conjugate gradients (PCG). See “Trust-Region-Reflective Least Squares” on
page 11-3, and in particular “Large Scale Linear Least Squares” on page 11-5.

Interior-Point Algorithm

The 'interior-point' algorithm is based on the quadprog 'interior-point-convex'
algorithm. See “Linear Least Squares: Interior-Point or Active-Set” on page 11-2.

Active-Set Algorithm

The 'active-set' algorithm is based on the quadprog 'active-set' algorithm. For more
information, see “Linear Least Squares: Interior-Point or Active-Set” on page 11-2 and “active-set
quadprog Algorithm” on page 10-11.

References
[1] Coleman, T. F. and Y. Li. “A Reflective Newton Method for Minimizing a Quadratic Function

Subject to Bounds on Some of the Variables,” SIAM Journal on Optimization, Vol. 6, Number
4, pp. 1040–1058, 1996.

[2] Gill, P. E., W. Murray, and M. H. Wright. Practical Optimization, Academic Press, London, UK,
1981.

Warm Start

A warm start object maintains a list of active constraints from the previous solved problem. The
solver carries over as much active constraint information as possible to solve the current problem. If

 lsqlin

15-281

the previous problem is too different from the current one, no active set information is reused. In this
case, the solver effectively executes a cold start in order to rebuild the list of active constraints.

Alternative Functionality
App

The Optimize Live Editor task provides a visual interface for lsqlin.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• lsqlin supports code generation using either the codegen function or the MATLAB Coder app.
You must have a MATLAB Coder license to generate code.

• The target hardware must support standard double-precision floating-point computations. You
cannot generate code for single-precision or fixed-point computations.

• Code generation targets do not use the same math kernel libraries as MATLAB solvers. Therefore,
code generation solutions can vary from solver solutions, especially for poorly conditioned
problems.

• When solving unconstrained and underdetermined problems in MATLAB, lsqlin calls mldivide,
which returns a basic solution. In code generation, the returned solution has minimum norm,
which usually differs.

• lsqlin does not support the problem argument for code generation.

[x,fval] = lsqlin(problem) % Not supported
• All lsqlin input matrices such as A, Aeq, lb, and ub must be full, not sparse. You can convert

sparse matrices to full by using the full function.
• The lb and ub arguments must have the same number of entries as the number of columns in C or

must be empty [].
• For advanced code optimization involving embedded processors, you also need an Embedded

Coder license.
• You must include options for lsqlin and specify them using optimoptions. The options must

include the Algorithm option, set to 'active-set'.

options = optimoptions('lsqlin','Algorithm','active-set');
[x,fval,exitflag] = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,options);

• Code generation supports these options:

• Algorithm — Must be 'active-set'
• ConstraintTolerance
• MaxIterations
• ObjectiveLimit
• OptimalityTolerance
• StepTolerance

15 Functions

15-282

• Generated code has limited error checking for options. The recommended way to update an option
is to use optimoptions, not dot notation.

opts = optimoptions('lsqlin','Algorithm','active-set');
opts = optimoptions(opts,'MaxIterations',1e4); % Recommended
opts.MaxIterations = 1e4; % Not recommended

• Do not load options from a file. Doing so can cause code generation to fail. Instead, create options
in your code.

• If you specify an option that is not supported, the option is typically ignored during code
generation. For reliable results, specify only supported options.

See Also
mldivide | lsqnonneg | quadprog | Optimize | optimwarmstart

Topics
“Nonnegative Linear Least Squares, Solver-Based” on page 11-25
“Optimize Live Editor Task with lsqlin Solver” on page 11-28
“Jacobian Multiply Function with Linear Least Squares” on page 11-31
“Warm Start Best Practices” on page 10-71
“Least-Squares (Model Fitting) Algorithms” on page 11-2

Introduced before R2006a

 lsqlin

15-283

lsqnonlin
Solve nonlinear least-squares (nonlinear data-fitting) problems

Syntax
x = lsqnonlin(fun,x0)
x = lsqnonlin(fun,x0,lb,ub)
x = lsqnonlin(fun,x0,lb,ub,options)
x = lsqnonlin(problem)
[x,resnorm] = lsqnonlin(___)
[x,resnorm,residual,exitflag,output] = lsqnonlin(___)
[x,resnorm,residual,exitflag,output,lambda,jacobian] = lsqnonlin(___)

Description
Nonlinear least-squares solver

Solves nonlinear least-squares curve fitting problems of the form

min
x

f (x) 2
2 = min

x
f1(x)2 + f2(x)2 + ... + fn(x)2

with optional lower and upper bounds lb and ub on the components of x.

x, lb, and ub can be vectors or matrices; see “Matrix Arguments” on page 2-31.

Rather than compute the value f (x) 2
2 (the sum of squares), lsqnonlin requires the user-defined

function to compute the vector-valued function

f (x) =

f1(x)
f2(x)
⋮

fn(x)

.

x = lsqnonlin(fun,x0) starts at the point x0 and finds a minimum of the sum of squares of the
functions described in fun. The function fun should return a vector (or array) of values and not the
sum of squares of the values. (The algorithm implicitly computes the sum of squares of the
components of fun(x).)

Note “Passing Extra Parameters” on page 2-57 explains how to pass extra parameters to the vector
function fun(x), if necessary.

x = lsqnonlin(fun,x0,lb,ub) defines a set of lower and upper bounds on the design variables
in x, so that the solution is always in the range lb ≤ x ≤ ub. You can fix the solution component
x(i) by specifying lb(i) = ub(i).

15 Functions

15-284

Note If the specified input bounds for a problem are inconsistent, the output x is x0 and the outputs
resnorm and residual are [].

Components of x0 that violate the bounds lb ≤ x ≤ ub are reset to the interior of the box defined
by the bounds. Components that respect the bounds are not changed.

x = lsqnonlin(fun,x0,lb,ub,options) minimizes with the optimization options specified in
options. Use optimoptions to set these options. Pass empty matrices for lb and ub if no bounds
exist.

x = lsqnonlin(problem) finds the minimum for problem, a structure described in problem.

[x,resnorm] = lsqnonlin(___), for any input arguments, returns the value of the squared 2-
norm of the residual at x: sum(fun(x).^2).

[x,resnorm,residual,exitflag,output] = lsqnonlin(___) additionally returns the value
of the residual fun(x) at the solution x, a value exitflag that describes the exit condition, and a
structure output that contains information about the optimization process.

[x,resnorm,residual,exitflag,output,lambda,jacobian] = lsqnonlin(___)
additionally returns a structure lambda whose fields contain the Lagrange multipliers at the solution
x, and the Jacobian of fun at the solution x.

Examples

Fit a Simple Exponential

Fit a simple exponential decay curve to data.

Generate data from an exponential decay model plus noise. The model is

y = exp(− 1 . 3t) + ε,

with t ranging from 0 through 3, and ε normally distributed noise with mean 0 and standard deviation
0.05.

rng default % for reproducibility
d = linspace(0,3);
y = exp(-1.3*d) + 0.05*randn(size(d));

The problem is: given the data (d, y), find the exponential decay rate that best fits the data.

Create an anonymous function that takes a value of the exponential decay rate r and returns a vector
of differences from the model with that decay rate and the data.

fun = @(r)exp(-d*r)-y;

Find the value of the optimal decay rate. Arbitrarily choose an initial guess x0 = 4.

x0 = 4;
x = lsqnonlin(fun,x0)

Local minimum possible.

 lsqnonlin

15-285

lsqnonlin stopped because the final change in the sum of squares relative to
its initial value is less than the value of the function tolerance.

x = 1.2645

Plot the data and the best-fitting exponential curve.

plot(d,y,'ko',d,exp(-x*d),'b-')
legend('Data','Best fit')
xlabel('t')
ylabel('exp(-tx)')

Fit a Problem with Bound Constraints

Find the best-fitting model when some of the fitting parameters have bounds.

Find a centering b and scaling a that best fit the function

aexp(− t)exp(− exp(− (t − b)))

to the standard normal density,

1
2πexp − t2/2 .

15 Functions

15-286

Create a vector t of data points, and the corresponding normal density at those points.

t = linspace(-4,4);
y = 1/sqrt(2*pi)*exp(-t.^2/2);

Create a function that evaluates the difference between the centered and scaled function from the
normal y, with x(1) as the scaling a and x(2) as the centering b.

fun = @(x)x(1)*exp(-t).*exp(-exp(-(t-x(2)))) - y;

Find the optimal fit starting from x0 = [1/2,0], with the scaling a between 1/2 and 3/2, and the
centering b between -1 and 3.

lb = [1/2,-1];
ub = [3/2,3];
x0 = [1/2,0];
x = lsqnonlin(fun,x0,lb,ub)

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to
its initial value is less than the value of the function tolerance.

x = 1×2

 0.8231 -0.2444

Plot the two functions to see the quality of the fit.

plot(t,y,'r-',t,fun(x)+y,'b-')
xlabel('t')
legend('Normal density','Fitted function')

 lsqnonlin

15-287

Nonlinear Least Squares with Nondefault Options

Compare the results of a data-fitting problem when using different lsqnonlin algorithms.

Suppose that you have observation time data xdata and observed response data ydata, and you
want to find parameters x(1) and x(2) to fit a model of the form

ydata = x(1)exp x(2)xdata .

Input the observation times and responses.

xdata = ...
 [0.9 1.5 13.8 19.8 24.1 28.2 35.2 60.3 74.6 81.3];
ydata = ...
 [455.2 428.6 124.1 67.3 43.2 28.1 13.1 -0.4 -1.3 -1.5];

Create a simple exponential decay model. The model computes a vector of differences between
predicted values and observed values.

fun = @(x)x(1)*exp(x(2)*xdata)-ydata;

Fit the model using the starting point x0 = [100,-1]. First, use the default 'trust-region-
reflective' algorithm.

15 Functions

15-288

x0 = [100,-1];
options = optimoptions(@lsqnonlin,'Algorithm','trust-region-reflective');
x = lsqnonlin(fun,x0,[],[],options)

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to
its initial value is less than the value of the function tolerance.

x = 1×2

 498.8309 -0.1013

See if there is any difference using the 'levenberg-marquardt algorithm.

options.Algorithm = 'levenberg-marquardt';
x = lsqnonlin(fun,x0,[],[],options)

Local minimum possible.
lsqnonlin stopped because the relative size of the current step is less than
the value of the step size tolerance.

x = 1×2

 498.8309 -0.1013

The two algorithms found the same solution. Plot the solution and the data.

plot(xdata,ydata,'ko')
hold on
tlist = linspace(xdata(1),xdata(end));
plot(tlist,x(1)*exp(x(2)*tlist),'b-')
xlabel xdata
ylabel ydata
title('Exponential Fit to Data')
legend('Data','Exponential Fit')
hold off

 lsqnonlin

15-289

Nonlinear Least Squares Solution and Residual Norm

Find the x that minimizes

∑
k = 1

10
2 + 2k− ekx1− ekx2 2

,

and find the value of the minimal sum of squares.

Because lsqnonlin assumes that the sum of squares is not explicitly formed in the user-defined
function, the function passed to lsqnonlin should instead compute the vector-valued function

Fk(x) = 2 + 2k− ekx1− ekx2,

for k = 1 to 10 (that is, F should have 10 components).

The myfun function, which computes the 10-component vector F, appears at the end of this example
on page 15-0 .

Find the minimizing point and the minimum value, starting at the point x0 = [0.3,0.4].

x0 = [0.3,0.4];
[x,resnorm] = lsqnonlin(@myfun,x0)

15 Functions

15-290

Local minimum possible.
lsqnonlin stopped because the size of the current step is less than
the value of the step size tolerance.

x = 1×2

 0.2578 0.2578

resnorm = 124.3622

The resnorm output is the squared residual norm, or the sum of squares of the function values.

The following function computes the vector-valued objective function.

function F = myfun(x)
k = 1:10;
F = 2 + 2*k-exp(k*x(1))-exp(k*x(2));
end

Examine the Solution Process

Examine the solution process both as it occurs (by setting the Display option to 'iter') and
afterward (by examining the output structure).

Suppose that you have observation time data xdata and observed response data ydata, and you
want to find parameters x(1) and x(2) to fit a model of the form

ydata = x(1)exp x(2)xdata .

Input the observation times and responses.

xdata = ...
 [0.9 1.5 13.8 19.8 24.1 28.2 35.2 60.3 74.6 81.3];
ydata = ...
 [455.2 428.6 124.1 67.3 43.2 28.1 13.1 -0.4 -1.3 -1.5];

Create a simple exponential decay model. The model computes a vector of differences between
predicted values and observed values.

fun = @(x)x(1)*exp(x(2)*xdata)-ydata;

Fit the model using the starting point x0 = [100,-1]. Examine the solution process by setting the
Display option to 'iter'. Obtain an output structure to obtain more information about the
solution process.

x0 = [100,-1];
options = optimoptions('lsqnonlin','Display','iter');
[x,resnorm,residual,exitflag,output] = lsqnonlin(fun,x0,[],[],options);

 Norm of First-order
 Iteration Func-count f(x) step optimality
 0 3 359677 2.88e+04
Objective function returned Inf; trying a new point...
 1 6 359677 11.6976 2.88e+04
 2 9 321395 0.5 4.97e+04

 lsqnonlin

15-291

 3 12 321395 1 4.97e+04
 4 15 292253 0.25 7.06e+04
 5 18 292253 0.5 7.06e+04
 6 21 270350 0.125 1.15e+05
 7 24 270350 0.25 1.15e+05
 8 27 252777 0.0625 1.63e+05
 9 30 252777 0.125 1.63e+05
 10 33 243877 0.03125 7.48e+04
 11 36 243660 0.0625 8.7e+04
 12 39 243276 0.0625 2e+04
 13 42 243174 0.0625 1.14e+04
 14 45 242999 0.125 5.1e+03
 15 48 242661 0.25 2.04e+03
 16 51 241987 0.5 1.91e+03
 17 54 240643 1 1.04e+03
 18 57 237971 2 3.36e+03
 19 60 232686 4 6.04e+03
 20 63 222354 8 1.2e+04
 21 66 202592 16 2.25e+04
 22 69 166443 32 4.05e+04
 23 72 106320 64 6.68e+04
 24 75 28704.7 128 8.31e+04
 25 78 89.7947 140.674 2.22e+04
 26 81 9.57381 2.02599 684
 27 84 9.50489 0.0619927 2.27
 28 87 9.50489 0.000462262 0.0114

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to
its initial value is less than the value of the function tolerance.

Examine the output structure to obtain more information about the solution process.

output

output = struct with fields:
 firstorderopt: 0.0114
 iterations: 28
 funcCount: 87
 cgiterations: 0
 algorithm: 'trust-region-reflective'
 stepsize: 4.6226e-04
 message: 'Local minimum possible....'

For comparison, set the Algorithm option to 'levenberg-marquardt'.

options.Algorithm = 'levenberg-marquardt';
[x,resnorm,residual,exitflag,output] = lsqnonlin(fun,x0,[],[],options);

 First-Order Norm of
 Iteration Func-count Residual optimality Lambda step
 0 3 359677 2.88e+04 0.01
Objective function returned Inf; trying a new point...
 1 13 340761 3.91e+04 100000 0.280777
 2 16 304661 5.97e+04 10000 0.373146
 3 21 297292 6.55e+04 1e+06 0.0589933
 4 24 288240 7.57e+04 100000 0.0645444

15 Functions

15-292

 5 28 275407 1.01e+05 1e+06 0.0741266
 6 31 249954 1.62e+05 100000 0.094571
 7 36 245896 1.35e+05 1e+07 0.0133606
 8 39 243846 7.26e+04 1e+06 0.00944311
 9 42 243568 5.66e+04 100000 0.00821621
 10 45 243424 1.61e+04 10000 0.00777935
 11 48 243322 8.8e+03 1000 0.0673933
 12 51 242408 5.1e+03 100 0.675209
 13 54 233628 1.05e+04 10 6.59804
 14 57 169089 8.51e+04 1 54.6992
 15 60 30814.7 1.54e+05 0.1 196.939
 16 63 147.496 8e+03 0.01 129.795
 17 66 9.51503 117 0.001 9.96069
 18 69 9.50489 0.0714 0.0001 0.080486
 19 72 9.50489 4.91e-05 1e-05 5.07033e-05

Local minimum possible.
lsqnonlin stopped because the relative size of the current step is less than
the value of the step size tolerance.

The 'levenberg-marquardt' converged with fewer iterations, but almost as many function
evaluations:

output

output = struct with fields:
 iterations: 19
 funcCount: 72
 stepsize: 5.0703e-05
 cgiterations: []
 firstorderopt: 4.9122e-05
 algorithm: 'levenberg-marquardt'
 message: 'Local minimum possible....'

Input Arguments
fun — Function whose sum of squares is minimized
function handle | name of function

Function whose sum of squares is minimized, specified as a function handle or the name of a function.
fun is a function that accepts an array x and returns an array F, the objective functions evaluated at
x. The function fun can be specified as a function handle to a file:

x = lsqnonlin(@myfun,x0)

where myfun is a MATLAB function such as

function F = myfun(x)
F = ... % Compute function values at x

fun can also be a function handle for an anonymous function.

x = lsqnonlin(@(x)sin(x.*x),x0);

lsqnonlin passes x to your objective function in the shape of the x0 argument. For example, if x0 is
a 5-by-3 array, then lsqnonlin passes x to fun as a 5-by-3 array.

 lsqnonlin

15-293

Note The sum of squares should not be formed explicitly. Instead, your function should return a
vector of function values. See “Examples” on page 15-0 .

If the Jacobian can also be computed and the 'SpecifyObjectiveGradient' option is true, set by

options = optimoptions('lsqnonlin','SpecifyObjectiveGradient',true)

then the function fun must return a second output argument with the Jacobian value J (a matrix) at
x. By checking the value of nargout, the function can avoid computing J when fun is called with
only one output argument (in the case where the optimization algorithm only needs the value of F but
not J).
function [F,J] = myfun(x)
F = ... % Objective function values at x
if nargout > 1 % Two output arguments
 J = ... % Jacobian of the function evaluated at x
end

If fun returns an array of m components and x has n elements, where n is the number of elements of
x0, the Jacobian J is an m-by-n matrix where J(i,j) is the partial derivative of F(i) with respect to
x(j). (The Jacobian J is the transpose of the gradient of F.)
Example: @(x)cos(x).*exp(-x)
Data Types: char | function_handle | string

x0 — Initial point
real vector | real array

Initial point, specified as a real vector or real array. Solvers use the number of elements in x0 and the
size of x0 to determine the number and size of variables that fun accepts.
Example: x0 = [1,2,3,4]
Data Types: double

lb — Lower bounds
real vector | real array

Lower bounds, specified as a real vector or real array. If the number of elements in x0 is equal to the
number of elements in lb, then lb specifies that

x(i) >= lb(i) for all i.

If numel(lb) < numel(x0), then lb specifies that

x(i) >= lb(i) for 1 <= i <= numel(lb).

If lb has fewer elements than x0, solvers issue a warning.
Example: To specify that all x components are positive, use lb = zeros(size(x0)).
Data Types: double

ub — Upper bounds
real vector | real array

Upper bounds, specified as a real vector or real array. If the number of elements in x0 is equal to the
number of elements in ub, then ub specifies that

15 Functions

15-294

x(i) <= ub(i) for all i.

If numel(ub) < numel(x0), then ub specifies that

x(i) <= ub(i) for 1 <= i <= numel(ub).

If ub has fewer elements than x0, solvers issue a warning.
Example: To specify that all x components are less than 1, use ub = ones(size(x0)).
Data Types: double

options — Optimization options
output of optimoptions | structure as optimset returns

Optimization options, specified as the output of optimoptions or a structure as optimset returns.

Some options apply to all algorithms, and others are relevant for particular algorithms. See
“Optimization Options Reference” on page 14-6 for detailed information.

Some options are absent from the optimoptions display. These options appear in italics in the
following table. For details, see “View Options” on page 2-66.

All Algorithms
Algorithm Choose between 'trust-region-reflective' (default) and

'levenberg-marquardt'.

The Algorithm option specifies a preference for which algorithm to
use. It is only a preference, because certain conditions must be met to
use each algorithm. For the trust-region-reflective algorithm, the
nonlinear system of equations cannot be underdetermined; that is, the
number of equations (the number of elements of F returned by fun)
must be at least as many as the length of x. For more information on
choosing the algorithm, see “Choosing the Algorithm” on page 2-6.

CheckGradients Compare user-supplied derivatives (gradients of objective or
constraints) to finite-differencing derivatives. Choices are false
(default) or true.

For optimset, the name is DerivativeCheck and the values are
'on' or 'off'. See “Current and Legacy Option Names” on page 14-
23.

Diagnostics Display diagnostic information about the function to be minimized or
solved. Choices are 'off' (default) or 'on'.

DiffMaxChange Maximum change in variables for finite-difference gradients (a positive
scalar). The default is Inf.

DiffMinChange Minimum change in variables for finite-difference gradients (a positive
scalar). The default is 0.

 lsqnonlin

15-295

Display Level of display (see “Iterative Display” on page 3-14):

• 'off' or 'none' displays no output.
• 'iter' displays output at each iteration, and gives the default exit

message.
• 'iter-detailed' displays output at each iteration, and gives the

technical exit message.
• 'final' (default) displays just the final output, and gives the

default exit message.
• 'final-detailed' displays just the final output, and gives the

technical exit message.
FiniteDifferenceStepSi
ze

Scalar or vector step size factor for finite differences. When you set
FiniteDifferenceStepSize to a vector v, the forward finite
differences delta are

delta = v.*sign′(x).*max(abs(x),TypicalX);

where sign′(x) = sign(x) except sign′(0) = 1. Central finite
differences are

delta = v.*max(abs(x),TypicalX);

Scalar FiniteDifferenceStepSize expands to a vector. The default
is sqrt(eps) for forward finite differences, and eps^(1/3) for
central finite differences.

For optimset, the name is FinDiffRelStep. See “Current and
Legacy Option Names” on page 14-23.

FiniteDifferenceType Finite differences, used to estimate gradients, are either 'forward'
(default), or 'central' (centered). 'central' takes twice as many
function evaluations, but should be more accurate.

The algorithm is careful to obey bounds when estimating both types of
finite differences. So, for example, it could take a backward, rather
than a forward, difference to avoid evaluating at a point outside
bounds.

For optimset, the name is FinDiffType. See “Current and Legacy
Option Names” on page 14-23.

FunctionTolerance Termination tolerance on the function value, a positive scalar. The
default is 1e-6. See “Tolerances and Stopping Criteria” on page 2-68.

For optimset, the name is TolFun. See “Current and Legacy Option
Names” on page 14-23.

FunValCheck Check whether function values are valid. 'on' displays an error when
the function returns a value that is complex, Inf, or NaN. The default
'off' displays no error.

15 Functions

15-296

MaxFunctionEvaluations Maximum number of function evaluations allowed, a positive integer.
The default is 100*numberOfVariables for the 'trust-region-
reflective' algorithm, and 200*numberOfVariables for the
'levenberg-marquardt' algorithm. See “Tolerances and Stopping
Criteria” on page 2-68 and “Iterations and Function Counts” on page 3-
9.

For optimset, the name is MaxFunEvals. See “Current and Legacy
Option Names” on page 14-23.

MaxIterations Maximum number of iterations allowed, a positive integer. The default
is 400. See “Tolerances and Stopping Criteria” on page 2-68 and
“Iterations and Function Counts” on page 3-9.

For optimset, the name is MaxIter. See “Current and Legacy Option
Names” on page 14-23.

OptimalityTolerance Termination tolerance on the first-order optimality (a positive scalar).
The default is 1e-6. See “First-Order Optimality Measure” on page 3-
11.

Internally, the 'levenberg-marquardt' algorithm uses an optimality
tolerance (stopping criterion) of 1e-4 times FunctionTolerance and
does not use OptimalityTolerance.

For optimset, the name is TolFun. See “Current and Legacy Option
Names” on page 14-23.

OutputFcn Specify one or more user-defined functions that an optimization
function calls at each iteration. Pass a function handle or a cell array of
function handles. The default is none ([]). See “Output Function and
Plot Function Syntax” on page 14-28.

PlotFcn Plots various measures of progress while the algorithm executes; select
from predefined plots or write your own. Pass a name, a function
handle, or a cell array of names or function handles. For custom plot
functions, pass function handles. The default is none ([]):

• 'optimplotx' plots the current point.
• 'optimplotfunccount' plots the function count.
• 'optimplotfval' plots the function value.
• 'optimplotresnorm' plots the norm of the residuals.
• 'optimplotstepsize' plots the step size.
• 'optimplotfirstorderopt' plots the first-order optimality

measure.

Custom plot functions use the same syntax as output functions. See
“Output Functions for Optimization Toolbox” on page 3-30 and “Output
Function and Plot Function Syntax” on page 14-28.

For optimset, the name is PlotFcns. See “Current and Legacy
Option Names” on page 14-23.

 lsqnonlin

15-297

SpecifyObjectiveGradie
nt

If false (default), the solver approximates the Jacobian using finite
differences. If true, the solver uses a user-defined Jacobian (defined in
fun), or Jacobian information (when using JacobMult), for the
objective function.

For optimset, the name is Jacobian, and the values are 'on' or
'off'. See “Current and Legacy Option Names” on page 14-23.

StepTolerance Termination tolerance on x, a positive scalar. The default is 1e-6. See
“Tolerances and Stopping Criteria” on page 2-68.

For optimset, the name is TolX. See “Current and Legacy Option
Names” on page 14-23.

TypicalX Typical x values. The number of elements in TypicalX is equal to the
number of elements in x0, the starting point. The default value is
ones(numberofvariables,1). The solver uses TypicalX for
scaling finite differences for gradient estimation.

UseParallel When true, the solver estimates gradients in parallel. Disable by
setting to the default, false. See “Parallel Computing”.

Trust-Region-Reflective Algorithm

15 Functions

15-298

JacobianMultiplyFcn Jacobian multiply function, specified as a function handle. For large-
scale structured problems, this function computes the Jacobian matrix
product J*Y, J'*Y, or J'*(J*Y) without actually forming J. The
function is of the form

W = jmfun(Jinfo,Y,flag)

where Jinfo contains the matrix used to compute J*Y (or J'*Y, or
J'*(J*Y)). The first argument Jinfo must be the same as the second
argument returned by the objective function fun, for example, by

[F,Jinfo] = fun(x)

Y is a matrix that has the same number of rows as there are
dimensions in the problem. flag determines which product to
compute:

• If flag == 0 then W = J'*(J*Y).
• If flag > 0 then W = J*Y.
• If flag < 0 then W = J'*Y.

In each case, J is not formed explicitly. The solver uses Jinfo to
compute the preconditioner. See “Passing Extra Parameters” on page
2-57 for information on how to supply values for any additional
parameters jmfun needs.

Note 'SpecifyObjectiveGradient' must be set to true for the
solver to pass Jinfo from fun to jmfun.

See “Minimization with Dense Structured Hessian, Linear Equalities”
on page 5-99 and “Jacobian Multiply Function with Linear Least
Squares” on page 11-31 for similar examples.

For optimset, the name is JacobMult. See “Current and Legacy
Option Names” on page 14-23.

JacobPattern Sparsity pattern of the Jacobian for finite differencing. Set
JacobPattern(i,j) = 1 when fun(i) depends on x(j).
Otherwise, set JacobPattern(i,j) = 0. In other words,
JacobPattern(i,j) = 1 when you can have ∂fun(i)/∂x(j) ≠ 0.

Use JacobPattern when it is inconvenient to compute the Jacobian
matrix J in fun, though you can determine (say, by inspection) when
fun(i) depends on x(j). The solver can approximate J via sparse
finite differences when you give JacobPattern.

If the structure is unknown, do not set JacobPattern. The default
behavior is as if JacobPattern is a dense matrix of ones. Then the
solver computes a full finite-difference approximation in each iteration.
This can be expensive for large problems, so it is usually better to
determine the sparsity structure.

 lsqnonlin

15-299

MaxPCGIter Maximum number of PCG (preconditioned conjugate gradient)
iterations, a positive scalar. The default is
max(1,numberOfVariables/2). For more information, see “Large
Scale Nonlinear Least Squares” on page 11-5.

PrecondBandWidth Upper bandwidth of preconditioner for PCG, a nonnegative integer. The
default PrecondBandWidth is Inf, which means a direct factorization
(Cholesky) is used rather than the conjugate gradients (CG). The direct
factorization is computationally more expensive than CG, but produces
a better quality step towards the solution. Set PrecondBandWidth to
0 for diagonal preconditioning (upper bandwidth of 0). For some
problems, an intermediate bandwidth reduces the number of PCG
iterations.

SubproblemAlgorithm Determines how the iteration step is calculated. The default,
'factorization', takes a slower but more accurate step than 'cg'.
See “Trust-Region-Reflective Least Squares” on page 11-3.

TolPCG Termination tolerance on the PCG iteration, a positive scalar. The
default is 0.1.

Levenberg-Marquardt Algorithm
InitDamping Initial value of the Levenberg-Marquardt parameter, a positive scalar.

Default is 1e-2. For details, see “Levenberg-Marquardt Method” on
page 11-6.

ScaleProblem 'jacobian' can sometimes improve the convergence of a poorly
scaled problem; the default is 'none'.

Example: options = optimoptions('lsqnonlin','FiniteDifferenceType','central')

problem — Problem structure
structure

Problem structure, specified as a structure with the following fields:

Field Name Entry
objective Objective function
x0 Initial point for x
lb Vector of lower bounds
ub Vector of upper bounds
solver 'lsqnonlin'
options Options created with optimoptions

You must supply at least the objective, x0, solver, and options fields in the problem structure.
Data Types: struct

Output Arguments
x — Solution
real vector | real array

15 Functions

15-300

Solution, returned as a real vector or real array. The size of x is the same as the size of x0. Typically,
x is a local solution to the problem when exitflag is positive. For information on the quality of the
solution, see “When the Solver Succeeds” on page 4-18.

resnorm — Squared norm of the residual
nonnegative real

Squared norm of the residual, returned as a nonnegative real. resnorm is the squared 2-norm of the
residual at x: sum(fun(x).^2).

residual — Value of objective function at solution
array

Value of objective function at solution, returned as an array. In general, residual = fun(x).

exitflag — Reason the solver stopped
integer

Reason the solver stopped, returned as an integer.

1 Function converged to a solution x.
2 Change in x is less than the specified tolerance, or Jacobian at x

is undefined.
3 Change in the residual is less than the specified tolerance.
4 Relative magnitude of search direction is smaller than the step

tolerance.
0 Number of iterations exceeds options.MaxIterations or

number of function evaluations exceeded
options.MaxFunctionEvaluations.

-1 A plot function or output function stopped the solver.
-2 Problem is infeasible: the bounds lb and ub are inconsistent.

output — Information about the optimization process
structure

Information about the optimization process, returned as a structure with fields:

firstorderopt Measure of first-order optimality
iterations Number of iterations taken
funcCount The number of function evaluations
cgiterations Total number of PCG iterations (trust-region-reflective algorithm

only)
stepsize Final displacement in x
algorithm Optimization algorithm used
message Exit message

lambda — Lagrange multipliers at the solution
structure

Lagrange multipliers at the solution, returned as a structure with fields:

 lsqnonlin

15-301

lower Lower bounds lb
upper Upper bounds ub

jacobian — Jacobian at the solution
real matrix

Jacobian at the solution, returned as a real matrix. jacobian(i,j) is the partial derivative of
fun(i) with respect to x(j) at the solution x.

Limitations
• The trust-region-reflective algorithm does not solve underdetermined systems; it requires that the

number of equations, i.e., the row dimension of F, be at least as great as the number of variables.
In the underdetermined case, lsqnonlin uses the Levenberg-Marquardt algorithm.

• lsqnonlin can solve complex-valued problems directly. Note that bound constraints do not make
sense for complex values. For a complex problem with bound constraints, split the variables into
real and imaginary parts. See “Fit a Model to Complex-Valued Data” on page 11-51.

• The preconditioner computation used in the preconditioned conjugate gradient part of the trust-
region-reflective method forms JTJ (where J is the Jacobian matrix) before computing the
preconditioner. Therefore, a row of J with many nonzeros, which results in a nearly dense product
JTJ, can lead to a costly solution process for large problems.

• If components of x have no upper (or lower) bounds, lsqnonlin prefers that the corresponding
components of ub (or lb) be set to inf (or -inf for lower bounds) as opposed to an arbitrary but
very large positive (or negative for lower bounds) number.

You can use the trust-region reflective algorithm in lsqnonlin, lsqcurvefit, and fsolve with
small- to medium-scale problems without computing the Jacobian in fun or providing the Jacobian
sparsity pattern. (This also applies to using fmincon or fminunc without computing the Hessian or
supplying the Hessian sparsity pattern.) How small is small- to medium-scale? No absolute answer is
available, as it depends on the amount of virtual memory in your computer system configuration.

Suppose your problem has m equations and n unknowns. If the command J = sparse(ones(m,n))
causes an Out of memory error on your machine, then this is certainly too large a problem. If it
does not result in an error, the problem might still be too large. You can find out only by running it
and seeing if MATLAB runs within the amount of virtual memory available on your system.

Algorithms
The Levenberg-Marquardt and trust-region-reflective methods are based on the nonlinear least-
squares algorithms also used in fsolve.

• The default trust-region-reflective algorithm is a subspace trust-region method and is based on the
interior-reflective Newton method described in [1] and [2]. Each iteration involves the
approximate solution of a large linear system using the method of preconditioned conjugate
gradients (PCG). See “Trust-Region-Reflective Least Squares” on page 11-3.

• The Levenberg-Marquardt method is described in references [4], [5], and [6]. See “Levenberg-
Marquardt Method” on page 11-6.

15 Functions

15-302

Alternative Functionality
App

The Optimize Live Editor task provides a visual interface for lsqnonlin.

References
[1] Coleman, T.F. and Y. Li. “An Interior, Trust Region Approach for Nonlinear Minimization Subject to

Bounds.” SIAM Journal on Optimization, Vol. 6, 1996, pp. 418–445.

[2] Coleman, T.F. and Y. Li. “On the Convergence of Reflective Newton Methods for Large-Scale
Nonlinear Minimization Subject to Bounds.” Mathematical Programming, Vol. 67, Number 2,
1994, pp. 189–224.

[3] Dennis, J. E. Jr. “Nonlinear Least-Squares.” State of the Art in Numerical Analysis, ed. D. Jacobs,
Academic Press, pp. 269–312.

[4] Levenberg, K. “A Method for the Solution of Certain Problems in Least-Squares.” Quarterly
Applied Mathematics 2, 1944, pp. 164–168.

[5] Marquardt, D. “An Algorithm for Least-squares Estimation of Nonlinear Parameters.” SIAM
Journal Applied Mathematics, Vol. 11, 1963, pp. 431–441.

[6] Moré, J. J. “The Levenberg-Marquardt Algorithm: Implementation and Theory.” Numerical
Analysis, ed. G. A. Watson, Lecture Notes in Mathematics 630, Springer Verlag, 1977, pp.
105–116.

[7] Moré, J. J., B. S. Garbow, and K. E. Hillstrom. User Guide for MINPACK 1. Argonne National
Laboratory, Rept. ANL–80–74, 1980.

[8] Powell, M. J. D. “A Fortran Subroutine for Solving Systems of Nonlinear Algebraic Equations.”
Numerical Methods for Nonlinear Algebraic Equations, P. Rabinowitz, ed., Ch.7, 1970.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

• lsqcurvefit and lsqnonlin support code generation using either the codegen function or the
MATLAB Coder app. You must have a MATLAB Coder license to generate code.

• The target hardware must support standard double-precision floating-point computations. You
cannot generate code for single-precision or fixed-point computations.

• Code generation targets do not use the same math kernel libraries as MATLAB solvers. Therefore,
code generation solutions can vary from solver solutions, especially for poorly conditioned
problems.

• All code for generation must be MATLAB code. In particular, you cannot use a custom black-box
function as an objective function for lsqcurvefit or lsqnonlin. You can use coder.ceval to
evaluate a custom function coded in C or C++. However, the custom function must be called in a
MATLAB function.

• lsqcurvefit and lsqnonlin do not support the problem argument for code generation.

 lsqnonlin

15-303

[x,fval] = lsqnonlin(problem) % Not supported

• You must specify the objective function by using function handles, not strings or character names.

x = lsqnonlin(@fun,x0,lb,ub,options) % Supported
% Not supported: lsqnonlin('fun',...) or lsqnonlin("fun",...)

• All input matrices lb and ub must be full, not sparse. You can convert sparse matrices to full by
using the full function.

• The lb and ub arguments must have the same number of entries as the x0 argument or must be
empty [].

• For advanced code optimization involving embedded processors, you also need an Embedded
Coder license.

• You must include options for lsqcurvefit or lsqnonlin and specify them using
optimoptions. The options must include the Algorithm option, set to 'levenberg-
marquardt'.

options = optimoptions('lsqnonlin','Algorithm','levenberg-marquardt');
[x,fval,exitflag] = lsqnonlin(fun,x0,lb,ub,options);

• Code generation supports these options:

• Algorithm — Must be 'levenberg-marquardt'
• FiniteDifferenceStepSize
• FiniteDifferenceType
• FunctionTolerance
• MaxFunctionEvaluations
• MaxIterations
• SpecifyObjectiveGradient
• StepTolerance
• TypicalX

• Generated code has limited error checking for options. The recommended way to update an option
is to use optimoptions, not dot notation.

opts = optimoptions('lsqnonlin','Algorithm','levenberg-marquardt');
opts = optimoptions(opts,'MaxIterations',1e4); % Recommended
opts.MaxIterations = 1e4; % Not recommended

• Do not load options from a file. Doing so can cause code generation to fail. Instead, create options
in your code.

• Usually, if you specify an option that is not supported, the option is silently ignored during code
generation. However, if you specify a plot function or output function by using dot notation, code
generation can issue an error. For reliability, specify only supported options.

• Because output functions and plot functions are not supported, solvers do not return the exit flag –
1.

For an example, see “Generate Code for lsqcurvefit or lsqnonlin” on page 11-105.

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set the 'UseParallel' option to true.

15 Functions

15-304

options = optimoptions('solvername','UseParallel',true)

For more information, see “Using Parallel Computing in Optimization Toolbox” on page 13-5.

See Also
fsolve | lsqcurvefit | optimoptions | Optimize

Topics
“Nonlinear Least Squares (Curve Fitting)”
“Solver-Based Optimization Problem Setup”
“Least-Squares (Model Fitting) Algorithms” on page 11-2

Introduced before R2006a

 lsqnonlin

15-305

lsqnonneg
Solve nonnegative linear least-squares problem

Syntax
x = lsqnonneg(C,d)
x = lsqnonneg(C,d,options)
x = lsqnonneg(problem)
[x,resnorm,residual] = lsqnonneg(___)
[x,resnorm,residual,exitflag,output] = lsqnonneg(___)
[x,resnorm,residual,exitflag,output,lambda] = lsqnonneg(___)

Description
Solve nonnegative least-squares curve fitting problems of the form

min
x

C ⋅ x− d 2
2, where x ≥ 0.

Note lsqnonneg applies only to the solver-based approach. For a discussion of the two optimization
approaches, see “First Choose Problem-Based or Solver-Based Approach” on page 1-3.

x = lsqnonneg(C,d) returns the vector x that minimizes norm(C*x-d) subject to x ≥ 0.
Arguments C and d must be real.

x = lsqnonneg(C,d,options) minimizes with the optimization options specified in the structure
options. Use optimset to set these options.

x = lsqnonneg(problem) finds the minimum for problem, a structure described in problem.

[x,resnorm,residual] = lsqnonneg(___), for any previous syntax, additionally returns the
value of the squared 2-norm of the residual, norm(C*x-d)^2, and returns the residual d-C*x.

[x,resnorm,residual,exitflag,output] = lsqnonneg(___) additionally returns a value
exitflag that describes the exit condition of lsqnonneg, and a structure output with information
about the optimization process.

[x,resnorm,residual,exitflag,output,lambda] = lsqnonneg(___) additionally returns
the Lagrange multiplier vector lambda.

Examples

Nonnegative Linear Least Squares

Compute a nonnegative solution to a linear least-squares problem, and compare the result to the
solution of an unconstrained problem.

Prepare a C matrix and d vector for the problem min| |Cx− d | |.

15 Functions

15-306

C = [0.0372 0.2869
 0.6861 0.7071
 0.6233 0.6245
 0.6344 0.6170];

d = [0.8587
 0.1781
 0.0747
 0.8405];

Compute the constrained and unconstrained solutions.

x = lsqnonneg(C,d)

x = 2×1

 0
 0.6929

xunc = C\d

xunc = 2×1

 -2.5627
 3.1108

All entries in x are nonnegative, but some entries in xunc are negative.

Compute the norms of the residuals for the two solutions.

constrained_norm = norm(C*x - d)

constrained_norm = 0.9118

unconstrained_norm = norm(C*xunc - d)

unconstrained_norm = 0.6674

The unconstrained solution has a smaller residual norm because constraints can only increase a
residual norm.

Nonnegative Least Squares with Nondefault Options

Set the Display option to 'final' to see output when lsqnonneg finishes.

Create the options.

options = optimset('Display','final');

Prepare a C matrix and d vector for the problem min| |Cx− d | |.

C = [0.0372 0.2869
 0.6861 0.7071
 0.6233 0.6245

 lsqnonneg

15-307

 0.6344 0.6170];

d = [0.8587
 0.1781
 0.0747
 0.8405];

Call lsqnonneg with the options structure.

x = lsqnonneg(C,d,options);

Optimization terminated.

Obtain Residuals from Nonnegative Least Squares

Call lsqnonneg with outputs to obtain the solution, residual norm, and residual vector.

Prepare a C matrix and d vector for the problem min| |Cx− d | |.

C = [0.0372 0.2869
 0.6861 0.7071
 0.6233 0.6245
 0.6344 0.6170];

d = [0.8587
 0.1781
 0.0747
 0.8405];

Obtain the solution and residual information.

 [x,resnorm,residual] = lsqnonneg(C,d)

x = 2×1

 0
 0.6929

resnorm = 0.8315

residual = 4×1

 0.6599
 -0.3119
 -0.3580
 0.4130

Verify that the returned residual norm is the square of the norm of the returned residual vector.

 norm(residual)^2

ans = 0.8315

15 Functions

15-308

Inspect the Result of Nonnegative Least Squares

Request all output arguments to examine the solution and solution process after lsqnonneg finishes.

Prepare a C matrix and d vector for the problem min| |Cx− d | |.

C = [0.0372 0.2869
 0.6861 0.7071
 0.6233 0.6245
 0.6344 0.6170];

d = [0.8587
 0.1781
 0.0747
 0.8405];

Solve the problem, requesting all output arguments.

[x,resnorm,residual,exitflag,output,lambda] = lsqnonneg(C,d)

x = 2×1

 0
 0.6929

resnorm = 0.8315

residual = 4×1

 0.6599
 -0.3119
 -0.3580
 0.4130

exitflag = 1

output = struct with fields:
 iterations: 1
 algorithm: 'active-set'
 message: 'Optimization terminated.'

lambda = 2×1

 -0.1506
 -0.0000

exitflag is 1, indicating a correct solution.

x(1) = 0, and the corresponding lambda(1) ≠ 0, showing the correct duality. Similarly, x(2) > 0,
and the corresponding lambda(2) = 0.

 lsqnonneg

15-309

Input Arguments
C — Linear multiplier
real matrix

Linear multiplier, specified as a real matrix. Represents the variable C in the problem

min
x

Cx− d 2
2 .

For compatibility, the number of rows of C must equal the length of d.
Example: C = [1,2;3,-1;-4,4]
Data Types: double

d — Additive term
real vector

Additive term, specified as a real vector. Represents the variable d in the problem

min
x

Cx− d 2
2 .

For compatibility, the length of d must equal the number of rows of C.
Example: d = [1;-6;5]
Data Types: double

options — Optimization options
structure such as optimset returns

Optimization options, specified as a structure such as optimset returns. You can use optimset to
set or change the values of these fields in the options structure. See “Optimization Options
Reference” on page 14-6 for detailed information.

Display Level of display:

• 'notify' (default) displays output only if the function does not
converge.

• 'off' or 'none' displays no output.
• 'final' displays just the final output.

TolX Termination tolerance on x, a positive scalar. The default is
10*eps*norm(C,1)*length(C). See “Tolerances and Stopping
Criteria” on page 2-68.

Example: options = optimset('Display','final')
Data Types: struct

problem — Problem structure
structure

Problem structure, specified as a structure with the following fields.

15 Functions

15-310

Field Name Entry
C Real matrix
d Real vector
solver 'lsqnonneg'
options Options structure such as returned by optimset

Data Types: struct

Output Arguments
x — Solution
real vector

Solution, returned as a real vector. The length of x is the same as the length of d.

resnorm — Squared residual norm
nonnegative scalar

Squared residual norm, returned as a nonnegative scalar. Equal to norm(C*x-d)^2.

residual — Residual
real vector

Residual, returned as a real vector. The residual is d - C*x.

exitflag — Reason lsqnonneg stopped
integer

Reason lsqnonneg stopped, returned as an integer.

1 Function converged to a solution x.
0 Number of iterations exceeded options.MaxIter.

output — Information about the optimization process
structure

Information about the optimization process, returned as a structure with fields:

iterations Number of iterations taken
algorithm 'active-set'
message Exit message

lambda — Lagrange multipliers
real vector

Lagrange multipliers, returned as a real vector. The entries satisfy the complementarity condition
x'*lambda = 0. This means lambda(i) < 0 when x(i) is approximately 0, and lambda(i) is
approximately 0 when x(i) > 0.

 lsqnonneg

15-311

Tips
• For problems where d has length over 20, lsqlin might be faster than lsqnonneg. When d has

length under 20, lsqnonneg is generally more efficient.

To convert between the solvers when C has more rows than columns (meaning the system is
overdetermined),

[x,resnorm,residual,exitflag,output,lambda] = lsqnonneg(C,d)

is equivalent to

[m,n] = size(C);
[x,resnorm,residual,exitflag,output,lambda_lsqlin] = ...
 lsqlin(C,d,-eye(n,n),zeros(n,1));

The only difference is that the corresponding Lagrange multipliers have opposite signs: lambda =
-lambda_lsqlin.ineqlin.

Algorithms
lsqnonneg uses the algorithm described in [1]. The algorithm starts with a set of possible basis
vectors and computes the associated dual vector lambda. It then selects the basis vector
corresponding to the maximum value in lambda to swap it out of the basis in exchange for another
possible candidate. This continues until lambda ≤ 0.

Alternative Functionality
App

The Optimize Live Editor task provides a visual interface for lsqnonneg.

References
[1] Lawson, C. L. and R. J. Hanson. Solving Least-Squares Problems. Upper Saddle River, NJ: Prentice

Hall. 1974. Chapter 23, p. 161.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

For C/C++ code generation:

• You must enable support for variable-size arrays.
• The exit message in the output structure is not translated.

See Also
mldivide | lsqlin | optimset | Optimize

Introduced before R2006a

15 Functions

15-312

mpsread
Read MPS file for LP and MILP optimization data

Syntax
problem = mpsread(mpsfile)
problem = mpsread(mpsfile,'ReturnNames',true)

Description
problem = mpsread(mpsfile) reads data for linear programming (LP) and mixed-integer linear
programming (MILP) problems. It returns the data in a structure that the intlinprog or linprog
solvers accept.

problem = mpsread(mpsfile,'ReturnNames',true) augments the returned problem
structure with variableNames and constraintNames fields containing the names of the variables
and constraints in mpsfile.

Examples

Import and Run an MPS File

Load an mps file and solve the problem it describes.

Load the eil33-2.mps file from a public repository. View the problem type.

gunzip('http://miplib.zib.de/WebData/instances/eil33-2.mps.gz')
problem = mpsread('eil33-2.mps')

problem =

 f: [4516x1 double]
 Aineq: [0x4516 double]
 bineq: [0x1 double]
 Aeq: [32x4516 double]
 beq: [32x1 double]
 lb: [4516x1 double]
 ub: [4516x1 double]
 intcon: [4516x1 double]
 solver: 'intlinprog'
 options: [1x1 optim.options.Intlinprog]

Notice that problem.intcon is not empty, and problem.solver is 'intlinprog'. The problem is
an integer linear programming problem.

Change the options to suppress iterative display and to generate a plot as the solver progresses.

options = optimoptions('intlinprog','Display','final','PlotFcn',@optimplotmilp);
problem.options = options;

Solve the problem by calling intlinprog.

 mpsread

15-313

[x,fval,exitflag,output] = intlinprog(problem);

Optimal solution found.

Intlinprog stopped because the objective value is within a gap tolerance of the optimal value,
options.AbsoluteGapTolerance = 0 (the default value). The intcon variables are
integer within tolerance, options.IntegerTolerance = 1e-05 (the default value).

Obtain Variable and Constraint Names

Load an mps file and obtain its variable and constraint names.

Load the eil33-2.mps file from a public repository. View the returned problem structure.

gunzip('http://miplib.zib.de/WebData/instances/eil33-2.mps.gz')
problem = mpsread('eil33-2.mps','ReturnNames',true)

problem =

 struct with fields:

 f: [4516×1 double]
 Aineq: [0×4516 double]
 bineq: [0×1 double]
 Aeq: [32×4516 double]
 beq: [32×1 double]

15 Functions

15-314

 lb: [4516×1 double]
 ub: [4516×1 double]
 intcon: [4516×1 double]
 solver: 'intlinprog'
 options: [1×1 optim.options.Intlinprog]
 variableNames: [4516×1 string]
 constraintNames: [1×1 struct]

View the first few names of each type.

problem.variableNames(1:4)

ans =

 4×1 string array

 "x1"
 "x2"
 "x3"
 "x4"

problem.constraintNames.eqlin(1:4)

ans =

 4×1 string array

 "c1"
 "c2"
 "c3"
 "c4"

There are no inequality constraints in the problem.

problem.constraintNames.ineqlin

ans =

 0×1 empty string array

Input Arguments
mpsfile — Path to MPS file
character vector | string scalar

Path to MPS file, specified as a character vector or string scalar. mpsfile should be a file in the MPS
format.

Note

• mpsread does not support semicontinuous constraints or SOS constraints.
• mpsread supports “fixed format” files.
• mpsread does not support extensions such as objsense and objname.
• mpsread silently ignores variables in the BOUNDS section that do not previously appear in the

COLUMNS section of the MPS file.

 mpsread

15-315

http://lpsolve.sourceforge.net/5.5/mps-format.htm
http://lpsolve.sourceforge.net/5.5/mps-format.htm

Example: "documents/optimization/milpproblem.mps"
Data Types: char | string

ReturnNames — Name-value pair indicating to return variable and constraint names from
the MPS file
false (default) | true

Name-value pair indicating to return variable and constraint names from the MPS file, with the value
specified as logical. false indicates not to return the names. true causes mpsread to return two
extra fields in the problem output structure:

• problem.variableNames — String array of variable names
• problem.constraintNames — Structure of constraint names:

• problem.constraintNames.eqlin String array of linear equality constraint names
• problem.constraintNames.ineqlin String array of linear inequality constraint names

The problem structure inequality constraints problem.Aineq and problem.bineq have the same
order as the names in problem.constraintNames.ineqlin. Similarly, the constraints
problem.Aeq and problem.beq have the same order as the names in
problem.constraintNames.eqlin. The problem.variableNames order is the same as the order
of the solution variables x after running linprog or intlinprog on the problem structure.
Example: mpsread('filename','ReturnNames',true)
Data Types: logical

Output Arguments
problem — Problem structure
structure

Problem structure, returned as a structure with fields:

f Vector representing objective f'*x
intcon Vector indicating variables that take integer values (empty for LP,

nonempty for MILP)
Aineq Matrix in linear inequality constraints Aineq*x ≤ bineq
bineq Vector in linear inequality constraints Aineq*x ≤ bineq
Aeq Matrix in linear equality constraints Aeq*x = beq
beq Vector in linear equality constraints Aeq*x = beq
lb Vector of lower bounds
ub Vector of upper bounds
solver 'intlinprog' (if intcon is nonempty), or 'linprog' (if intcon is

empty)
options Default options, as returned by the command

optimoptions(solver)

15 Functions

15-316

variableNames String array containing variable names from the MPS file. This field
appears only if ReturnNames is true.

constraintNames Structure containing constraint names from the MPS file. For a
description, see ReturnNames. This field appears only if ReturnNames
is true.

mpsread returns problem.Aineq and problem.Aeq as sparse matrices.

See Also
intlinprog | linprog

Topics
“Linear Programming and Mixed-Integer Linear Programming”

Introduced in R2015b

 mpsread

15-317

optimget
Optimization options values

Syntax
val = optimget(options,'param')
val = optimget(options,'param',default)

Description
val = optimget(options,'param') returns the value of the specified option in the optimization
options structure options. You need to type only enough leading characters to define the option
name uniquely. Case is ignored for option names.

val = optimget(options,'param',default) returns default if the specified option is not
defined in the optimization options structure options. Note that this form of the function is used
primarily by other optimization functions.

Examples
This statement returns the value of the Display option in the structure called my_options.

val = optimget(my_options,'Display')

This statement returns the value of the Display option in the structure called my_options (as in
the previous example) except that if the Display option is not defined, it returns the value 'final'.

optnew = optimget(my_options,'Display','final');

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Input parameter names must be constant.

See Also
optimset

Introduced before R2006a

15 Functions

15-318

optimconstr
Create empty optimization constraint array

Syntax
constr = optimconstr(N)
constr = optimconstr(cstr)
constr = optimconstr(cstr1,N2,...,cstrk)
constr = optimconstr({cstr1,cstr2,...,cstrk})
constr = optimconstr([N1,N2,...,Nk])

Description
Use optimconstr to initialize a set of constraint expressions.

Tip For the full workflow, see “Problem-Based Optimization Workflow” on page 9-2.

constr = optimconstr(N) creates an N-by-1 array of empty optimization constraints. Use constr
to initialize a loop that creates constraint expressions.

constr = optimconstr(cstr) creates an array of empty optimization constraints that are
indexed by cstr, a cell array of character vectors or string vectors.

If cstr is 1-by-ncstr, where ncstr is the number of elements of cstr, then constr is also 1-by-
ncstr. Otherwise, constr is ncstr-by-1.

constr = optimconstr(cstr1,N2,...,cstrk) or constr = optimconstr({cstr1,
cstr2,...,cstrk}) or constr = optimconstr([N1,N2,...,Nk]), for any combination of
cstr and N arguments, creates an ncstr1-by-N2-by-...-by-ncstrk array of empty optimization
constraints, where ncstr is the number of elements in cstr.

Examples

Create Constraints in Loop

Create constraints for an inventory model. The stock of goods at the start of each period is equal to
the stock at the end of the previous period. During each period, the stock increases by buy and
decreases by sell. The variable stock is the stock at the end of the period.

N = 12;
stock = optimvar('stock',N,1,'Type','integer','LowerBound',0);
buy = optimvar('buy',N,1,'Type','integer','LowerBound',0);
sell = optimvar('sell',N,1,'Type','integer','LowerBound',0);
initialstock = 100;

stockbalance = optimconstr(N,1);

for t = 1:N

 optimconstr

15-319

 if t == 1
 enterstock = initialstock;
 else
 enterstock = stock(t-1);
 end
 stockbalance(t) = stock(t) == enterstock + buy(t) - sell(t);
end

show(stockbalance)

(1, 1)

 -buy(1) + sell(1) + stock(1) == 100

(2, 1)

 -buy(2) + sell(2) - stock(1) + stock(2) == 0

(3, 1)

 -buy(3) + sell(3) - stock(2) + stock(3) == 0

(4, 1)

 -buy(4) + sell(4) - stock(3) + stock(4) == 0

(5, 1)

 -buy(5) + sell(5) - stock(4) + stock(5) == 0

(6, 1)

 -buy(6) + sell(6) - stock(5) + stock(6) == 0

(7, 1)

 -buy(7) + sell(7) - stock(6) + stock(7) == 0

(8, 1)

 -buy(8) + sell(8) - stock(7) + stock(8) == 0

(9, 1)

 -buy(9) + sell(9) - stock(8) + stock(9) == 0

(10, 1)

 -buy(10) + sell(10) - stock(9) + stock(10) == 0

(11, 1)

 -buy(11) + sell(11) - stock(10) + stock(11) == 0

(12, 1)

 -buy(12) + sell(12) - stock(11) + stock(12) == 0

15 Functions

15-320

Include the constraints in a problem.

prob = optimproblem;
prob.Constraints.stockbalance = stockbalance;

Instead of using a loop, you can create the same constraints by using matrix operations on the
variables.

tt = ones(N-1,1);
d = diag(tt,-1); % shift index by -1
stockbalance2 = stock == d*stock + buy - sell;
stockbalance2(1) = stock(1) == initialstock + buy(1) - sell(1);

Show the new constraints to verify that they are the same as the constraints in stockbalance.

show(stockbalance2)

(1, 1)

 -buy(1) + sell(1) + stock(1) == 100

(2, 1)

 -buy(2) + sell(2) - stock(1) + stock(2) == 0

(3, 1)

 -buy(3) + sell(3) - stock(2) + stock(3) == 0

(4, 1)

 -buy(4) + sell(4) - stock(3) + stock(4) == 0

(5, 1)

 -buy(5) + sell(5) - stock(4) + stock(5) == 0

(6, 1)

 -buy(6) + sell(6) - stock(5) + stock(6) == 0

(7, 1)

 -buy(7) + sell(7) - stock(6) + stock(7) == 0

(8, 1)

 -buy(8) + sell(8) - stock(7) + stock(8) == 0

(9, 1)

 -buy(9) + sell(9) - stock(8) + stock(9) == 0

(10, 1)

 -buy(10) + sell(10) - stock(9) + stock(10) == 0

(11, 1)

 optimconstr

15-321

 -buy(11) + sell(11) - stock(10) + stock(11) == 0

(12, 1)

 -buy(12) + sell(12) - stock(11) + stock(12) == 0

Creating constraints in a loop can be more time-consuming than creating constraints by matrix
operations. However, you are less likely to create an erroneous constraint by using loops.

Create Indexed Constraints in Loop

Create indexed constraints and variables to represent the calories consumed in a diet. Each meal has
a different calorie limit.

meals = ["breakfast","lunch","dinner"];
constr = optimconstr(meals);
foods = ["cereal","oatmeal","yogurt","peanut butter sandwich","pizza","hamburger",...
 "salad","steak","casserole","ice cream"];
diet = optimvar('diet',foods,meals,'LowerBound',0);
calories = [200,175,150,450,350,800,150,650,350,300]';
for i = 1:3
 constr(i) = diet(:,i)'*calories <= 250*i;
end

Check the constraint for dinner.

show(constr("dinner"))

 200*diet('cereal', 'dinner') + 175*diet('oatmeal', 'dinner')
+ 150*diet('yogurt', 'dinner')
+ 450*diet('peanut butter sandwich', 'dinner') + 350*diet('pizza', 'dinner')
+ 800*diet('hamburger', 'dinner') + 150*diet('salad', 'dinner')
+ 650*diet('steak', 'dinner') + 350*diet('casserole', 'dinner')
+ 300*diet('ice cream', 'dinner') <= 750

Input Arguments
N — Size of constraint dimension
positive integer

Size of the constraint dimension, specified as a positive integer.

• The size of constr = optimconstr(N) is N-by-1.
• The size of constr = optimconstr(N1,N2) is N1-by-N2.
• The size of constr = optimconstr(N1,N2,...,Nk) is N1-by-N2-by-...-by-Nk.

Example: 5
Data Types: double

cstr — Names for indexing
cell array of character vectors | string vector

15 Functions

15-322

Names for indexing, specified as a cell array of character vectors or a string vector.
Example: {'red','orange','green','blue'}
Example: ["red";"orange";"green";"blue"]
Data Types: string | cell

Output Arguments
constr — Constraints
empty OptimizationConstraint array

Constraints, returned as an empty OptimizationConstraint array. Use constr to initialize a loop
that creates constraint expressions.

For example:

x = optimvar('x',8);
constr = optimconstr(4);
for k = 1:4
 constr(k) = 5*k*(x(2*k) - x(2*k-1)) <= 10 - 2*k;
end

Limitations
• Each constraint expression in a problem must use the same comparison. For example, the

following code leads to an error, because cons1 uses the <= comparison, cons2 uses the >=
comparison, and cons1 and cons2 are in the same expression.

prob = optimproblem;
x = optimvar('x',2,'LowerBound',0);
cons1 = x(1) + x(2) <= 10;
cons2 = 3*x(1) + 4*x(2) >= 2;
prob.Constraints = [cons1;cons2]; % This line throws an error

You can avoid this error by using separate expressions for the constraints.

prob.Constraints.cons1 = cons1;
prob.Constraints.cons2 = cons2;

Tips
• It is generally more efficient to create constraints by vectorized expressions rather than loops. See

“Create Efficient Optimization Problems” on page 9-28.
• You can use optimineq instead of optimconstr to create inequality expressions. Similarly, you

can use optimeq instead of optimconstr to create equality expressions.

See Also
optimexpr | OptimizationConstraint | OptimizationExpression | OptimizationVariable
| OptimizationProblem | optimineq | optimeq

Topics
“Problem-Based Optimization Setup”

 optimconstr

15-323

“Problem-Based Optimization Workflow” on page 9-2

Introduced in R2017b

15 Functions

15-324

optimeq
Create empty optimization equality array

Syntax
eq = optimeq(N)
eq = optimeq(cstr)
eq = optimeq(cstr1,N2,...,cstrk)
eq = optimeq({cstr1,cstr2,...,cstrk})
eq = optimeq([N1,N2,...,Nk])

Description
Use optimeq to initialize a set of equality expressions.

Tip For the full workflow, see “Problem-Based Optimization Workflow” on page 9-2 or “Problem-
Based Workflow for Solving Equations” on page 9-4.

eq = optimeq(N) creates an N-by-1 array of empty optimization equalities. Use eq to initialize a
loop that creates equalities. Use the resulting equalities as constraints in an optimization problem or
as equations in an equation problem.

eq = optimeq(cstr) creates an array of empty optimization equalities that are indexed by cstr, a
cell array of character vectors or string vectors .

If cstr is 1-by-ncstr, where ncstr is the number of elements of cstr, then eq is also 1-by-ncstr.
Otherwise, eq is ncstr-by-1.

eq = optimeq(cstr1,N2,...,cstrk) or eq = optimeq({cstr1,cstr2,...,cstrk}) or eq
= optimeq([N1,N2,...,Nk]), for any combination of cstr and N arguments, creates an ncstr1-
by-N2-by-...-by-ncstrk array of empty optimization equalities, where ncstr is the number of
elements in cstr.

Examples

Create Equality Constraints in Loop

Create equality constraints for an inventory model. The stock of goods at the start of each period is
equal to the stock at the end of the previous period. During each period, the stock increases by buy
and decreases by sell. The variable stock is the stock at the end of the period.

N = 12;
stock = optimvar('stock',N,1,'Type','integer','LowerBound',0);
buy = optimvar('buy',N,1,'Type','integer','LowerBound',0);
sell = optimvar('sell',N,1,'Type','integer','LowerBound',0);
initialstock = 100;

 optimeq

15-325

stockbalance = optimeq(N,1);

for t = 1:N
 if t == 1
 enterstock = initialstock;
 else
 enterstock = stock(t-1);
 end
 stockbalance(t) = stock(t) == enterstock + buy(t) - sell(t);
end

show(stockbalance)

(1, 1)

 -buy(1) + sell(1) + stock(1) == 100

(2, 1)

 -buy(2) + sell(2) - stock(1) + stock(2) == 0

(3, 1)

 -buy(3) + sell(3) - stock(2) + stock(3) == 0

(4, 1)

 -buy(4) + sell(4) - stock(3) + stock(4) == 0

(5, 1)

 -buy(5) + sell(5) - stock(4) + stock(5) == 0

(6, 1)

 -buy(6) + sell(6) - stock(5) + stock(6) == 0

(7, 1)

 -buy(7) + sell(7) - stock(6) + stock(7) == 0

(8, 1)

 -buy(8) + sell(8) - stock(7) + stock(8) == 0

(9, 1)

 -buy(9) + sell(9) - stock(8) + stock(9) == 0

(10, 1)

 -buy(10) + sell(10) - stock(9) + stock(10) == 0

(11, 1)

 -buy(11) + sell(11) - stock(10) + stock(11) == 0

(12, 1)

15 Functions

15-326

 -buy(12) + sell(12) - stock(11) + stock(12) == 0

Include the constraints in an optimization problem.

prob = optimproblem;
prob.Constraints.stockbalance = stockbalance;

Instead of using a loop, you can create the same constraints by using matrix operations on the
variables.

stockbalance2 = optimeq(12, 1);
t = 2:12;
stockbalance2(t) = stock(t) == stock(t-1) + buy(t) - sell(t);
stockbalance2(1) = stock(1) == initialstock + buy(1) - sell(1);

Display the new constraints. Note that they are the same as the constraints in stockbalance.

show(stockbalance2)

(1, 1)

 -buy(1) + sell(1) + stock(1) == 100

(2, 1)

 -buy(2) + sell(2) - stock(1) + stock(2) == 0

(3, 1)

 -buy(3) + sell(3) - stock(2) + stock(3) == 0

(4, 1)

 -buy(4) + sell(4) - stock(3) + stock(4) == 0

(5, 1)

 -buy(5) + sell(5) - stock(4) + stock(5) == 0

(6, 1)

 -buy(6) + sell(6) - stock(5) + stock(6) == 0

(7, 1)

 -buy(7) + sell(7) - stock(6) + stock(7) == 0

(8, 1)

 -buy(8) + sell(8) - stock(7) + stock(8) == 0

(9, 1)

 -buy(9) + sell(9) - stock(8) + stock(9) == 0

(10, 1)

 optimeq

15-327

 -buy(10) + sell(10) - stock(9) + stock(10) == 0

(11, 1)

 -buy(11) + sell(11) - stock(10) + stock(11) == 0

(12, 1)

 -buy(12) + sell(12) - stock(11) + stock(12) == 0

Creating constraints in a loop can be more time consuming than creating constraints by using matrix
operations.

Create Indexed Equalities in Loop

Create indexed equalities for a problem that involves shipping goods between airports. First, create
indices representing airports.

airports = ["LAX" "JFK" "ORD"];

Create indices representing goods to be shipped from one airport to another.

goods = ["Electronics" "Foodstuffs" "Clothing" "Raw Materials"];

Create an array giving the weight of each unit of the goods.

weights = [1 20 5 100];

Create a variable array representing quantities of goods to be shipped from each airport to each
other airport. quantities(airport1,airport2,goods) represents the quantity of goods being
shipped from airport1 to airport2.

quantities = optimvar('quantities',airports,airports,goods,'LowerBound',0);

Create an equality constraint that the sum of the weights of goods being shipped from each airport is
equal to the sum of the weights of goods being shipped to the airport.

eq = optimeq(airports);
outweight = optimexpr(size(eq));
inweight = optimexpr(size(eq));
for i = 1:length(airports)
 temp = optimexpr;
 temp2 = optimexpr;
 for j = 1:length(airports)
 for k = 1:length(goods)
 temp = temp + quantities(i,j,k)*weights(k);
 temp2 = temp2 + quantities(j,i,k)*weights(k);
 end
 end
 outweight(i) = temp;
 inweight(i) = temp2;
 eq(i) = outweight(i) == inweight(i);
end

Examine the equalities.

15 Functions

15-328

show(eq)

(1, 'LAX')

 -quantities('JFK', 'LAX', 'Electronics')
- quantities('ORD', 'LAX', 'Electronics')
+ quantities('LAX', 'JFK', 'Electronics')
+ quantities('LAX', 'ORD', 'Electronics')
- 20*quantities('JFK', 'LAX', 'Foodstuffs')
- 20*quantities('ORD', 'LAX', 'Foodstuffs')
+ 20*quantities('LAX', 'JFK', 'Foodstuffs')
+ 20*quantities('LAX', 'ORD', 'Foodstuffs')
- 5*quantities('JFK', 'LAX', 'Clothing')
- 5*quantities('ORD', 'LAX', 'Clothing')
+ 5*quantities('LAX', 'JFK', 'Clothing')
+ 5*quantities('LAX', 'ORD', 'Clothing')
- 100*quantities('JFK', 'LAX', 'Raw Materials')
- 100*quantities('ORD', 'LAX', 'Raw Materials')
+ 100*quantities('LAX', 'JFK', 'Raw Materials')
+ 100*quantities('LAX', 'ORD', 'Raw Materials') == 0

(1, 'JFK')

 quantities('JFK', 'LAX', 'Electronics')
- quantities('LAX', 'JFK', 'Electronics')
- quantities('ORD', 'JFK', 'Electronics')
+ quantities('JFK', 'ORD', 'Electronics')
+ 20*quantities('JFK', 'LAX', 'Foodstuffs')
- 20*quantities('LAX', 'JFK', 'Foodstuffs')
- 20*quantities('ORD', 'JFK', 'Foodstuffs')
+ 20*quantities('JFK', 'ORD', 'Foodstuffs')
+ 5*quantities('JFK', 'LAX', 'Clothing')
- 5*quantities('LAX', 'JFK', 'Clothing')
- 5*quantities('ORD', 'JFK', 'Clothing')
+ 5*quantities('JFK', 'ORD', 'Clothing')
+ 100*quantities('JFK', 'LAX', 'Raw Materials')
- 100*quantities('LAX', 'JFK', 'Raw Materials')
- 100*quantities('ORD', 'JFK', 'Raw Materials')
+ 100*quantities('JFK', 'ORD', 'Raw Materials') == 0

(1, 'ORD')

 quantities('ORD', 'LAX', 'Electronics')
+ quantities('ORD', 'JFK', 'Electronics')
- quantities('LAX', 'ORD', 'Electronics')
- quantities('JFK', 'ORD', 'Electronics')
+ 20*quantities('ORD', 'LAX', 'Foodstuffs')
+ 20*quantities('ORD', 'JFK', 'Foodstuffs')
- 20*quantities('LAX', 'ORD', 'Foodstuffs')
- 20*quantities('JFK', 'ORD', 'Foodstuffs')
+ 5*quantities('ORD', 'LAX', 'Clothing')
+ 5*quantities('ORD', 'JFK', 'Clothing')
- 5*quantities('LAX', 'ORD', 'Clothing')
- 5*quantities('JFK', 'ORD', 'Clothing')
+ 100*quantities('ORD', 'LAX', 'Raw Materials')
+ 100*quantities('ORD', 'JFK', 'Raw Materials')
- 100*quantities('LAX', 'ORD', 'Raw Materials')
- 100*quantities('JFK', 'ORD', 'Raw Materials') == 0

 optimeq

15-329

To avoid the nested for loops, express the equalities using standard MATLAB® operators. Create the
array of departing quantities by summing over the arrival airport indices. Squeeze the result to
remove the singleton dimension.

departing = squeeze(sum(quantities,2));

Calculate the weights of the departing quantities.

departweights = departing * weights';

Similarly, calculate the weights of arriving quantities.

arriving = squeeze(sum(quantities,1));
arriveweights = arriving*weights';

Create the constraints that the departing weights equal the arriving weights.

eq2 = departweights == arriveweights;

Include the appropriate index names for the equalities by setting the IndexNames property.

eq2.IndexNames = {airports,{}};

Display the new equalities. Note that they match the previous equalities, but are transposed vectors.

show(eq2)

('LAX', 1)

 -quantities('JFK', 'LAX', 'Electronics')
- quantities('ORD', 'LAX', 'Electronics')
+ quantities('LAX', 'JFK', 'Electronics')
+ quantities('LAX', 'ORD', 'Electronics')
- 20*quantities('JFK', 'LAX', 'Foodstuffs')
- 20*quantities('ORD', 'LAX', 'Foodstuffs')
+ 20*quantities('LAX', 'JFK', 'Foodstuffs')
+ 20*quantities('LAX', 'ORD', 'Foodstuffs')
- 5*quantities('JFK', 'LAX', 'Clothing')
- 5*quantities('ORD', 'LAX', 'Clothing')
+ 5*quantities('LAX', 'JFK', 'Clothing')
+ 5*quantities('LAX', 'ORD', 'Clothing')
- 100*quantities('JFK', 'LAX', 'Raw Materials')
- 100*quantities('ORD', 'LAX', 'Raw Materials')
+ 100*quantities('LAX', 'JFK', 'Raw Materials')
+ 100*quantities('LAX', 'ORD', 'Raw Materials') == 0

('JFK', 1)

 quantities('JFK', 'LAX', 'Electronics')
- quantities('LAX', 'JFK', 'Electronics')
- quantities('ORD', 'JFK', 'Electronics')
+ quantities('JFK', 'ORD', 'Electronics')
+ 20*quantities('JFK', 'LAX', 'Foodstuffs')
- 20*quantities('LAX', 'JFK', 'Foodstuffs')
- 20*quantities('ORD', 'JFK', 'Foodstuffs')
+ 20*quantities('JFK', 'ORD', 'Foodstuffs')
+ 5*quantities('JFK', 'LAX', 'Clothing')
- 5*quantities('LAX', 'JFK', 'Clothing')
- 5*quantities('ORD', 'JFK', 'Clothing')

15 Functions

15-330

+ 5*quantities('JFK', 'ORD', 'Clothing')
+ 100*quantities('JFK', 'LAX', 'Raw Materials')
- 100*quantities('LAX', 'JFK', 'Raw Materials')
- 100*quantities('ORD', 'JFK', 'Raw Materials')
+ 100*quantities('JFK', 'ORD', 'Raw Materials') == 0

('ORD', 1)

 quantities('ORD', 'LAX', 'Electronics')
+ quantities('ORD', 'JFK', 'Electronics')
- quantities('LAX', 'ORD', 'Electronics')
- quantities('JFK', 'ORD', 'Electronics')
+ 20*quantities('ORD', 'LAX', 'Foodstuffs')
+ 20*quantities('ORD', 'JFK', 'Foodstuffs')
- 20*quantities('LAX', 'ORD', 'Foodstuffs')
- 20*quantities('JFK', 'ORD', 'Foodstuffs')
+ 5*quantities('ORD', 'LAX', 'Clothing')
+ 5*quantities('ORD', 'JFK', 'Clothing')
- 5*quantities('LAX', 'ORD', 'Clothing')
- 5*quantities('JFK', 'ORD', 'Clothing')
+ 100*quantities('ORD', 'LAX', 'Raw Materials')
+ 100*quantities('ORD', 'JFK', 'Raw Materials')
- 100*quantities('LAX', 'ORD', 'Raw Materials')
- 100*quantities('JFK', 'ORD', 'Raw Materials') == 0

Creating constraints in a loop can be more time consuming than creating constraints by using matrix
operations.

Input Arguments
N — Size of constraint dimension
positive integer

Size of the constraint dimension, specified as a positive integer.

• The size of constr = optimeq(N) is N-by-1.
• The size of constr = optimeq(N1,N2) is N1-by-N2.
• The size of constr = optimeq(N1,N2,...,Nk) is N1-by-N2-by-...-by-Nk.

Example: 5
Data Types: double

cstr — Names for indexing
cell array of character vectors | string vector

Names for indexing, specified as a cell array of character vectors or a string vector.
Example: {'red','orange','green','blue'}
Example: ["red";"orange";"green";"blue"]
Data Types: string | cell

 optimeq

15-331

Output Arguments
eq — Equalities
empty OptimizationEquality array

Equalities, returned as an empty OptimizationEquality array. Use eq to initialize a loop that
creates equalities.

For example:

x = optimvar('x',8);
eq = optimeq(4);
for k = 1:4
 eq(k) = 5*k*(x(2*k) - x(2*k-1)) == 10 - 2*k;
end

Tips
• You can use optimconstr instead of optimeq to create equality constraints for optimization

problems or equations for equation problems.

See Also
optimconstr | OptimizationEquality | optimineq

Topics
“Problem-Based Optimization Setup”
“Problem-Based Optimization Workflow” on page 9-2

Introduced in R2019b

15 Functions

15-332

optimexpr
Create empty optimization expression array

Syntax
expr = optimexpr(n)
expr = optimexpr(cstr)
expr = optimexpr(cstr1,n2,...,cstrk)
expr = optimexpr([n1,n2,...,nk])
expr = optimexpr({cstr1,cstr2,...,cstrk})

Description
Use optimexpr to initialize a set of optimization expressions.

Tip For the full workflow, see “Problem-Based Optimization Workflow” on page 9-2 or “Problem-
Based Workflow for Solving Equations” on page 9-4.

expr = optimexpr(n) creates an empty n-by-1 OptimizationExpression array. Use expr as
the initial value in a loop that creates optimization expressions.

expr = optimexpr(cstr) creates an empty OptimizationExpression array that can use the
vector cstr for indexing. The number of elements of expr is the same as the length of cstr. When
cstr is a row vector, then expr is a row vector. When cstr is a column vector, then expr is a
column vector.

expr = optimexpr(cstr1,n2,...,cstrk) or expr = optimexpr([n1,n2,...,nk])or expr
= optimexpr({cstr1,cstr2,...,cstrk}), for any combination of positive integers nj and
names cstrj, creates an empty array of optimization expressions with dimensions equal to the
integers nj or the lengths of the entries of cstrj.

Examples

Create Optimization Expression Array

Create an empty array of three optimization expressions.

expr = optimexpr(3)

expr =
 3x1 OptimizationExpression array with properties:

 IndexNames: {{} {}}
 Variables: [1x1 struct] containing 0 OptimizationVariables

 See expression formulation with show.

 optimexpr

15-333

Create Optimization Expressions Indexed by Strings

Create a string array of color names, and an optimization expression that is indexed by the color
names.

strexp = ["red","green","blue","yellow"];
expr = optimexpr(strexp)

expr =
 1x4 OptimizationExpression array with properties:

 IndexNames: {{} {1x4 cell}}
 Variables: [1x1 struct] containing 0 OptimizationVariables

 See expression formulation with show.

You can use a cell array of character vectors instead of strings to get the same effect.

strexp = {'red','green','blue','yellow'};
expr = optimexpr(strexp)

expr =
 1x4 OptimizationExpression array with properties:

 IndexNames: {{} {1x4 cell}}
 Variables: [1x1 struct] containing 0 OptimizationVariables

 See expression formulation with show.

If strexp is 4-by-1 instead of 1-by-4, then expr is also 4-by-1:

strexp = ["red";"green";"blue";"yellow"];
expr = optimexpr(strexp)

expr =
 4x1 OptimizationExpression array with properties:

 IndexNames: {{1x4 cell} {}}
 Variables: [1x1 struct] containing 0 OptimizationVariables

 See expression formulation with show.

Create Multidimensional Optimization Expressions

Create an empty 3-by-4-by-2 array of optimization expressions.

expr = optimexpr(3,4,2)

expr =
 3x4x2 OptimizationExpression array with properties:

15 Functions

15-334

 IndexNames: {{} {} {}}
 Variables: [1x1 struct] containing 0 OptimizationVariables

 See expression formulation with show.

Create a 3-by-4 array of optimization expressions, where the first dimension is indexed by the strings
"brass", "stainless", and "galvanized", and the second dimension is numerically indexed.

bnames = ["brass","stainless","galvanized"];
expr = optimexpr(bnames,4)

expr =
 3x4 OptimizationExpression array with properties:

 IndexNames: {{1x3 cell} {}}
 Variables: [1x1 struct] containing 0 OptimizationVariables

 See expression formulation with show.

Create an expression using a named index indicating that each stainless expression is 1.5 times
the corresponding x(galvanized) value.

x = optimvar('x',bnames,4);
expr('stainless',:) = x('galvanized',:)*1.5;
show(expr('stainless',:))

('stainless', 1)

 1.5*x('galvanized', 1)

('stainless', 2)

 1.5*x('galvanized', 2)

('stainless', 3)

 1.5*x('galvanized', 3)

('stainless', 4)

 1.5*x('galvanized', 4)

Input Arguments
n — Variable dimension
positive integer

Variable dimension, specified as a positive integer.
Example: 4
Data Types: double

cstr — Index names
string array | cell array of character vectors

 optimexpr

15-335

Index names, specified as a string array or as a cell array of character vectors.
Example: expr = optimexpr(["Warehouse","Truck","City"])
Example: expr = optimexpr({'Warehouse','Truck','City'})
Data Types: string | cell

Output Arguments
expr — Optimization expression
OptimizationExpression object

Optimization expression, returned as an OptimizationExpression object.

Tips
• You can use optimexpr to create empty expressions that you fill programmatically, such as in a

for loop.

x = optimvar('x',8);
expr = optimexpr(4)
for k = 1:4
 expr(k) = 5*k*(x(2*k) - x(2*k-1));
end

• It is generally more efficient to create expressions by vectorized statements rather than loops. See
“Create Efficient Optimization Problems” on page 9-28.

See Also
OptimizationExpression | optimconstr | show | write

Topics
“Problem-Based Optimization Setup”
“Problem-Based Optimization Workflow” on page 9-2

Introduced in R2017b

15 Functions

15-336

optimineq
Create empty optimization inequality array

Syntax
constr = optimineq(N)
constr = optimineq(cstr)
constr = optimineq(cstr1,N2,...,cstrk)
constr = optimineq({cstr1,cstr2,...,cstrk})
constr = optimineq([N1,N2,...,Nk])

Description
Use optimineq to initialize a set of inequality expressions.

Tip For the full workflow, see “Problem-Based Optimization Workflow” on page 9-2.

constr = optimineq(N) creates an N-by-1 array of empty optimization inequalities. Use constr
to initialize a loop that creates inequality expressions.

constr = optimineq(cstr) creates an array of empty optimization constraints that are indexed
by cstr, a cell array of character vectors or string vectors.

If cstr is 1-by-ncstr, where ncstr is the number of elements of cstr, then constr is also 1-by-
ncstr. Otherwise, constr is ncstr-by-1.

constr = optimineq(cstr1,N2,...,cstrk) or constr = optimineq({cstr1,cstr2,...,
cstrk}) or constr = optimineq([N1,N2,...,Nk]), for any combination of cstr and N
arguments, creates an ncstr1-by-N2-by-...-by-ncstrk array of empty optimization inequalities, where
ncstr is the number of elements in cstr.

Examples

Create Inequalities in Loop

Create the constraint that a two-element variable x must lie in the intersections of a number of disks
whose centers and radii are in the arrays centers and radii.

x = optimvar('x',1,2);
centers = [1 -2;3 -4;-2 3];
radii = [6 7 8];
constr = optimineq(length(radii));
for i = 1:length(constr)
 constr(i) = sum((x - centers(i,:)).^2) <= radii(i)^2;
end

View the inequality expressions.

 optimineq

15-337

show(constr)

 arg_LHS <= arg_RHS

 where:

 arg1 = zeros(3, 1);
 arg1(1) = sum((x - extraParams{1}).^2);
 arg1(2) = sum((x - extraParams{2}).^2);
 arg1(3) = sum((x - extraParams{3}).^2);
 arg_LHS = arg1(:);
 arg1 = zeros(3, 1);
 arg1(1) = 36;
 arg1(2) = 49;
 arg1(3) = 64;
 arg_RHS = arg1(:);

 extraParams{1}:

 1 -2

 extraParams{2}:

 3 -4

 extraParams{3}:

 -2 3

Instead of using a loop, you can create the same constraints by using matrix operations on the
variables.

constr2 = sum(([x;x;x] - centers).^2,2) <= radii'.^2;

Creating inequalities in a loop can be more time consuming than creating inequalities by using matrix
operations.

Create Indexed Inequalities in Loop

Create indexed inequalities and variables to represent the calories consumed in a diet. Each meal has
a different calorie limit. Create arrays representing the meals, foods, and calories for each food.

meals = ["breakfast","lunch","dinner"];
foods = ["cereal","oatmeal","yogurt","peanut butter sandwich","pizza","hamburger",...
 "salad","steak","casserole","ice cream"];
calories = [200,175,150,450,350,800,150,650,350,300]';

Create optimization variables representing the foods for each meal, indexed by food names and meal
names.

diet = optimvar('diet',foods,meals,'LowerBound',0);

Set the inequality constraints that each meal has an upper bound on the calories in the meal.

constr = optimineq(meals);
for i = 1:3

15 Functions

15-338

 constr(i) = diet(:,i)'*calories <= 250*i;
end

View the inequalities for dinner.

show(constr("dinner"))

 200*diet('cereal', 'dinner') + 175*diet('oatmeal', 'dinner')
+ 150*diet('yogurt', 'dinner')
+ 450*diet('peanut butter sandwich', 'dinner') + 350*diet('pizza', 'dinner')
+ 800*diet('hamburger', 'dinner') + 150*diet('salad', 'dinner')
+ 650*diet('steak', 'dinner') + 350*diet('casserole', 'dinner')
+ 300*diet('ice cream', 'dinner') <= 750

Instead of using a loop, you can create the same inequalities by using matrix operations on the
variables.

constr2 = diet'*calories <= 250*(1:3)';

Include the appropriate index names for the inequalities by setting the IndexNames property.

constr2.IndexNames = {meals, {}};

Display the new inequalities for dinner. Note that they are the same as the previous inequalities.

show(constr2("dinner"))

 200*diet('cereal', 'dinner') + 175*diet('oatmeal', 'dinner')
+ 150*diet('yogurt', 'dinner')
+ 450*diet('peanut butter sandwich', 'dinner') + 350*diet('pizza', 'dinner')
+ 800*diet('hamburger', 'dinner') + 150*diet('salad', 'dinner')
+ 650*diet('steak', 'dinner') + 350*diet('casserole', 'dinner')
+ 300*diet('ice cream', 'dinner') <= 750

Creating inequalities in a loop can be more time consuming than creating inequalities by using matrix
operations.

Input Arguments
N — Size of constraint dimension
positive integer

Size of the constraint dimension, specified as a positive integer.

• The size of constr = optimineq(N) is N-by-1.
• The size of constr = optimineq(N1,N2) is N1-by-N2.
• The size of constr = optimineq(N1,N2,...,Nk) is N1-by-N2-by-...-by-Nk.

Example: 5
Data Types: double

cstr — Names for indexing
cell array of character vectors | string vector

Names for indexing, specified as a cell array of character vectors or a string vector.

 optimineq

15-339

Example: {'red','orange','green','blue'}
Example: ["red";"orange";"green";"blue"]
Data Types: string | cell

Output Arguments
constr — Constraints
empty OptimizationInequality array

Constraints, returned as an empty OptimizationInequality array. Use constr to initialize a loop
that creates constraint expressions.

For example,

x = optimvar('x',8);
constr = optimineq(4);
for k = 1:4
 constr(k) = 5*k*(x(2*k) - x(2*k-1)) <= 10 - 2*k;
end

Tips
• It is generally more efficient to create constraints by vectorized expressions rather than loops. See

“Create Efficient Optimization Problems” on page 9-28.
• You can use optimconstr instead of optimineq to create inequality constraints for optimization

problems.

See Also
optimconstr | OptimizationInequality | optimeq

Topics
“Problem-Based Optimization Setup”
“Problem-Based Optimization Workflow” on page 9-2

Introduced in R2019b

15 Functions

15-340

OptimizationConstraint
Optimization constraints

Description
An OptimizationConstraint object contains constraints in terms of OptimizationVariable
objects or OptimizationExpression objects. Each constraint uses one of these comparison
operators: ==, <=, or >=.

A single statement can represent an array of constraints. For example, you can express the
constraints that each row of a matrix variable x sums to one, as shown in “Create Simple Constraints
in Loop” on page 15-342.

Tip For the full workflow, see “Problem-Based Optimization Workflow” on page 9-2 or “Problem-
Based Workflow for Solving Equations” on page 9-4.

Creation
Create an empty constraint object using optimconstr. Typically, you use a loop to fill the
expressions in the object.

If you create an optimization expressions from optimization variables using a comparison operators
==, <=, or >=, then the resulting object is either an OptimizationEquality or an
OptimizationInequality. See “Compatibility Considerations” on page 15-343.

Include constraints in the Constraints property of an optimization problem by using dot notation.

prob = optimproblem;
x = optimvar('x',5,3);
rowsum = optimconstr(5);
for i = 1:5
 rowsum(i) = sum(x(i,:)) == i;
end
prob.Constraints.rowsum = rowsum;

Properties
IndexNames — Index names
'' (default) | cell array of strings | cell array of character vectors

Index names, specified as a cell array of strings or character vectors. For information on using index
names, see “Named Index for Optimization Variables” on page 9-20.
Data Types: cell

Variables — Optimization variables in object
structure of OptimizationVariable objects

This property is read-only.

 OptimizationConstraint

15-341

Optimization variables in the object, specified as a structure of OptimizationVariable objects.
Data Types: struct

Object Functions
infeasibility Constraint violation at a point
show Display information about optimization object
write Save optimization object description

Examples

Create Simple Constraints in Loop

Create a 5-by-3 optimization variable x.

x = optimvar('x',5,3);

Create the constraint that each row sums to one by using a loop. Initialize the loop using
optimconstr.

rowsum = optimconstr(5);
for i = 1:5
 rowsum(i) = sum(x(i,:)) == 1;
end

Inspect the rowsum object.

rowsum

rowsum =
 5x1 Linear OptimizationConstraint array with properties:

 IndexNames: {{} {}}
 Variables: [1x1 struct] containing 1 OptimizationVariable

 See constraint formulation with show.

Show the constraints in rowsum.

show(rowsum)

(1, 1)

 x(1, 1) + x(1, 2) + x(1, 3) == 1

(2, 1)

 x(2, 1) + x(2, 2) + x(2, 3) == 1

(3, 1)

 x(3, 1) + x(3, 2) + x(3, 3) == 1

(4, 1)

15 Functions

15-342

 x(4, 1) + x(4, 2) + x(4, 3) == 1

(5, 1)

 x(5, 1) + x(5, 2) + x(5, 3) == 1

Compatibility Considerations
OptimizationConstraint split into OptimizationEquality and OptimizationInequality
Behavior changed in R2019b

When you use a comparison operator <=, >=, or == on an optimization expression, the result is no
longer an OptimizationConstraint object. Instead, the equality comparison == returns an
OptimizationEquality object, and an inequality comparison <= or >= returns an
OptimizationInequality object. You can use these new objects for defining constraints in an
OptimizationProblem object, exactly as you would previously for OptimizationConstraint
objects. Furthermore, you can use OptimizationEquality objects to define equations for an
EquationProblem object.

The new objects make it easier to distinguish between expressions that are suitable for an
EquationProblem and those that are suitable only for an OptimizationProblem. You can use
existing OptimizationConstraint objects that represent equality constraints in an
EquationProblem object. Furthermore, when you use an OptimizationEquality or an
OptimizationInequality as a constraint in an OptimizationProblem, the software converts
the constraint to an OptimizationConstraint object.

See Also
infeasibility | optimconstr | OptimizationExpression | OptimizationProblem |
OptimizationVariable | OptimizationInequality | OptimizationEquality | show | write

Topics
“Problem-Based Optimization Setup”
“Problem-Based Optimization Workflow” on page 9-2

Introduced in R2017b

 OptimizationConstraint

15-343

OptimizationEquality
Equalities and equality constraints

Description
An OptimizationEquality object contains equalities and equality constraints in terms of
OptimizationVariable objects or OptimizationExpression objects. Each equality uses the
comparison operator ==.

A single statement can represent an array of equalities. For example, you can express the equalities
that each row of a matrix variable x sums to one in this single statement:

constrsum = sum(x,2) == 1

Use OptimizationEquality objects as constraints in an OptimizationProblem, or as equations
in an EquationProblem.

Tip For the full workflow, see “Problem-Based Optimization Workflow” on page 9-2 or “Problem-
Based Workflow for Solving Equations” on page 9-4.

Creation
Create equalities using optimization expressions with the comparison operator ==.

Include equalities in the Constraints property of an optimization problem, or the Equations
property of an equation problem, by using dot notation.

prob = optimproblem;
x = optimvar('x',4,6);
SumToOne = sum(x,2) == 1;
prob.Constraints.SumToOne = SumToOne;
% Or for an equation problem:
eqprob = eqnproblem;
eqprob.Equations.SumToOne = SumToOne;

You can also create an empty optimization equality by using optimeq or optimconstr. Typically,
you then set the equalities in a loop. For an example, see “Create Equalities in Loop” on page 15-346.
However, for the most efficient problem formulation, avoid setting equalities in loops. See “Create
Efficient Optimization Problems” on page 9-28.

Properties
IndexNames — Index names
'' (default) | cell array of strings | cell array of character vectors

Index names, specified as a cell array of strings or character vectors. For information on using index
names, see “Named Index for Optimization Variables” on page 9-20.
Data Types: cell

15 Functions

15-344

Variables — Optimization variables in object
structure of OptimizationVariable objects

This property is read-only.

Optimization variables in the object, specified as a structure of OptimizationVariable objects.
Data Types: struct

Object Functions
infeasibility Constraint violation at a point
show Display information about optimization object
write Save optimization object description

Examples

Create OptimizationEquality Array

Create a 4-by-6 optimization variable matrix named x.

x = optimvar('x',4,6);

Create the equalities that each row of x sums to one.

constrsum = sum(x,2) == 1

constrsum =
 4x1 Linear OptimizationEquality array with properties:

 IndexNames: {{} {}}
 Variables: [1x1 struct] containing 1 OptimizationVariable

 See equality formulation with show.

View the equalities.

show(constrsum)

(1, 1)

 x(1, 1) + x(1, 2) + x(1, 3) + x(1, 4) + x(1, 5) + x(1, 6) == 1

(2, 1)

 x(2, 1) + x(2, 2) + x(2, 3) + x(2, 4) + x(2, 5) + x(2, 6) == 1

(3, 1)

 x(3, 1) + x(3, 2) + x(3, 3) + x(3, 4) + x(3, 5) + x(3, 6) == 1

(4, 1)

 x(4, 1) + x(4, 2) + x(4, 3) + x(4, 4) + x(4, 5) + x(4, 6) == 1

 OptimizationEquality

15-345

To include the equalities in an optimization problem, set a Constraints property to constrsum by
using dot notation.

prob = optimproblem;
prob.Constraints.constrsum = constrsum

prob =
 OptimizationProblem with properties:

 Description: ''
 ObjectiveSense: 'minimize'
 Variables: [1x1 struct] containing 1 OptimizationVariable
 Objective: [0x0 OptimizationExpression]
 Constraints: [1x1 struct] containing 1 OptimizationConstraint

 See problem formulation with show.

Similarly, to include the equalities in an equation problem, set a Constraints property to
constrsum by using dot notation.

eqnprob = eqnproblem;
eqnprob.Equations.constrsum = constrsum

eqnprob =
 EquationProblem with properties:

 Description: ''
 Variables: [1x1 struct] containing 1 OptimizationVariable
 Equations: [1x1 struct] containing 1 OptimizationEquality

 See problem formulation with show.

Create Equalities in Loop

Create an empty OptimizationEquality object.

eq1 = optimeq;

Create a 5-by-5 optimization variable array named x.

x = optimvar('x',5,5);

Create the equalities that row i of x sums to i2.

for i = 1:size(x,1)
 eq1(i) = sum(x(i,:)) == i^2;
end

View the resulting equalities.

show(eq1)

(1, 1)

15 Functions

15-346

 x(1, 1) + x(1, 2) + x(1, 3) + x(1, 4) + x(1, 5) == 1

(1, 2)

 x(2, 1) + x(2, 2) + x(2, 3) + x(2, 4) + x(2, 5) == 4

(1, 3)

 x(3, 1) + x(3, 2) + x(3, 3) + x(3, 4) + x(3, 5) == 9

(1, 4)

 x(4, 1) + x(4, 2) + x(4, 3) + x(4, 4) + x(4, 5) == 16

(1, 5)

 x(5, 1) + x(5, 2) + x(5, 3) + x(5, 4) + x(5, 5) == 25

To use eq1 as a constraint in an optimization problem, set eq1 as a Constraints property by using
dot notation.

prob = optimproblem;
prob.Constraints.eq1 = eq1;

Similarly, to use eq1 as a set of equations in an equation problem, set eq1 as an Equations property
by using dot notation.

eqprob = eqnproblem;
eqprob.Equations.eq1 = eq1;

See Also
EquationProblem | eqnproblem | infeasibility | optimconstr | optimeq |
OptimizationExpression | OptimizationProblem | OptimizationVariable |
OptimizationConstraint | OptimizationInequality | show | write

Topics
“Problem-Based Optimization Setup”
“Problem-Based Optimization Workflow” on page 9-2

Introduced in R2019b

 OptimizationEquality

15-347

OptimizationExpression
Arithmetic or functional expression in terms of optimization variables

Description
An OptimizationExpression is an arithmetic or functional expression in terms of optimization
variables. Use an OptimizationExpression as an objective function, or as a part of an inequality
or equality in a constraint or equation.

Tip For the full workflow, see “Problem-Based Optimization Workflow” on page 9-2 or “Problem-
Based Workflow for Solving Equations” on page 9-4.

Creation
Create an optimization expression by performing operations on OptimizationVariable objects.
Use standard MATLAB arithmetic including taking powers, indexing, and concatenation of
optimization variables to create expressions. See “Supported Operations for Optimization Variables
and Expressions” on page 9-43 and “Examples” on page 15-0 .

You can also create an optimization expression from a MATLAB function applied to optimization
variables by using fcn2optimexpr. For examples, see “Create Expression from Nonlinear Function”
on page 15-351 and “Problem-Based Nonlinear Optimization”.

Create an empty optimization expression by using optimexpr. Typically, you then fill the expression
in a loop. For examples, see “Create Optimization Expression by Looping” on page 15-350 and the
optimexpr function reference page.

After you create an expression, use it as either an objective function, or as part of a constraint or
equation. For examples, see the solve function reference page.

Properties
IndexNames — Index names
'' (default) | cell array of strings | cell array of character vectors

Index names, specified as a cell array of strings or character vectors. For information on using index
names, see “Named Index for Optimization Variables” on page 9-20.
Data Types: cell

Variables — Optimization variables in object
structure of OptimizationVariable objects

This property is read-only.

Optimization variables in the object, specified as a structure of OptimizationVariable objects.
Data Types: struct

15 Functions

15-348

Object Functions
evaluate Evaluate optimization expression
show Display information about optimization object
write Save optimization object description

Examples

Create Optimization Expressions by Arithmetic Operations

Create optimization expressions by arithmetic operations on optimization variables.

x = optimvar('x',3,2);
expr = sum(sum(x))

expr =
 Linear OptimizationExpression

 x(1, 1) + x(2, 1) + x(3, 1) + x(1, 2) + x(2, 2) + x(3, 2)

f = [2,10,4];
w = f*x;
show(w)

(1, 1)

 2*x(1, 1) + 10*x(2, 1) + 4*x(3, 1)

(1, 2)

 2*x(1, 2) + 10*x(2, 2) + 4*x(3, 2)

Create Optimization Expressions by Index and Array Operations

Create an optimization expression by transposing an optimization variable.

x = optimvar('x',3,2);
y = x'

y =
 2x3 Linear OptimizationExpression array with properties:

 IndexNames: {{} {}}
 Variables: [1x1 struct] containing 1 OptimizationVariable

 See expression formulation with show.

Simply indexing into an optimization array does not create an expression, but instead creates an
optimization variable that references the original variable. To see this, create a variable w that is the
first and third row of x. Note that w is an optimization variable, not an optimization expression.

w = x([1,3],:)

 OptimizationExpression

15-349

w =
 2x2 OptimizationVariable array with properties:

 Read-only array-wide properties:
 Name: 'x'
 Type: 'continuous'
 IndexNames: {{} {}}

 Elementwise properties:
 LowerBound: [2x2 double]
 UpperBound: [2x2 double]

 Reference to a subset of OptimizationVariable with Name 'x'.

 See variables with show.
 See bounds with showbounds.

Create an optimization expression by concatenating optimization variables.

y = optimvar('y',4,3);
z = optimvar('z',4,7);
f = [y,z]

f =
 4x10 Linear OptimizationExpression array with properties:

 IndexNames: {{} {}}
 Variables: [1x1 struct] containing 2 OptimizationVariables

 See expression formulation with show.

Create Optimization Expression by Looping

Use optimexpr to create an empty expression, then fill the expression in a loop.

y = optimvar('y',6,4);
expr = optimexpr(3,2);
for i = 1:3
 for j = 1:2
 expr(i,j) = y(2*i,j) - y(i,2*j);
 end
end
show(expr)

(1, 1)

 y(2, 1) - y(1, 2)

(2, 1)

 y(4, 1) - y(2, 2)

(3, 1)

15 Functions

15-350

 y(6, 1) - y(3, 2)

(1, 2)

 y(2, 2) - y(1, 4)

(2, 2)

 y(4, 2) - y(2, 4)

(3, 2)

 y(6, 2) - y(3, 4)

Create Expression from Nonlinear Function

Create an optimization expression corresponding to the objective function

f (x) = x2/10 + exp(− exp(− x)) .

x = optimvar('x');
f = x^2/10 + exp(-exp(-x))

f =
 Nonlinear OptimizationExpression

 ((x.^2 ./ 10) + exp((-exp((-x)))))

Find the point that minimizes fun starting from the point x0 = 0.

x0 = struct('x',0);
prob = optimproblem('Objective',f);
[sol,fval] = solve(prob,x0)

Solving problem using fminunc.

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

sol = struct with fields:
 x: -0.9595

fval = 0.1656

If f were not a supported function, you would convert it using fcn2optimexpr. See “Supported
Operations for Optimization Variables and Expressions” on page 9-43 and “Convert Nonlinear
Function to Optimization Expression” on page 6-8.

f = @(x)x^2/10 + exp(-exp(-x));
fun = fcn2optimexpr(f,x)

fun =
 Nonlinear OptimizationExpression

 OptimizationExpression

15-351

 ((x.^2 ./ 10) + exp((-exp((-x)))))

prob = optimproblem('Objective',fun);
[sol,fval] = solve(prob,x0)

Solving problem using fminunc.

Local minimum found.

Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.

sol = struct with fields:
 x: -0.9595

fval = 0.1656

Copyright 2018–2020 The MathWorks, Inc.

Evaluate Optimization Expression At Point

Create an optimization expression in two variables.

x = optimvar('x',3,2);
y = optimvar('y',1,2);
expr = sum(x,1) - 2*y;

Evaluate the expression at a point.

xmat = [3,-1;
 0,1;
 2,6];
sol.x = xmat;
sol.y = [4,-3];
val = evaluate(expr,sol)

val = 1×2

 -3 12

More About
Arithmetic Operations

For the list of supported operations on optimization expressions, see “Supported Operations for
Optimization Variables and Expressions” on page 9-43.

See Also
fcn2optimexpr | evaluate | optimexpr | OptimizationVariable | show | solve | write

15 Functions

15-352

Topics
“Problem-Based Optimization Setup”
“Problem-Based Optimization Workflow” on page 9-2
“Optimization Expressions” on page 9-6

Introduced in R2017b

 OptimizationExpression

15-353

OptimizationInequality
Inequality constraints

Description
An OptimizationInequality object contains an inequality constraint in terms of
OptimizationVariable objects or OptimizationExpression objects. An inequality constraint
uses the comparison operator <= or >=.

A single statement can represent an array of inequalities. For example, you can express the
inequalities that each row of a matrix variable x sums to no more than one in this single statement:

constrsum = sum(x,2) <= 1

Use OptimizationInequality objects as constraints in an OptimizationProblem.

Tip For the full workflow, see “Problem-Based Optimization Workflow” on page 9-2.

Creation
Create an inequality using optimization expressions with the comparison operator <= or >=.

Include inequalities in the Constraints property of an optimization problem by using dot notation.

prob = optimproblem;
x = optimvar('x',4,6);
SumLessThanOne = sum(x,2) <= 1;
prob.Constraints.SumLessThanOne = SumLessThanOne;

You can also create an empty optimization inequality by using optimineq or optimconstr.
Typically, you then set the inequalities in a loop. For an example, see “Create Inequalities in Loop” on
page 15-356. However, for the most efficient problem formulation, avoid setting inequalities in loops.
See “Create Efficient Optimization Problems” on page 9-28.

Properties
IndexNames — Index names
'' (default) | cell array of strings | cell array of character vectors

Index names, specified as a cell array of strings or character vectors. For information on using index
names, see “Named Index for Optimization Variables” on page 9-20.
Data Types: cell

Variables — Optimization variables in object
structure of OptimizationVariable objects

This property is read-only.

15 Functions

15-354

Optimization variables in the object, specified as a structure of OptimizationVariable objects.
Data Types: struct

Object Functions
infeasibility Constraint violation at a point
show Display information about optimization object
write Save optimization object description

Examples

Create OptimizationInequality Array

Create a 4-by-6 optimization variable matrix named x.

x = optimvar('x',4,6);

Create the inequalities that each row of x sums to no more than one.

constrsum = sum(x,2) <= 1

constrsum =
 4x1 Linear OptimizationInequality array with properties:

 IndexNames: {{} {}}
 Variables: [1x1 struct] containing 1 OptimizationVariable

 See inequality formulation with show.

View the inequalities.

show(constrsum)

(1, 1)

 x(1, 1) + x(1, 2) + x(1, 3) + x(1, 4) + x(1, 5) + x(1, 6) <= 1

(2, 1)

 x(2, 1) + x(2, 2) + x(2, 3) + x(2, 4) + x(2, 5) + x(2, 6) <= 1

(3, 1)

 x(3, 1) + x(3, 2) + x(3, 3) + x(3, 4) + x(3, 5) + x(3, 6) <= 1

(4, 1)

 x(4, 1) + x(4, 2) + x(4, 3) + x(4, 4) + x(4, 5) + x(4, 6) <= 1

To include the inequalities in an optimization problem, set a Constraints property to constrsum
by using dot notation.

prob = optimproblem;
prob.Constraints.constrsum = constrsum

 OptimizationInequality

15-355

prob =
 OptimizationProblem with properties:

 Description: ''
 ObjectiveSense: 'minimize'
 Variables: [1x1 struct] containing 1 OptimizationVariable
 Objective: [0x0 OptimizationExpression]
 Constraints: [1x1 struct] containing 1 OptimizationConstraint

 See problem formulation with show.

Create Inequalities in Loop

Create the constraint that a two-element variable x must lie in the intersections of a number of disks
whose centers and radii are in the arrays centers and radii.

x = optimvar('x',1,2);
centers = [1 -2;3 -4;-2 3];
radii = [6 7 8];
constr = optimineq(length(radii));
for i = 1:length(constr)
 constr(i) = sum((x - centers(i,:)).^2) <= radii(i)^2;
end

View the inequality expressions.

show(constr)

 arg_LHS <= arg_RHS

 where:

 arg1 = zeros(3, 1);
 arg1(1) = sum((x - extraParams{1}).^2);
 arg1(2) = sum((x - extraParams{2}).^2);
 arg1(3) = sum((x - extraParams{3}).^2);
 arg_LHS = arg1(:);
 arg1 = zeros(3, 1);
 arg1(1) = 36;
 arg1(2) = 49;
 arg1(3) = 64;
 arg_RHS = arg1(:);

 extraParams{1}:

 1 -2

 extraParams{2}:

 3 -4

 extraParams{3}:

 -2 3

15 Functions

15-356

Instead of using a loop, you can create the same constraints by using matrix operations on the
variables.

constr2 = sum(([x;x;x] - centers).^2,2) <= radii'.^2;

Creating inequalities in a loop can be more time consuming than creating inequalities by using matrix
operations.

See Also
infeasibility | optimconstr | optimineq | OptimizationExpression |
OptimizationProblem | OptimizationVariable | OptimizationEquality |
OptimizationConstraint | show | write

Topics
“Problem-Based Optimization Setup”
“Problem-Based Optimization Workflow” on page 9-2

Introduced in R2019b

 OptimizationInequality

15-357

OptimizationProblem
Optimization problem

Description
An OptimizationProblem object describes an optimization problem, including variables for the
optimization, constraints, the objective function, and whether the objective is to be maximized or
minimized. Solve a complete problem using solve.

Tip For the full workflow, see “Problem-Based Optimization Workflow” on page 9-2.

Creation
Create an OptimizationProblem object by using optimproblem.

Warning The problem-based approach does not support complex values in an objective function,
nonlinear equalities, or nonlinear inequalities. If a function calculation has a complex value, even as
an intermediate value, the final result can be incorrect.

Properties
Description — Problem label
'' (default) | string | character vector

Problem label, specified as a string or character vector. The software does not use Description. It
is an arbitrary label that you can use for any reason. For example, you can share, archive, or present
a model or problem, and store descriptive information about the model or problem in the
Description property.
Example: "Describes a traveling salesman problem"
Data Types: char | string

ObjectiveSense — Indication to minimize or maximize
'minimize' (default) | 'min' | 'maximize' | 'max'

Indication to minimize or maximize, specified as 'minimize' or 'maximize'. This property affects
how solve works.

You can use the short name 'min' for 'minimize' or 'max' for 'maximize'.
Example: 'maximize'
Data Types: char | string

Variables — Optimization variables in object
structure of OptimizationVariable objects

15 Functions

15-358

This property is read-only.

Optimization variables in the object, specified as a structure of OptimizationVariable objects.
Data Types: struct

Objective — Objective function
scalar OptimizationExpression | structure containing scalar OptimizationExpression

Objective function, specified as a scalar OptimizationExpression or as a structure containing a
scalar OptimizationExpression. Incorporate an objective function into the problem when you
create the problem, or later by using dot notation.

prob = optimproblem('Objective',5*brownies + 2*cookies)
% or
prob = optimproblem;
prob.Objective = 5*brownies + 2*cookies

Constraints — Optimization constraints
OptimizationConstraint object | OptimizationEquality object | OptimizationInequality
object | structure containing OptimizationConstraint, OptimizationEquality, or
OptimizationInequality objects

Optimization constraints, specified as an OptimizationConstraint object, an
OptimizationEquality object, an OptimizationInequality object, or as a structure containing
one of these objects. Incorporate constraints into the problem when you create the problem, or later
by using dot notation:

constrs = struct('TrayArea',10*brownies + 20*cookies <= traysize,...
 'TrayWeight',12*brownies + 18*cookies <= maxweight);
prob = optimproblem('Constraints',constrs)
% or
prob.Constraints.TrayArea = 10*brownies + 20*cookies <= traysize
prob.Constraints.TrayWeight = 12*brownies + 18*cookies <= maxweight

Remove a constraint by setting it to [].

prob.Constraints.TrayArea = [];

Object Functions
optimoptions Create optimization options
prob2struct Convert optimization problem or equation problem to solver form
show Display information about optimization object
solve Solve optimization problem or equation problem
varindex Map problem variables to solver-based variable index
write Save optimization object description

Examples

Create and Solve Maximization Problem

Create a linear programming problem for maximization. The problem has two positive variables and
three linear inequality constraints.

 OptimizationProblem

15-359

prob = optimproblem('ObjectiveSense','max');

Create positive variables. Include an objective function in the problem.

x = optimvar('x',2,1,'LowerBound',0);
prob.Objective = x(1) + 2*x(2);

Create linear inequality constraints in the problem.

cons1 = x(1) + 5*x(2) <= 100;
cons2 = x(1) + x(2) <= 40;
cons3 = 2*x(1) + x(2)/2 <= 60;
prob.Constraints.cons1 = cons1;
prob.Constraints.cons2 = cons2;
prob.Constraints.cons3 = cons3;

Review the problem.

show(prob)

 OptimizationProblem :

 Solve for:
 x

 maximize :
 x(1) + 2*x(2)

 subject to cons1:
 x(1) + 5*x(2) <= 100

 subject to cons2:
 x(1) + x(2) <= 40

 subject to cons3:
 2*x(1) + 0.5*x(2) <= 60

 variable bounds:
 0 <= x(1)
 0 <= x(2)

Solve the problem.

sol = solve(prob);

Solving problem using linprog.

Optimal solution found.

sol.x

ans = 2×1

 25.0000
 15.0000

15 Functions

15-360

See Also
optimproblem | OptimizationConstraint | OptimizationExpression |
OptimizationVariable | solve | show | write

Topics
“Problem-Based Optimization Setup”
“Problem-Based Optimization Workflow” on page 9-2

Introduced in R2017b

 OptimizationProblem

15-361

OptimizationValues
Values for optimization problems

Description
An OptimizationValues object holds values used by and returned from solve for multiobjective
problems. The object also holds starting values for the x0 argument for solvers that accept multiple
start points.

Creation
The solve function returns a vector of OptimizationValues objects as the solution to a
multiobjective problem.

Create an OptimizationValues object for a start point x0 by using the optimvalues function.

Properties
Typically, OptimizationValues properties are dynamic: they are the names of the optimization
variables, objective function or functions, and constraints.

However, you can also have unnamed objective functions or constraints. For those cases,
OptimizationValues assigns the following properties.

Objective — Objective function values
real array

Objective function values, returned or specified as a real array.
Data Types: double

Constraints — Constraint values
real array

Constraint values, returned or specified as a real array.
Data Types: double

Object Functions
paretoplot Pareto plot of multiobjective values

Examples

OptimizationValues Holds Multiobjective Solution

Create and solve a multiobjective problem using optimization variables.

15 Functions

15-362

x = optimvar("x",LowerBound=-3,UpperBound=3);
prob = optimproblem;
prob.Objective = [x^2;(x-1)^2]; % Tradeoff region between x = 0 and x = 1
prob.Constraints.con1 = x^2 <= 1/2; % Demonstrate constraints
prob.Constraints.con2 = x^2 >= 1/10; % Second constraint
rng default % For reproducibility
[sol,fval,exitflag,output] = solve(prob,Solver="paretosearch")

Solving problem using paretosearch.

Pareto set found that satisfies the constraints.

Optimization completed because the relative change in the volume of the Pareto set
is less than 'options.ParetoSetChangeTolerance' and constraints are satisfied to within
'options.ConstraintTolerance'.

sol =
 1x60 OptimizationValues vector with properties:

 Variables properties:
 x: [0.6366 0.3952 0.6812 0.5353 0.4299 0.6951 0.3813 0.3223 ...]

 Objective properties:
 Objective: [2x60 double]

 Constraints properties:
 con1: [-0.0947 -0.3438 -0.0360 -0.2134 -0.3152 -0.0169 -0.3546 ...]
 con2: [-0.3053 -0.0562 -0.3640 -0.1866 -0.0848 -0.3831 -0.0454 ...]

fval = 2×60

 0.4053 0.1562 0.4640 0.2866 0.1848 0.4831 0.1454 0.1039 0.1295 0.1016 0.1406 0.3329 0.1300 0.3210 0.2673 0.3223 0.1115 0.4253 0.1170 0.4749 0.3164 0.1099 0.4375 0.1814 0.2936 0.4727 0.4395 0.1820 0.2789 0.2261 0.4568 0.1658 0.4862 0.1197 0.1529 0.1086 0.3525 0.1225 0.1057 0.2628 0.2197 0.4902 0.1760 0.3665 0.2411 0.1092 0.4911 0.1914 0.1182 0.3742
 0.1320 0.3658 0.1016 0.2159 0.3250 0.0930 0.3828 0.4593 0.4098 0.4640 0.3906 0.1789 0.4090 0.1879 0.2333 0.1869 0.4436 0.1210 0.4328 0.0966 0.1914 0.4469 0.1146 0.3296 0.2099 0.0977 0.1136 0.3288 0.2227 0.2751 0.1051 0.3514 0.0916 0.4277 0.3708 0.4496 0.1650 0.4224 0.4555 0.2375 0.2822 0.0899 0.3369 0.1557 0.2591 0.4483 0.0895 0.3164 0.4307 0.1508

exitflag =
 SolverConvergedSuccessfully

output = struct with fields:
 iterations: 16
 funccount: 282
 volume: 1.8535
 averagedistance: 0.0089
 spread: 0.2737
 maxconstraint: 0
 message: 'Pareto set found that satisfies the constraints. ...'
 rngstate: [1x1 struct]
 solver: 'paretosearch'

The paretosearch solver converges in 16 iterations to a feasible solution. Plot the solution.

paretoplot(sol)

 OptimizationValues

15-363

Choose an arbitrary point to examine in the plot using Data Tips:

15 Functions

15-364

The pictured point is at index 48. Examine solution 48.

arbitrarysol = sol(48)

arbitrarysol =
 OptimizationValues with properties:

 Variables properties:
 x: 0.4375

 Objective properties:
 Objective: [2x1 double]

 Constraints properties:
 con1: -0.3086
 con2: -0.0914

The constraint values are negative, meaning the pictured point is feasible.

arbitrarysol.Objective

ans = 2×1

 0.1914
 0.3164

The objective values match the values in the Data Tips.

 OptimizationValues

15-365

Limitations
• OptimizationValues objects support horizontal concatenation only. In other words, you can

have only row vectors of OptimizationValues objects.

See Also
optimvalues

Topics
“Specify Start Points for MultiStart, Problem-Based” (Global Optimization Toolbox)
“Pareto Front for Multiobjective Optimization, Problem-Based” (Global Optimization Toolbox)

Introduced in R2022a

15 Functions

15-366

OptimizationVariable
Variable for optimization

Description
An OptimizationVariable object contains variables for optimization expressions. Use expressions
to represent an objective function, constraints, or equations. Variables are symbolic in nature, and
can be arrays of any size.

Tip For the full workflow, see “Problem-Based Optimization Workflow” on page 9-2 or “Problem-
Based Workflow for Solving Equations” on page 9-4.

Creation
Create an OptimizationVariable object using optimvar.

Properties
Array-Wide Properties

Name — Variable name
string | character vector

This property is read-only.

Variable name, specified as a string or character vector.

Name gives the variable label to be displayed, such as in show or write. Name also gives the field
names in the solution structure that solve returns.

Tip To avoid confusion, set name to be the MATLAB variable name. For example,

metal = optimvar('metal')

Data Types: char | string

Type — Variable type
'continuous' (default) | 'integer'

Variable type, specified as 'continuous' or 'integer'.

• 'continuous' – Real values
• 'integer' – Integer values

The variable type applies to all variables in the array. To have multiple variable types, create multiple
variables.

 OptimizationVariable

15-367

Tip To specify a binary variable, use the 'integer' type and specify LowerBound = 0 and
UpperBound = 1.

Data Types: char | string

IndexNames — Index names
'' (default) | cell array of strings | cell array of character vectors

Index names, specified as a cell array of strings or character vectors. For information on using index
names, see “Named Index for Optimization Variables” on page 9-20.
Data Types: cell

Element-wise Properties

LowerBound — Lower bound
-Inf (default) | real scalar | real array

Lower bound, specified as a real scalar or as a real array having the same dimensions as the
OptimizationVariable object. Scalar values apply to all elements of the variable.

The LowerBound property is always displayed as an array. However, you can set the property as a
scalar that applies to all elements. For example,

var.LowerBound = 0

Data Types: double

UpperBound — Upper bound
Inf (default) | real scalar | real array

Upper bound, specified as a real scalar or as a real array having the same dimensions as the
OptimizationVariable object. Scalar values apply to all elements of the variable.

The UpperBound property is always displayed as an array. However, you can set the property as a
scalar that applies to all elements. For example

var.UpperBound = 1

Data Types: double

Object Functions
show Display information about optimization object
showbounds Display variable bounds
write Save optimization object description
writebounds Save description of variable bounds

Examples
Create Scalar Optimization Variable

Create a scalar optimization variable named dollars.

dollars = optimvar('dollars')

15 Functions

15-368

dollars =
 OptimizationVariable with properties:

 Name: 'dollars'
 Type: 'continuous'
 IndexNames: {{} {}}
 LowerBound: -Inf
 UpperBound: Inf

 See variables with show.
 See bounds with showbounds.

Create Optimization Variable Vector

Create a 3-by-1 optimization variable vector named x.

x = optimvar('x',3)

x =
 3x1 OptimizationVariable array with properties:

 Array-wide properties:
 Name: 'x'
 Type: 'continuous'
 IndexNames: {{} {}}

 Elementwise properties:
 LowerBound: [3x1 double]
 UpperBound: [3x1 double]

 See variables with show.
 See bounds with showbounds.

Create Optimization Variables Indexed by Strings

Create an integer optimization variable vector named bolts that is indexed by the strings "brass",
"stainless", and "galvanized". Use the indices of bolts to create an optimization expression,
and experiment with creating bolts using character arrays or in a different orientation.

Create bolts using strings in a row orientation.

bnames = ["brass","stainless","galvanized"];
bolts = optimvar('bolts',bnames,'Type','integer')

bolts =
 1x3 OptimizationVariable array with properties:

 Array-wide properties:
 Name: 'bolts'
 Type: 'integer'
 IndexNames: {{} {1x3 cell}}

 Elementwise properties:
 LowerBound: [-Inf -Inf -Inf]
 UpperBound: [Inf Inf Inf]

 OptimizationVariable

15-369

 See variables with show.
 See bounds with showbounds.

Create an optimization expression using the string indices.

y = bolts("brass") + 2*bolts("stainless") + 4*bolts("galvanized")

y =
 Linear OptimizationExpression

 bolts('brass') + 2*bolts('stainless') + 4*bolts('galvanized')

Use a cell array of character vectors instead of strings to get a variable with the same indices as
before.

bnames = {'brass','stainless','galvanized'};
bolts = optimvar('bolts',bnames,'Type','integer')

bolts =
 1x3 OptimizationVariable array with properties:

 Array-wide properties:
 Name: 'bolts'
 Type: 'integer'
 IndexNames: {{} {1x3 cell}}

 Elementwise properties:
 LowerBound: [-Inf -Inf -Inf]
 UpperBound: [Inf Inf Inf]

 See variables with show.
 See bounds with showbounds.

Use a column-oriented version of bnames, 3-by-1 instead of 1-by-3, and observe that bolts has that
orientation as well.

bnames = ["brass";"stainless";"galvanized"];
bolts = optimvar('bolts',bnames,'Type','integer')

bolts =
 3x1 OptimizationVariable array with properties:

 Array-wide properties:
 Name: 'bolts'
 Type: 'integer'
 IndexNames: {{1x3 cell} {}}

 Elementwise properties:
 LowerBound: [3x1 double]
 UpperBound: [3x1 double]

 See variables with show.
 See bounds with showbounds.

15 Functions

15-370

Create Multidimensional Optimization Variables

Create a 3-by-4-by-2 array of optimization variables named xarray.

xarray = optimvar('xarray',3,4,2)

xarray =
 3x4x2 OptimizationVariable array with properties:

 Array-wide properties:
 Name: 'xarray'
 Type: 'continuous'
 IndexNames: {{} {} {}}

 Elementwise properties:
 LowerBound: [3x4x2 double]
 UpperBound: [3x4x2 double]

 See variables with show.
 See bounds with showbounds.

You can also create multidimensional variables indexed by a mixture of names and numeric indices.
For example, create a 3-by-4 array of optimization variables where the first dimension is indexed by
the strings 'brass', 'stainless', and 'galvanized', and the second dimension is numerically
indexed.

bnames = ["brass","stainless","galvanized"];
bolts = optimvar('bolts',bnames,4)

bolts =
 3x4 OptimizationVariable array with properties:

 Array-wide properties:
 Name: 'bolts'
 Type: 'continuous'
 IndexNames: {{1x3 cell} {}}

 Elementwise properties:
 LowerBound: [3x4 double]
 UpperBound: [3x4 double]

 See variables with show.
 See bounds with showbounds.

Create Binary Optimization Variables

Create an optimization variable named x of size 3-by-3-by-3 that represents binary variables.

x = optimvar('x',3,3,3,'Type','integer','LowerBound',0,'UpperBound',1)

x =
 3x3x3 OptimizationVariable array with properties:

 Array-wide properties:
 Name: 'x'
 Type: 'integer'

 OptimizationVariable

15-371

 IndexNames: {{} {} {}}

 Elementwise properties:
 LowerBound: [3x3x3 double]
 UpperBound: [3x3x3 double]

 See variables with show.
 See bounds with showbounds.

More About
Arithmetic Operations

For the list of supported operations on optimization variables, see “Supported Operations for
Optimization Variables and Expressions” on page 9-43.

Tips
• OptimizationVariable objects have handle copy behavior. See “Handle Object Behavior” and

“Comparison of Handle and Value Classes”. Handle copy behavior means that a copy of an
OptimizationVariable points to the original and does not have an independent existence. For
example, create a variable x, copy it to y, then set a property of y. Note that x takes on the new
property value.

x = optimvar('x','LowerBound',1);
y = x;
y.LowerBound = 0;
showbounds(x)

 0 <= x

See Also
optimvar | OptimizationConstraint | OptimizationExpression | OptimizationProblem |
show | showbounds | write | writebounds

Topics
“Problem-Based Optimization Setup”
“Problem-Based Optimization Workflow” on page 9-2
“Supported Operations for Optimization Variables and Expressions” on page 9-43

Introduced in R2017b

15 Functions

15-372

Optimize
Optimize or solve equations in the Live Editor

Description
The Optimize task lets you choose between two ways to interactively optimize problems or to solve
nonlinear systems of equations:

• Problem-based (recommended) — Create symbolic optimization variables and expressions to
represent the objective function and constraints or equations.

• Solver-based — Represent the objective function and constraints or equations using standard
MATLAB code.

The task automatically generates MATLAB code for your live script.

Using the problem-based version of this task, you can:

• Specify optimization variable arrays, including their bounds and initial values.
• Specify the problem type: minimization, maximization, feasibility, or equation-solving.
• Specify the objective and constraint functions, either by writing expressions or browsing for

functions.
• Optionally, choose a solver, and specify nondefault options..
• Run the optimization.

Using the solver-based version of this task, you can:

• Choose a solver based on the characteristics of your problem. If you have Global Optimization
Toolbox, you can choose to use its solvers as well.

• Specify the objective and constraint functions, either by writing functions or browsing for
functions.

• Specify solver options.
• Run the optimization.

To get started using Optimize, see “Get Started with Solver-Based Optimize Live Editor Task” on
page 1-34 and “Get Started with Problem-Based Optimize Live Editor Task” on page 1-38. For
suggestions on how to use Optimize, see “Use Solver-Based Optimize Live Editor Task Effectively”
on page 1-41 or “Use Problem-Based Optimize Live Editor Task Effectively” on page 9-59. Currently,
you cannot use the fseminf, GlobalSearch, or MultiStart solvers with Optimize.

For general information about Live Editor tasks, see “Add Interactive Tasks to a Live Script”.

 Optimize

15-373

Open the Task
To add the Optimize task to a live script in the MATLAB Editor, on the Live Editor Insert tab, select
Task > Optimize.

Alternatively, in a code block in the script, type a relevant keyword, such as optim or fmincon.
Select Optimize from the suggested command completions.

15 Functions

15-374

Parameters
The problem-based variable names are dynamic; you can choose any names you like subject to the
usual naming restrictions (see “Variable Names”).

Problem-Based

Goal — Problem type
Minimize (default) | Maximize | Feasibility | Solve equations

Problem type, specified by clicking the appropriate labeled button.

Objective — Objective function
optimization expression | local function | function file

Objective function, specified as an optimization expression, a local function, or a function file. Applies
when the Goal is Minimize or Maximize.

Constraints — Constraints on solution
optimization expression | local function | function file

Constraints on solution, specified as an optimization expression, local function, or function file. Add
constraints to the problem by clicking the + button.

Equations — Problem equations
optimization expression | local function | function file

Problem equations, specified as an optimization expression, local function, or function file. Applies
when the Goal is Solve equations. Add equations to the problem by clicking the + button.

Select task mode — State of task
Define problem | Solve problem

State of task, specified as Define problem or Solve problem. For more information, see “Use
Problem-Based Optimize Live Editor Task Effectively” on page 9-59.

Solver-Based

Objective — Objective function type
Linear | Quadratic | Least squares | Nonlinear | Nonsmooth

Objective function type, specified by clicking the appropriate labeled button. The selected objective
function determines which solvers are available and which solver is recommended for the problem
(see Solver).

Constraints — Constraint types
Unconstrained | Lower bounds | Upper bounds | Linear inequality | Linear equality |
Second-order cone | Nonlinear | Integer

 Optimize

15-375

Constraint types, specified by clicking the appropriate labeled buttons. You can specify more than one
constraint type. The selected constraints determine which solvers are available and which solver is
recommended for the problem (see Solver).

Solver — Optimization solver
solver name

Optimization solver that MATLAB uses to solve the problem, specified by selecting a solver from the
list of available solvers. The available solvers and the recommended solver depend on your license
and the selected Objective and Constraints.

Limitations
• Currently, Optimize has the following restrictions for multiobjective optimization.

• You must specify your objective functions using a single function with multiple outputs. In
other words, your objective function must output a vector of values, one entry for each
objective.

• All objective functions must use the same sense, minimization for the solver-based task, and
either minimization or maximization for the problem-based task.

Tips
• For functions with extra inputs, the solver-based and problem-based Optimize tasks have

somewhat different requirements.

• Solver-Based: Choose the optimization variable, and specify which workspace variables
contain the fixed data inputs. For example, see “Place Optimization Variables in One Vector and
Data in Other Variables” on page 1-42, which contains three function inputs:

Optimize generates code only after you specify all function inputs.
• Problem-Based: Specify an optimization variable or workspace variable name for each

function input. If an input argument name in the function signature matches an existing
optimization variable or workspace variable name, Optimize automatically selects that name.

15 Functions

15-376

Optimize generates code only after you specify all function inputs.
• Optimize cannot parse a function containing the varargin input or a function that contains an

error.
• If you select a function from a file, Optimize adds the file location to your MATLAB path.
• If Optimize has a parsing error or if multiple local functions have the same name, the list of

available local functions is empty.

See Also
Functions
fmincon | intlinprog | surrogateopt | patternsearch

Topics
“Get Started with Solver-Based Optimize Live Editor Task” on page 1-34
“Get Started with Problem-Based Optimize Live Editor Task” on page 1-38
“Solve a Constrained Nonlinear Problem, Solver-Based” on page 1-11
“Feasibility Using Problem-Based Optimize Live Editor Task” on page 6-51
“Optimize Live Editor Task with fmincon Solver” on page 5-83
“Optimize Live Editor Task with lsqlin Solver” on page 11-28
“Optimize Using the GPS Algorithm” (Global Optimization Toolbox)
“Minimize Function with Many Local Minima” (Global Optimization Toolbox)
“Pareto Front for Two Objectives” (Global Optimization Toolbox)
“Use Problem-Based Optimize Live Editor Task Effectively” on page 9-59
“Use Solver-Based Optimize Live Editor Task Effectively” on page 1-41
“Solver-Based Optimization Problem Setup”
How to Use the Solver-Based Optimize Live Editor Task
How to Use the Problem-Based Optimize Live Editor Task

Introduced in R2020b

 Optimize

15-377

https://www.mathworks.com/videos/how-to-use-the-optimize-live-editor-task-1594660384855.html
https://www.mathworks.com/videos/how-to-use-the-problem-based-optimize-live-editor-task-1639982354440.html

optimoptions
Package: optim.problemdef

Create optimization options

Syntax
options = optimoptions(SolverName)
options = optimoptions(SolverName,Name,Value)

options = optimoptions(oldoptions,Name,Value)

options = optimoptions(SolverName,oldoptions)

options = optimoptions(prob)
options = optimoptions(prob,Name,Value)

Description
options = optimoptions(SolverName) returns a set of default options for the SolverName
solver.

options = optimoptions(SolverName,Name,Value) returns options with specified
parameters set using one or more name-value pair arguments.

options = optimoptions(oldoptions,Name,Value) returns a copy of oldoptions with the
named parameters altered with the specified values.

options = optimoptions(SolverName,oldoptions) returns default options for the
SolverName solver, and copies the applicable options in oldoptions to options.

options = optimoptions(prob) returns a set of default options for the prob optimization
problem or equation problem.

options = optimoptions(prob,Name,Value) returns options with specified parameters set
using one or more name-value pair arguments.

Examples

Create Default Options

Create default options for the fmincon solver.

options = optimoptions('fmincon')

options =
 fmincon options:

 Options used by current Algorithm ('interior-point'):
 (Other available algorithms: 'active-set', 'sqp', 'sqp-legacy', 'trust-region-reflective')

15 Functions

15-378

 Set properties:
 No options set.

 Default properties:
 Algorithm: 'interior-point'
 BarrierParamUpdate: 'monotone'
 CheckGradients: 0
 ConstraintTolerance: 1.0000e-06
 Display: 'final'
 EnableFeasibilityMode: 0
 FiniteDifferenceStepSize: 'sqrt(eps)'
 FiniteDifferenceType: 'forward'
 HessianApproximation: 'bfgs'
 HessianFcn: []
 HessianMultiplyFcn: []
 HonorBounds: 1
 MaxFunctionEvaluations: 3000
 MaxIterations: 1000
 ObjectiveLimit: -1.0000e+20
 OptimalityTolerance: 1.0000e-06
 OutputFcn: []
 PlotFcn: []
 ScaleProblem: 0
 SpecifyConstraintGradient: 0
 SpecifyObjectiveGradient: 0
 StepTolerance: 1.0000e-10
 SubproblemAlgorithm: 'factorization'
 TypicalX: 'ones(numberOfVariables,1)'
 UseParallel: 0

 Show options not used by current Algorithm ('interior-point')

Create Nondefault Options

Set options for fmincon to use the sqp algorithm and at most 1500 iterations.

options = optimoptions(@fmincon,'Algorithm','sqp','MaxIterations',1500)

options =
 fmincon options:

 Options used by current Algorithm ('sqp'):
 (Other available algorithms: 'active-set', 'interior-point', 'sqp-legacy', 'trust-region-reflective')

 Set properties:
 Algorithm: 'sqp'
 MaxIterations: 1500

 Default properties:
 CheckGradients: 0
 ConstraintTolerance: 1.0000e-06
 Display: 'final'
 FiniteDifferenceStepSize: 'sqrt(eps)'

 optimoptions

15-379

 FiniteDifferenceType: 'forward'
 MaxFunctionEvaluations: '100*numberOfVariables'
 ObjectiveLimit: -1.0000e+20
 OptimalityTolerance: 1.0000e-06
 OutputFcn: []
 PlotFcn: []
 ScaleProblem: 0
 SpecifyConstraintGradient: 0
 SpecifyObjectiveGradient: 0
 StepTolerance: 1.0000e-06
 TypicalX: 'ones(numberOfVariables,1)'
 UseParallel: 0

 Show options not used by current Algorithm ('sqp')

Update Options

Update existing options with new values.

Set options for the lsqnonlin solver to use the levenberg-marquardt algorithm and at most 1500
function evaluations

oldoptions = optimoptions(@lsqnonlin,'Algorithm','levenberg-marquardt',...
 'MaxFunctionEvaluations',1500)

oldoptions =
 lsqnonlin options:

 Options used by current Algorithm ('levenberg-marquardt'):
 (Other available algorithms: 'trust-region-reflective')

 Set properties:
 Algorithm: 'levenberg-marquardt'
 MaxFunctionEvaluations: 1500

 Default properties:
 CheckGradients: 0
 Display: 'final'
 FiniteDifferenceStepSize: 'sqrt(eps)'
 FiniteDifferenceType: 'forward'
 FunctionTolerance: 1.0000e-06
 MaxIterations: 400
 OutputFcn: []
 PlotFcn: []
 SpecifyObjectiveGradient: 0
 StepTolerance: 1.0000e-06
 TypicalX: 'ones(numberOfVariables,1)'
 UseParallel: 0

 Show options not used by current Algorithm ('levenberg-marquardt')

Increase MaxFunctionEvaluations to 2000.

options = optimoptions(oldoptions,'MaxFunctionEvaluations',2000)

15 Functions

15-380

options =
 lsqnonlin options:

 Options used by current Algorithm ('levenberg-marquardt'):
 (Other available algorithms: 'trust-region-reflective')

 Set properties:
 Algorithm: 'levenberg-marquardt'
 MaxFunctionEvaluations: 2000

 Default properties:
 CheckGradients: 0
 Display: 'final'
 FiniteDifferenceStepSize: 'sqrt(eps)'
 FiniteDifferenceType: 'forward'
 FunctionTolerance: 1.0000e-06
 MaxIterations: 400
 OutputFcn: []
 PlotFcn: []
 SpecifyObjectiveGradient: 0
 StepTolerance: 1.0000e-06
 TypicalX: 'ones(numberOfVariables,1)'
 UseParallel: 0

 Show options not used by current Algorithm ('levenberg-marquardt')

Use Dot Notation to Update Options

Update existing options with new values by using dot notation.

Set options for the lsqnonlin solver to use the levenberg-marquardt algorithm and at most 1500
function evaluations

options = optimoptions(@lsqnonlin,'Algorithm','levenberg-marquardt',...
 'MaxFunctionEvaluations',1500)

options =
 lsqnonlin options:

 Options used by current Algorithm ('levenberg-marquardt'):
 (Other available algorithms: 'trust-region-reflective')

 Set properties:
 Algorithm: 'levenberg-marquardt'
 MaxFunctionEvaluations: 1500

 Default properties:
 CheckGradients: 0
 Display: 'final'
 FiniteDifferenceStepSize: 'sqrt(eps)'
 FiniteDifferenceType: 'forward'
 FunctionTolerance: 1.0000e-06
 MaxIterations: 400
 OutputFcn: []

 optimoptions

15-381

 PlotFcn: []
 SpecifyObjectiveGradient: 0
 StepTolerance: 1.0000e-06
 TypicalX: 'ones(numberOfVariables,1)'
 UseParallel: 0

 Show options not used by current Algorithm ('levenberg-marquardt')

Increase MaxFunctionEvaluations to 2000 by using dot notation.

options.MaxFunctionEvaluations = 2000

options =
 lsqnonlin options:

 Options used by current Algorithm ('levenberg-marquardt'):
 (Other available algorithms: 'trust-region-reflective')

 Set properties:
 Algorithm: 'levenberg-marquardt'
 MaxFunctionEvaluations: 2000

 Default properties:
 CheckGradients: 0
 Display: 'final'
 FiniteDifferenceStepSize: 'sqrt(eps)'
 FiniteDifferenceType: 'forward'
 FunctionTolerance: 1.0000e-06
 MaxIterations: 400
 OutputFcn: []
 PlotFcn: []
 SpecifyObjectiveGradient: 0
 StepTolerance: 1.0000e-06
 TypicalX: 'ones(numberOfVariables,1)'
 UseParallel: 0

 Show options not used by current Algorithm ('levenberg-marquardt')

Copy Options to Another Solver

Transfer nondefault options for the fmincon solver to options for the fminunc solver.

Set options for fmincon to use the sqp algorithm and at most 1500 iterations.

oldoptions = optimoptions(@fmincon,'Algorithm','sqp','MaxIterations',1500)

oldoptions =
 fmincon options:

 Options used by current Algorithm ('sqp'):
 (Other available algorithms: 'active-set', 'interior-point', 'sqp-legacy', 'trust-region-reflective')

 Set properties:
 Algorithm: 'sqp'

15 Functions

15-382

 MaxIterations: 1500

 Default properties:
 CheckGradients: 0
 ConstraintTolerance: 1.0000e-06
 Display: 'final'
 FiniteDifferenceStepSize: 'sqrt(eps)'
 FiniteDifferenceType: 'forward'
 MaxFunctionEvaluations: '100*numberOfVariables'
 ObjectiveLimit: -1.0000e+20
 OptimalityTolerance: 1.0000e-06
 OutputFcn: []
 PlotFcn: []
 ScaleProblem: 0
 SpecifyConstraintGradient: 0
 SpecifyObjectiveGradient: 0
 StepTolerance: 1.0000e-06
 TypicalX: 'ones(numberOfVariables,1)'
 UseParallel: 0

 Show options not used by current Algorithm ('sqp')

Transfer the applicable options to the fminunc solver.

options = optimoptions(@fminunc,oldoptions)

options =
 fminunc options:

 Options used by current Algorithm ('quasi-newton'):
 (Other available algorithms: 'trust-region')

 Set properties:
 CheckGradients: 0
 FiniteDifferenceType: 'forward'
 MaxIterations: 1500
 OptimalityTolerance: 1.0000e-06
 PlotFcn: []
 SpecifyObjectiveGradient: 0
 StepTolerance: 1.0000e-06

 Default properties:
 Algorithm: 'quasi-newton'
 Display: 'final'
 FiniteDifferenceStepSize: 'sqrt(eps)'
 HessianApproximation: 'bfgs'
 MaxFunctionEvaluations: '100*numberOfVariables'
 ObjectiveLimit: -1.0000e+20
 OutputFcn: []
 TypicalX: 'ones(numberOfVariables,1)'
 UseParallel: 0

 Show options not used by current Algorithm ('quasi-newton')

The algorithm option does not transfer to fminunc because 'sqp' is not a valid algorithm option for
fminunc.

 optimoptions

15-383

Find Solver and Default Options for Optimization Problem

Create an optimization problem and find the default solver and options.

rng default
x = optimvar('x',3,'LowerBound',0);
expr = x'*(eye(3) + randn(3))*x - randn(1,3)*x;
prob = optimproblem('Objective',expr);
options = optimoptions(prob)

options =
 quadprog options:

 Options used by current Algorithm ('interior-point-convex'):
 (Other available algorithms: 'active-set', 'trust-region-reflective')

 Set properties:
 No options set.

 Default properties:
 Algorithm: 'interior-point-convex'
 ConstraintTolerance: 1.0000e-08
 Display: 'final'
 LinearSolver: 'auto'
 MaxIterations: 200
 OptimalityTolerance: 1.0000e-08
 StepTolerance: 1.0000e-12

 Show options not used by current Algorithm ('interior-point-convex')

The default solver is quadprog.

Set the options to use iterative display. Find the solution.

options.Display = 'iter';
sol = solve(prob,'Options',options);

Solving problem using quadprog.
Your Hessian is not symmetric. Resetting H=(H+H')/2.

 Iter Fval Primal Infeas Dual Infeas Complementarity
 0 2.018911e+00 0.000000e+00 2.757660e+00 6.535839e-01
 1 -2.170204e+00 0.000000e+00 8.881784e-16 2.586177e-01
 2 -3.405808e+00 0.000000e+00 8.881784e-16 2.244054e-03
 3 -3.438788e+00 0.000000e+00 1.072059e-15 7.261144e-09

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

sol.x

ans = 3×1

15 Functions

15-384

 1.6035
 0.0000
 0.8029

Input Arguments
SolverName — Solver name
character vector | string | function handle

Solver name, specified as a character vector, string, or function handle.
Example: 'fmincon'
Example: @fmincon
Data Types: char | function_handle | string

oldoptions — Options created with optimoptions
options object

Options created with the optimoptions function, specified as an options object.
Example: oldoptions = optimoptions(@fminunc)

prob — Problem object
OptimizationProblem object | EquationProblem object

Problem object, specified as an OptimizationProblem object or an EquationProblem object.
Create prob using the “Problem-Based Optimization Workflow” on page 9-2 or “Problem-Based
Workflow for Solving Equations” on page 9-4.

The syntaxes using prob enable you to determine the default solver for your problem and to modify
the algorithm or other options.
Example: prob = optimproblem('Objective',myobj), where myobj is an optimization
expression

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: optimoptions(@fmincon,'Display','iter','FunctionTolerance',1e-10) sets
fmincon options to have iterative display and a FunctionTolerance of 1e-10.

For relevant name-value pair arguments, consult the options table for your solver:

• fgoalattain options
• fmincon options
• fminimax options
• fminunc options

 optimoptions

15-385

• fseminf options
• fsolve options
• ga options
• gamultiobj options
• intlinprog options
• linprog options
• lsqcurvefit options
• lsqlin options
• lsqnonlin options
• paretosearch options
• particleswarm options
• patternsearch options
• quadprog options
• simulannealbnd options
• surrogateopt options

Output Arguments
options — Optimization options
options object

Optimization options for the SolverName solver, returned as an options object.

Alternative Functionality
Live Editor Task

The Optimize Live Editor task lets you set options visually. For an example, see “Optimize Live Editor
Task with fmincon Solver” on page 5-83.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Code generation supports a limited set of options for each solver. For the supported options, see each
solver reference page:

• fmincon “Code Generation” on page 15-108
• fsolve “Code Generation” on page 15-192
• lsqcurvefit “Code Generation” on page 15-263
• lsqnonlin “Code Generation” on page 15-303
• quadprog “Code Generation” on page 15-461

15 Functions

15-386

See Also
optimset | Optimize | resetoptions | OptimizationProblem | EquationProblem

Topics
“Set Options”

Introduced in R2013a

 optimoptions

15-387

optimproblem
Create optimization problem

Syntax
prob = optimproblem
prob = optimproblem(Name,Value)

Description
Use optimproblem to create an optimization problem.

Tip For the full workflow, see “Problem-Based Optimization Workflow” on page 9-2.

prob = optimproblem creates an optimization problem with default properties.

prob = optimproblem(Name,Value) uses additional options specified by one or more
Name,Value pair arguments. For example, to specify a maximization problem instead of a
minimization problem, use prob = optimproblem('ObjectiveSense','maximize').

Note All names in an optimization problem must be unique. Specifically, all variable names, objective
function names, and constraint function names must be different.

Examples

Create Optimization Problem

Create an optimization problem with default properties.

prob = optimproblem

prob =
 OptimizationProblem with properties:

 Description: ''
 ObjectiveSense: 'minimize'
 Variables: [0x0 struct] containing 0 OptimizationVariables
 Objective: [0x0 OptimizationExpression]
 Constraints: [0x0 struct] containing 0 OptimizationConstraints

 No problem defined.

15 Functions

15-388

Create and Solve Maximization Problem

Create a linear programming problem for maximization. The problem has two positive variables and
three linear inequality constraints.

prob = optimproblem('ObjectiveSense','max');

Create positive variables. Include an objective function in the problem.

x = optimvar('x',2,1,'LowerBound',0);
prob.Objective = x(1) + 2*x(2);

Create linear inequality constraints in the problem.

cons1 = x(1) + 5*x(2) <= 100;
cons2 = x(1) + x(2) <= 40;
cons3 = 2*x(1) + x(2)/2 <= 60;
prob.Constraints.cons1 = cons1;
prob.Constraints.cons2 = cons2;
prob.Constraints.cons3 = cons3;

Review the problem.

show(prob)

 OptimizationProblem :

 Solve for:
 x

 maximize :
 x(1) + 2*x(2)

 subject to cons1:
 x(1) + 5*x(2) <= 100

 subject to cons2:
 x(1) + x(2) <= 40

 subject to cons3:
 2*x(1) + 0.5*x(2) <= 60

 variable bounds:
 0 <= x(1)
 0 <= x(2)

Solve the problem.

sol = solve(prob);

Solving problem using linprog.

Optimal solution found.

sol.x

ans = 2×1

 optimproblem

15-389

 25.0000
 15.0000

Create and Solve Multiobjective Problem

Create a problem with two objective functions of a 2-D variable x. Create the objective functions as
expressions in x, and place them in the objective as structures.

x = optimvar("x",2,LowerBound=-2,UpperBound=2);
prob = optimproblem;
prob.Objective.first = norm(x)^2;
prob.Objective.second = norm(x - [1;0])^2;

Solve the problem.

rng default % For reproducibility
sol = solve(prob);

Solving problem using gamultiobj.
Optimization terminated: average change in the spread of Pareto solutions less than options.FunctionTolerance.

Plot the solution.

paretoplot(sol)

15 Functions

15-390

Examine one point on the Pareto front. To do so, click the figure and click the Data Tips tool:

Then click a point on the Pareto front.

The index of the pictured point is 9. You can find the x value associated with this point as the solution
with index 9.

sol(9).x

ans = 2×1

 0.5544
 -0.0306

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

 optimproblem

15-391

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: To specify a maximization problem, use prob =
optimproblem('ObjectiveSense','maximize').

Constraints — Problem constraints
OptimizationConstraint array | structure with OptimizationConstraint arrays as fields

Problem constraints, specified as an OptimizationConstraint array or a structure with
OptimizationConstraint arrays as fields.
Example: prob = optimproblem('Constraints',sum(x,2) == 1)

Description — Problem label
'' (default) | string | character vector

Problem label, specified as a string or character vector. The software does not use Description for
computation. Description is an arbitrary label that you can use for any reason. For example, you
can share, archive, or present a model or problem, and store descriptive information about the model
or problem in Description.
Example: "An iterative approach to the Traveling Salesman problem"
Data Types: char | string

Objective — Objective function
scalar OptimizationExpression | array of OptimizationExpression | structure with scalar
OptimizationExpression as fields

Objective function, specified as a scalar OptimizationExpression object, an array of
OptimizationExpression objects, or a structure with scalar OptimizationExpression as
fields.

• For a scalar (single-objective) problem, specify the objective function as a scalar optimization
expression or as a structure with a scalar optimization expression as the value.

• For a multiobjective problem, specify the objective functions as a vector-valued optimization
expression, as an array of optimization expressions, or as a structure of optimization expressions.
For example, this objective is a structure of optimization expressions in a scalar optimization
variable x:

prob = optimproblem;
prob.Objective.first = x^2;
prob.Objective.second = (x + 1)^2;

Example: prob = optimproblem('Objective',sum(sum(x))) for a 2-D variable x.
Example: prob = optimproblem('Objective',(x-a).^2) where x and a have size 2-by-1, and
x is an optimization variable.

ObjectiveSense — Sense of optimization
'minimize' (default) | 'min' | 'maximize' | 'max' | structure with the listed values as fields

Sense of optimization, specified as 'minimize' or 'maximize'. You can also specify 'min' to
obtain 'minimize' or 'max' to obtain 'maximize'. The solve function minimizes an objective
when ObjectiveSense is 'minimize' and maximizes an objective when ObjectiveSense is
'maximize'.

15 Functions

15-392

ObjectiveSense can be a structure with values 'minimize', 'min', 'maximize', or 'max'. You
can use this form when the problem objective is a structure. The Objective and ObjectiveSense
structures should have the same field names, so the ObjectiveSense applies to the corresponding
Objective. For example,

x = optimvar('x',2,"UpperBound",2,"LowerBound",-2);
prob = optimproblem;
prob.Objective.first = norm(x)^2;
prob.Objective.second = -norm(x - [1;0])^2;
prob.ObjectiveSense.first = "min";
prob.ObjectiveSense.second = "max";

If Objective is a structure, you can specify ObjectiveSense as a name such as 'max'. In this
case, all objectives have the same ObjectiveSense.
Example: prob = optimproblem('ObjectiveSense','max')
Data Types: char | string

Output Arguments
prob — Optimization problem
OptimizationProblem object

Optimization problem, returned as an OptimizationProblem object. Typically, to complete the
problem description, you specify an objective function and constraints. However, you can have a
feasibility problem, which has no objective function, or you can have a problem with no constraints.
Solve a complete problem by calling solve.

Warning The problem-based approach does not support complex values in an objective function,
nonlinear equalities, or nonlinear inequalities. If a function calculation has a complex value, even as
an intermediate value, the final result can be incorrect.

See Also
optimvar | OptimizationProblem | solve

Topics
“Problem-Based Optimization Setup”
“Problem-Based Optimization Workflow” on page 9-2

Introduced in R2017b

 optimproblem

15-393

optimset
Create or modify optimization options structure

Syntax
options = optimset(Name,Value)
optimset
options = optimset
options = optimset(optimfun)
options = optimset(oldopts,Name,Value)
options = optimset(oldopts,newopts)

Description
Create or modify options structure for MATLAB solvers.

Note optimoptions is recommended instead of optimset for all solvers except fzero, fminbnd,
fminsearch, and lsqnonneg.

options = optimset(Name,Value) returns options with specified parameters set using one or
more name-value pair arguments.

optimset (with no input or output arguments) displays a complete list of parameters with their valid
values.

options = optimset (with no input arguments) creates an options structure options where all
parameters are set to [].

options = optimset(optimfun) creates options with all parameter names and default values
relevant to the optimization function optimfun.

options = optimset(oldopts,Name,Value) creates a copy of oldopts and modifies the
specified parameters using one or more name-value pair arguments.

options = optimset(oldopts,newopts) combines an existing options structure oldopts with a
new options structure newopts. Any parameters in newopts with nonempty values overwrite the
corresponding parameters in oldopts.

Examples

Create Nondefault Options

Set options for fminsearch to use a plot function and a stricter stopping condition than the default.

options = optimset('PlotFcns','optimplotfval','TolX',1e-7);

Minimize Rosenbrock's function starting from the point (–1,2), and monitor the minimization process
by using the options. Rosenbrock's function has a minimum value of 0 at the point (1,1).

15 Functions

15-394

fun = @(x)100*((x(2) - x(1)^2)^2) + (1 - x(1))^2; % Rosenbrock's function
x0 = [-1,2];
[x,fval] = fminsearch(fun,x0,options)

x = 1×2

 1.0000 1.0000

fval = 4.7305e-16

Create Default Options for Solver

Create a structure containing the default options for the fzero solver.

options = optimset('fzero');

View the default value of the TolX option for fzero.

tol = options.TolX

tol = 2.2204e-16

 optimset

15-395

Modify Options

Set options to use a function tolerance of 1e-6.

oldopts = optimset('TolFun',1e-6);

Modify options in oldopts to use the 'optimplotfval' plot function and a TolX value of 1e-6.

options = optimset(oldopts,'PlotFcns','optimplotfval','TolX',1e-6);

View the three options that you set.

disp(options.TolFun);

 1.0000e-06

disp(options.PlotFcns);

optimplotfval

disp(options.TolX);

 1.0000e-06

Update Options Structure Using New Options Structure

Overwrite the corresponding parts of one options structure with a different options structure by using
optimset.

oldopts = optimset('Display','iter','TolX',1e-6);
newopts = optimset('PlotFcns','optimplotfval','Display','off');
options = optimset(oldopts,newopts);

Both oldopts and newopts set the value of the Display option. Check that newopts overwrites
oldopts for this option.

options.Display

ans =
'off'

Check the values of the other two options.

options.TolX

ans = 1.0000e-06

options.PlotFcns

ans =
'optimplotfval'

Input Arguments
optimfun — Optimization solver
name | function handle

15 Functions

15-396

Optimization solver, specified as a name or function handle. The returned options structure has
nonempty entries for the specified solver only.
Example: options = optimset('fzero')
Example: options = optimset(@fminsearch)
Data Types: char | string | function_handle

oldopts — Previous optimization options
structure

Previous optimization options, specified as a structure. The output options is the same as oldopts,
except for the specified parameters.
Example: options = optimset(oldopts,'TolX',1e-6)
Data Types: struct

newopts — New optimization options
structure

New optimization options, specified as a structure. The output options is the same as newopts, and
also includes nonempty parameters of oldopts that are empty in newopts.
Example: options = optimset(oldopts,newopts)
Data Types: struct

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

You only need to enter enough leading characters to define the option name uniquely. optimset
ignores the case (uppercase or lowercase) for option names.
Example: options = optimset('TolX',1e-6,'PlotFcns',@optimplotfval)

Display — Level of display
'notify' (default) | 'final' | 'off' | 'none' | 'iter'

Level of display, specified as the comma-separated pair consisting of 'Display' and one of these values:

• 'notify' — Display output only if the function does not converge.
• 'final' — Display just the final output.
• 'off' or 'none' — Display no output.
• 'iter' — Display output at each iteration (not available for lsqnonneg).

Display is available for all optimization solvers.
Example: options = optimset('Display','iter')
Data Types: char | string

 optimset

15-397

FunValCheck — Flag to check whether function values are valid
'off' (default) | 'on'

Flag to check whether function values are valid, specified as the comma-separated pair consisting of
'FunValCheck' and the value 'off' or 'on'. When the value is 'on', solvers display an error
when the objective function returns a value that is complex or NaN.

FunValCheck is available for fminbnd, fminsearch, and fzero.
Example: options = optimset('FunValCheck','on')
Data Types: char | string

MaxFunEvals — Maximum number of function evaluations
500 for fminbnd, 200*(number of variables) for fminsearch (default) | positive integer

Maximum number of function evaluations, specified as the comma-separated pair consisting of
'MaxFunEvals' and a positive integer.

MaxFunEvals is available for fminbnd and fminsearch.
Example: options = optimset('MaxFunEvals',2e3)
Data Types: single | double

MaxIter — Maximum number of iterations
500 for fminbnd, 200*(number of variables) for fminsearch (default) | positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of 'MaxIter' and
a positive integer.

MaxIter is available for fminbnd and fminsearch.
Example: options = optimset('MaxIter',2e3)
Data Types: single | double

OutputFcn — Output function
[] (default) | function name | function handle | cell array of function handles

Output function, specified as the comma-separated pair consisting of 'OutputFcn' and a function
name or function handle. Specify multiple output functions as a cell array of function handles. An
output function runs after each iteration, enabling you to monitor the solution process or stop the
iterations. For more information, see “Optimization Solver Output Functions”.

OutputFcn is available for fminbnd, fminsearch, and fzero.
Example: options = optimset('OutputFcn',{@outfun1,@outfun2})
Data Types: char | string | cell | function_handle

PlotFcns — Plot functions
[] (default) | function name | function handle | cell array of function handles

Plot functions, specified as the comma-separated pair consisting of 'PlotFcns' and a function
name or function handle. Specify multiple plot functions as a cell array of function handles. A plot
function runs after each iteration, enabling you to monitor the solution process or stop the iterations.
For more information, see “Plot Functions” on page 3-27 and “Output Function and Plot Function
Syntax” on page 14-28.

15 Functions

15-398

The built-in plot functions are as follows:

• @optimplotx plots the current point.
• @optimplotfval plots the function value.
• @optimplotfunccount plots the function count (not available for fzero).

PlotFcns is available for fminbnd, fminsearch, and fzero.
Example: options = optimset('PlotFcns','optimplotfval')
Data Types: char | string | cell | function_handle

TolFun — Termination tolerance on function value
1e-4 (default) | nonnegative scalar

Termination tolerance on the function value, specified as the comma-separated pair consisting of
'TolFun' and a nonnegative scalar. Iterations end when the current function value differs from the
previous value by less than TolFun, relative to the initial function value. See “Tolerances and
Stopping Criteria” on page 2-68.

TolFun is available for fminsearch only.
Example: options = optimset('TolFun',2e-6)
Data Types: single | double

TolX — Termination tolerance on x, the current point
1e-4 for fminbnd and fminsearch, eps for fzero, 10*eps*norm(c,1)*length(c) for
lsqnonneg (default) | nonnegative scalar

Termination tolerance on x, the current point, specified as the comma-separated pair consisting of
'TolX' and a nonnegative scalar. Iterations end when the current point differs from the previous
point by less than TolX, relative to the size of x. See “Tolerances and Stopping Criteria” on page 2-
68.

TolX is available for all solvers.
Example: options = optimset('TolFun',2e-6)
Data Types: single | double

Output Arguments
options — Optimization options
structure

Optimization options, returned as a structure. The returned values for parameters you do not set are
[], which cause solvers to use the default values of these parameters.

Limitations
• optimset sets options for the four MATLAB optimization solvers: fminbnd, fminsearch, fzero,

and lsqnonneg. To set options for Optimization Toolbox or Global Optimization Toolbox solvers,
the recommended function is optimoptions.

• optimset cannot set options for some Optimization Toolbox solvers, such as intlinprog. Use
optimoptions instead.

 optimset

15-399

• optimset cannot set most options for Global Optimization Toolbox solvers. Use optimoptions
instead.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation does not support the syntax that has no input or output arguments:

optimset
• Functions specified in options must be supported for code generation.
• The input argument optimfun must be a function that is supported for code generation.
• The fields of the options structure oldopts must be fixed-size fields.
• Code generation ignores the Display option.
• Code generation does not support the additional options in an options structure created by the

Optimization Toolbox optimset function. If an input options structure includes the additional
Optimization Toolbox options, then the output structure does not include them.

See Also
optimget | optimoptions | fminbnd | fminsearch | fzero | lsqnonneg

Topics
“Choose Between optimoptions and optimset” on page 2-63
“Options in Common Use: Tuning and Troubleshooting” on page 2-61
“Set and Change Options” on page 2-62

Introduced before R2006a

15 Functions

15-400

optimvalues
Create values for optimization problem

Syntax
val = optimvalues(prob,dataname1,dataval1,...)

Description
val = optimvalues(prob,dataname1,dataval1,...) creates an OptimizationValues
object for the problem prob. Specify all variable names and their associated values, and optionally
objective or constraint values, by using name-value arguments. For example, to specify that x takes
odd values from 1 through 99,

val = optimvalues(prob,x=1:2:99);

Use val as an initial point or initial population for prob.

Examples

Create Initial Points for Problem-Based ga

To create initial points for ga (genetic algorithm solver) in the problem-based approach, create an
OptimizationValues object using optimvalues.

Create optimization variables for a 2-D problem with Rosenbrock's function as the fitness (objective)
function.

x = optimvar("x",LowerBound=-5,UpperBound=5);
y = optimvar("y",LowerBound=-5,UpperBound=5);
rosenbrock = (10*(y - x.^2)).^2 + (1-x).^2;
prob = optimproblem(Objective=rosenbrock);

Create 100 random 2-D points within the bounds. The points must be row vectors.

rng default % For reproducibility
xval = -5 + 10*rand(1,100);
yval = -5 + 10*rand(1,100);

Create the initial point values object. Because you do not calculate the fitness values, the values
appear as NaN in the display.

vals = optimvalues(prob,x=xval,y=yval)

vals =
 1x100 OptimizationValues vector with properties:

 Variables properties:
 x: [3.1472 4.0579 -3.7301 4.1338 1.3236 -4.0246 -2.2150 ...]
 y: [-3.3782 2.9428 -1.8878 0.2853 -3.3435 1.0198 -2.3703 ...]

 optimvalues

15-401

 Objective properties:
 Objective: [NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ...]

Solve the problem using ga starting from the initial point vals. Set ga options to have a population
of 100.

opts = optimoptions("ga",PopulationSize=100);
[sol,fv] = solve(prob,vals,Solver="ga",Options=opts)

Solving problem using ga.
Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

sol = struct with fields:
 x: 1.0000
 y: 1.0000

fv = 4.1061e-09

ga returns a solution very near the true solution x = 1, y = 1 with a fitness value near 0.

Create Initial Values for Problem-Based surrogateopt

To create initial points for surrogateopt in the problem-based approach, create an
OptimizationValues object using optimvalues.

Create optimization variables for a 2-D problem with Rosenbrock's function as the objective function.

x = optimvar("x",LowerBound=-5,UpperBound=5);
y = optimvar("y",LowerBound=-5,UpperBound=5);
rosenbrock = (10*(y - x.^2)).^2 + (1 - x).^2;
prob = optimproblem(Objective=rosenbrock);

Create constraints that the solution is in a disc of radius 2 about the origin and lies below the line y =
1 + x.

disc = x^2 + y^2 <= 2^2;
prob.Constraints.disc = disc;
line = y <= 1 + x;
prob.Constraints.line = line;

Create 40 random 2-D points within the bounds. The points must be row vectors.

rng default % For reproducibility
N = 40;
xval = -5 + 10*rand(1,N);
yval = -5 + 10*rand(1,N);

Evaluate Rosenbrock's function on the random points. The function values must be a row vector. This
step is optional. If you do not provide the function values, surrogateopt evaluates the objective
function at the points (xval,yval). When you have the function values, you can save time for the
solver by providing the values as data.

fval = zeros(1,N);
for i = 1:N

15 Functions

15-402

 p0 = struct('x',xval(i),'y',yval(i));
 fval(i) = evaluate(rosenbrock,p0);
end

Evaluate the constraints on the points. The constraint values must be row vectors. This step is
optional. If you do not provide the constraint values, surrogateopt evaluates the constraint
functions at the points (xval,yval).

discval = zeros(1,N);
lineval = zeros(1,N);
for i = 1:N
 p0 = struct('x',xval(i),'y',yval(i));
 discval(i) = infeasibility(disc,p0);
 lineval(i) = infeasibility(line,p0);
end

Create the initial point values object.

vals = optimvalues(prob,x=xval,y=yval,Objective=fval,disc=discval,line=lineval)

vals =
 1x40 OptimizationValues vector with properties:

 Variables properties:
 x: [3.1472 4.0579 -3.7301 4.1338 1.3236 -4.0246 -2.2150 ...]
 y: [-0.6126 -1.1844 2.6552 2.9520 -3.1313 -0.1024 -0.5441 ...]

 Objective properties:
 Objective: [1.1067e+04 3.1166e+04 1.2698e+04 1.9992e+04 2.3846e+03 ...]

 Constraints properties:
 disc: [6.2803 13.8695 16.9638 21.8023 7.5568 12.2078 1.2024 0 ...]
 line: [0 0 5.3853 0 0 2.9222 0.6709 0 0 0 0.1841 0 0 0 0 2.5648 ...]

Solve the problem using surrogateopt starting from the initial point vals.

[sol,fv] = solve(prob,vals,Solver="surrogateopt")

Solving problem using surrogateopt.

 optimvalues

15-403

surrogateopt stopped because it exceeded the function evaluation limit set by
'options.MaxFunctionEvaluations'.

sol = struct with fields:
 x: 0.7961
 y: 0.6340

fv = 0.0416

surrogateopt returns a solution somewhat near the true solution x = 1, y = 1 with an objective
function value near 0.

Input Arguments
prob — Optimization problem
OptimizationProblem object

Optimization problem, specified as an OptimizationProblem object. Create prob using
optimproblem.

To obtain useful output from optimvalues, you must also include some data in name-value
arguments.

15 Functions

15-404

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: val = optimvalues(x=xvals,y=yvals)

dataname — Data for variable, named objective, or named constraint
real double array

Data for a variable, named objective, or named constraint, specified as a real double array. Specify all
data names for the variables. The objective and constraint function names are optional.

When you specify nval points, the values for each dataname argument must have the following
dimensions.

prob.property.name size(value)
Scalar or vector numel(prob.property.name)-by-nval
Matrix or array size(prob.property.name)-by-nval

In particular, if dataname is a vector, the value of the dataname argument is a matrix with nval
columns. For example, if the 'x' variable is a row vector of length 2, and nval is 3, then the 'x'
variable specification might be:

val = optimvalues(prob,'x',[1 2 3; 4 5 -6]);

This specification means that 'x' takes the three values [1,4], [2,5], and [3,-6].
Example: For scalar 'x' and two-element row vector 'y' with nval = 2: val =
optimvalues(prob,x=[5,3],y=[1 2;3 4]). The output val has two values: x = 5, y = [1
3] and x = 3, y = [2 4].
Data Types: double

Objective — Values for unnamed objective function
real double array

Values for an unnamed objective function, specified as a real double array. The size of the values is
the same as in dataname.

You can specify values of multiple objective functions for optimization problems in two ways:

• The Objective property of the optimization problem is a function handle, where the function
returns a vector or array. In this case, specify the value as a matrix. Each matrix row represents
the values of one objective at the various points. Each column represents the values of the various
objectives at one point.

• The Objective property of the optimization problem has multiple named objectives. In this case,
specify the values for each named objective using its name as a dataname argument.

These solvers use any supplied objective function values:

• ga
• gamultiobj

 optimvalues

15-405

• paretosearch
• surrogateopt

Example: For one objective and two points, val =
optimvalues(prob,x=[3,5],Objective=[exp(3)+1,exp(5)-1])

Data Types: double

Constraints — Values for unnamed constraint function
real double

Values for an unnamed constraint function, specified as a real double array. The size of the values is
the same as in dataname.

You can specify values of multiple constraint functions for optimization problems in two ways:

• The Constraints property of the optimization problem is a function handle, where the function
returns an array. In this case, specify the values as an array with one more dimension than the
function returns.

• The 'Constraints' property of the optimization problem has multiple named constraints. In this
case, specify the values for each named objective using its name as a dataname argument.

These solvers use any supplied nonlinear constraint function values:

• paretosearch
• surrogateopt

These solvers ensure that linear constraints are satisfied at all iterations or for all population
members:

• ga
• gamultiobj
• paretosearch
• patternsearch
• surrogateopt

Example: For two points and three constraints, val =
optimvalues(prob,x=[3,5],Objective=[exp(3)+1,exp(5)-1],Constraints=[4 5;-7
-2;0.2 12])

Data Types: double

Output Arguments
val — Point and function values
vector of OptimizationValues objects

Point and function values, returned as a vector of OptimizationValues objects. The vector has
nval entries, where nval is the number of points in val.

See Also
OptimizationValues

15 Functions

15-406

Topics
“Specify Start Points for MultiStart, Problem-Based” (Global Optimization Toolbox)
“Specify Starting Points and Values for surrogateopt, Problem-Based” (Global Optimization Toolbox)
“Problem-Based Optimization Workflow” on page 9-2

Introduced in R2022a

 optimvalues

15-407

optimvar
Create optimization variables

Syntax
x = optimvar(name)

x = optimvar(name,n)

x = optimvar(name,cstr)
x = optimvar(name,cstr1,n2,...,cstrk)
x = optimvar(name,{cstr1,cstr2,...,cstrk})
x = optimvar(name,[n1,n2,...,nk])

x = optimvar(___ ,Name,Value)

Description
Use optimvar to create optimization variables.

Tip For the full workflow, see “Problem-Based Optimization Workflow” on page 9-2 or “Problem-
Based Workflow for Solving Equations” on page 9-4.

x = optimvar(name) creates a scalar optimization variable. An optimization variable is a symbolic
object that enables you to create expressions for the objective function and the problem constraints
in terms of the variable.

Tip To avoid confusion, set name to be the MATLAB variable name. For example,

metal = optimvar('metal')

x = optimvar(name,n) creates an n-by-1 vector of optimization variables.

x = optimvar(name,cstr) creates a vector of optimization variables that can use cstr for
indexing. The number of elements of x is the same as the length of the cstr vector. The orientation
of x is the same as the orientation of cstr: x is a row vector when cstr is a row vector, and x is a
column vector when cstr is a column vector.

x = optimvar(name,cstr1,n2,...,cstrk) or x = optimvar(name,{cstr1,cstr2,...,
cstrk}) or x = optimvar(name,[n1,n2,...,nk]), for any combination of positive integers nj
and names cstrk, creates an array of optimization variables with dimensions equal to the integers nj
and the lengths of the entries cstr1k.

x = optimvar(___ ,Name,Value), for any previous syntax, uses additional options specified by
one or more Name,Value pair arguments. For example, to specify an integer variable, use x =
optimvar('x','Type','integer').

15 Functions

15-408

Examples

Create Scalar Optimization Variable

Create a scalar optimization variable named dollars.

dollars = optimvar('dollars')

dollars =
 OptimizationVariable with properties:

 Name: 'dollars'
 Type: 'continuous'
 IndexNames: {{} {}}
 LowerBound: -Inf
 UpperBound: Inf

 See variables with show.
 See bounds with showbounds.

Create Optimization Variable Vector

Create a 3-by-1 optimization variable vector named x.

x = optimvar('x',3)

x =
 3x1 OptimizationVariable array with properties:

 Array-wide properties:
 Name: 'x'
 Type: 'continuous'
 IndexNames: {{} {}}

 Elementwise properties:
 LowerBound: [3x1 double]
 UpperBound: [3x1 double]

 See variables with show.
 See bounds with showbounds.

Create Optimization Variables Indexed by Strings

Create an integer optimization variable vector named bolts that is indexed by the strings "brass",
"stainless", and "galvanized". Use the indices of bolts to create an optimization expression,
and experiment with creating bolts using character arrays or in a different orientation.

Create bolts using strings in a row orientation.

 optimvar

15-409

bnames = ["brass","stainless","galvanized"];
bolts = optimvar('bolts',bnames,'Type','integer')

bolts =
 1x3 OptimizationVariable array with properties:

 Array-wide properties:
 Name: 'bolts'
 Type: 'integer'
 IndexNames: {{} {1x3 cell}}

 Elementwise properties:
 LowerBound: [-Inf -Inf -Inf]
 UpperBound: [Inf Inf Inf]

 See variables with show.
 See bounds with showbounds.

Create an optimization expression using the string indices.

y = bolts("brass") + 2*bolts("stainless") + 4*bolts("galvanized")

y =
 Linear OptimizationExpression

 bolts('brass') + 2*bolts('stainless') + 4*bolts('galvanized')

Use a cell array of character vectors instead of strings to get a variable with the same indices as
before.

bnames = {'brass','stainless','galvanized'};
bolts = optimvar('bolts',bnames,'Type','integer')

bolts =
 1x3 OptimizationVariable array with properties:

 Array-wide properties:
 Name: 'bolts'
 Type: 'integer'
 IndexNames: {{} {1x3 cell}}

 Elementwise properties:
 LowerBound: [-Inf -Inf -Inf]
 UpperBound: [Inf Inf Inf]

 See variables with show.
 See bounds with showbounds.

Use a column-oriented version of bnames, 3-by-1 instead of 1-by-3, and observe that bolts has that
orientation as well.

bnames = ["brass";"stainless";"galvanized"];
bolts = optimvar('bolts',bnames,'Type','integer')

bolts =
 3x1 OptimizationVariable array with properties:

15 Functions

15-410

 Array-wide properties:
 Name: 'bolts'
 Type: 'integer'
 IndexNames: {{1x3 cell} {}}

 Elementwise properties:
 LowerBound: [3x1 double]
 UpperBound: [3x1 double]

 See variables with show.
 See bounds with showbounds.

Create Multidimensional Optimization Variables

Create a 3-by-4-by-2 array of optimization variables named xarray.

xarray = optimvar('xarray',3,4,2)

xarray =
 3x4x2 OptimizationVariable array with properties:

 Array-wide properties:
 Name: 'xarray'
 Type: 'continuous'
 IndexNames: {{} {} {}}

 Elementwise properties:
 LowerBound: [3x4x2 double]
 UpperBound: [3x4x2 double]

 See variables with show.
 See bounds with showbounds.

You can also create multidimensional variables indexed by a mixture of names and numeric indices.
For example, create a 3-by-4 array of optimization variables where the first dimension is indexed by
the strings 'brass', 'stainless', and 'galvanized', and the second dimension is numerically
indexed.

bnames = ["brass","stainless","galvanized"];
bolts = optimvar('bolts',bnames,4)

bolts =
 3x4 OptimizationVariable array with properties:

 Array-wide properties:
 Name: 'bolts'
 Type: 'continuous'
 IndexNames: {{1x3 cell} {}}

 Elementwise properties:
 LowerBound: [3x4 double]
 UpperBound: [3x4 double]

 optimvar

15-411

 See variables with show.
 See bounds with showbounds.

Create Binary Optimization Variables

Create an optimization variable named x of size 3-by-3-by-3 that represents binary variables.

x = optimvar('x',3,3,3,'Type','integer','LowerBound',0,'UpperBound',1)

x =
 3x3x3 OptimizationVariable array with properties:

 Array-wide properties:
 Name: 'x'
 Type: 'integer'
 IndexNames: {{} {} {}}

 Elementwise properties:
 LowerBound: [3x3x3 double]
 UpperBound: [3x3x3 double]

 See variables with show.
 See bounds with showbounds.

Input Arguments
name — Variable name
character vector | string

Variable name, specified as a character vector or string.

Tip To avoid confusion about which name relates to which aspect of a variable, set the workspace
variable name to the variable name. For example,

truck = optimvar('truck');

Example: "Warehouse"
Example: 'truck'
Data Types: char | string

n — Variable dimension
positive integer

Variable dimension, specified as a positive integer.
Example: 4

15 Functions

15-412

Data Types: double

cstr — Index names
string array | cell array of character arrays

Index names, specified as a string array or a cell array of character arrays.
Example: x = optimvar('x',["Warehouse","Truck","City"])
Example: x = optimvar('x',{'Warehouse','Truck','City'})
Data Types: string | cell

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: Create x as a 3-element nonnegative vector with x(2) <= 2 and x(3) <= 4 by the
command x = optimvar('x',3,'LowerBound',0,'UpperBound',[Inf,2,4])

Type — Variable type
'continuous' (default) | 'integer'

Variable type, specified as 'continuous' or 'integer'.

• 'continuous' – Real values
• 'integer' – Integer values

The variable type applies to all variables in the array. To have multiple variable types, create multiple
variables.

Tip To specify binary variables, use the 'integer' type with LowerBound equal to 0 and
UpperBound equal to 1.

Example: 'integer'

LowerBound — Lower bounds
-Inf (default) | array of the same size as x | real scalar

Lower bounds, specified as an array of the same size as x or as a real scalar. If LowerBound is a
scalar, the value applies to all elements of x.
Example: To set a lower bound of 0 to all elements of x, specify the scalar value 0.
Data Types: double

UpperBound — Upper bounds
Inf (default) | array of the same size as x | real scalar

Upper bounds, specified as an array of the same size as x or as a real scalar. If UpperBound is a
scalar, the value applies to all elements of x.

 optimvar

15-413

Example: To set an upper bound of 2 to all elements of x, specify the scalar value 2.
Data Types: double

Output Arguments
x — Optimization variable
OptimizationVariable array

Optimization variable, returned as an OptimizationVariable array. The dimensions of the array
are the same as those of the corresponding input variables, such as cstr1-by-cstr2.

Tips
• OptimizationVariable objects have handle copy behavior. See “Handle Object Behavior” and

“Comparison of Handle and Value Classes”. Handle copy behavior means that a copy of an
OptimizationVariable points to the original and does not have an independent existence. For
example, create a variable x, copy it to y, then set a property of y. Note that x takes on the new
property value.

x = optimvar('x','LowerBound',1);
y = x;
y.LowerBound = 0;
showbounds(x)

 0 <= x

See Also
OptimizationVariable

Topics
“Problem-Based Optimization Setup”
“Problem-Based Optimization Workflow” on page 9-2
“Named Index for Optimization Variables” on page 9-20

Introduced in R2017b

15 Functions

15-414

optimwarmstart
Create warm start object

Syntax
ws = optimwarmstart(x0,options)
ws = optimwarmstart(x0,options,Name,Value)

Description
ws = optimwarmstart(x0,options) creates a warm start object ws for use with the solver
indicated in options. For an example using a warm start object, see “Warm Start quadprog” on page
10-68.

ws = optimwarmstart(x0,options,Name,Value) incorporates memory bounds in ws using
name-value arguments. Use memory bounds only when generating code.

Examples

Create Warm Start Object

Create a default warm start object for quadprog.

x0 = [1 3 5];
options = optimoptions('quadprog','Algorithm','active-set');
ws = optimwarmstart(x0,options)

ws =

 QuadprogWarmStart with properties:

 X: [3×1 double]
 Options: [1×1 optim.options.Quadprog]

 Code generation limitations

Create Warm Start Object with Memory Limits

Create an lsqlin warm start object for code generation with memory limits.

x0 = [1 3 5];
options = optimoptions('lsqlin','Algorithm','active-set');
ws = optimwarmstart(x0,options,...
 'MaxLinearEqualities',30,...
 'MaxLinearInequalities',5)

 optimwarmstart

15-415

Click the Code generation limitations link to see the memory settings.

 MaxLinearEqualities: 30
MaxLinearInequalities: 5

Input Arguments
x0 — Initial point
real array

Initial point, specified as a real array. This point is stored in ws.X.
Example: 10*rand(5,1)
Data Types: double

options — Optimization options
output of optimoptions

Optimization options, specified as the output of optimoptions. You must specify at least a supported
solver, either lsqlin or quadprog, and 'active-set' for the and Algorithm option. For example,
enter the following code to specify the quadprog solver.

options = optimoptions('quadprog','Algorithm','active-set');

These options are stored in ws.Options.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: ws =
optimwarmstart(x0,options,'MaxLinearEqualities',30,'MaxLinearInequalities',5)
specifies up to 30 linear equalities and 5 linear inequalities.

MaxLinearEqualities — Maximum number of linear equality constraints
Inf (default) | positive integer

Maximum number of linear equality constraints, specified as a positive integer. To allocate enough
memory for equality constraints, specify the maximum number of equality constraints during the
entire run of the code.

15 Functions

15-416

Use this argument only for code generation without dynamic memory allocation. You must use both
this argument and 'MaxLinearInequalities'.

The value of this argument is stored in ws.MaxLinearEqualities.
Example: 25
Data Types: double

MaxLinearInequalities — Maximum number of linear inequality constraints
Inf (default) | positive integer

Maximum number of linear inequality constraints, specified as a positive integer. To allocate enough
memory for inequality constraints, specify the maximum number of inequality constraints during the
entire run of the code.

Use this argument only for code generation without dynamic memory allocation. You must use both
this argument and 'MaxLinearEqualities'.

The value of this argument is stored in ws.MaxLinearInequalities.
Example: 25
Data Types: double

Output Arguments
ws — Warm start object
LsqlinWarmStart object | QuadprogWarmStart object

Warm start object, returned as an LsqlinWarmStart object or a QuadprogWarmStart object. For
an example using a warm start object, see “Warm Start quadprog” on page 10-68.

ws has the following read-only properties:

• X — Initial point
• Options — Optimization options
• MaxLinearEqualities — Maximum number of linear equalities for code generation
• MaxLinearInequalities — Maximum number of linear inequalities for code generation

To change any properties of ws, recreate the object by calling optimwarmstart.

Algorithms
A warm start object maintains a list of active constraints from the previous solved problem. The
solver carries over as much active constraint information as possible to solve the current problem. If
the previous problem is too different from the current one, no active set information is reused. In this
case, the solver effectively executes a cold start in order to rebuild the list of active constraints.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 optimwarmstart

15-417

Usage notes and limitations:

• Warm start options must specify the 'active-set' algorithm.

options = optimoptions('lsqlin','Algorithm','active-set');
% Or
options = optimoptions('quadprog','Algorithm','active-set');

• If your target hardware uses static memory allocation (the DynamicMemoryAllocation option is
'off'), you must specify both the 'MaxLinearEqualities' and the
'MaxLinearInequalities' arguments.

• For non-MEX targets, if the solver tries to exceed either of these levels, the solver returns an
exit flag –8.

• For MEX targets, if the solver tries to exceed either of these levels, the solver throws an error
and indicates to increase the relevant level.

• For more warm start code generation information, see lsqlin “Code Generation” on page 15-282
or quadprog “Code Generation” on page 15-461.

See Also
quadprog | lsqlin

Topics
“Warm Start Best Practices” on page 10-71
“Warm Start quadprog” on page 10-68
“Generate Code for quadprog” on page 10-62
“Generate Code for lsqlin” on page 11-100

Introduced in R2021a

15 Functions

15-418

paretoplot
Package: optim.problemdef

Pareto plot of multiobjective values

Syntax
paretoplot(val)
paretoplot(val,objlabels)
paretoplot(val,objindex)
h = paretoplot(___)
paretoplot(ax, ___)

Description
paretoplot(val) creates a Pareto plot of the objectives in val. If val contains more than three
objectives, paretoplot plots the first three objectives.

paretoplot(val,objlabels) creates a Pareto plot of the objectives listed in objlabels. Use this
syntax if you have separate labels for each objective function.

paretoplot(val,objindex) creates a Pareto plot of the objectives listed in objindex. Use this
syntax is your objective functions are not labeled.

h = paretoplot(___), for any previous input syntax, returns a handle h to the resulting scatter
object. Use h to set properties of the scatter object after creation.

paretoplot(ax, ___) plots into the axes with handle ax.

Examples

Pareto Plot of Problem-Based Solution

Create and solve a multiobjective optimization problem using optimization variables.

x = optimvar("x",LowerBound=-1,UpperBound=2);
prob = optimproblem;
prob.Objective.obj1 = x^2;
prob.Objective.obj2 = (x-1)^2;
[sol,fval] = solve(prob,Solver="paretosearch");

Solving problem using paretosearch.

Pareto set found that satisfies the constraints.

Optimization completed because the relative change in the volume of the Pareto set
is less than 'options.ParetoSetChangeTolerance' and constraints are satisfied to within
'options.ConstraintTolerance'.

Plot the Pareto front.

 paretoplot

15-419

paretoplot(sol)

Pareto Plot of Named Objectives

Create and solve a multiobjective optimization problem with four named objectives.

x = optimvar("x",2,LowerBound=-2,UpperBound=4);
prob = optimproblem;
prob.Objective.obj1 = norm(x)^2;
prob.Objective.obj2 = norm(x - [1;0])^2;
prob.Objective.obj3 = norm(x - [0;1])^2;
prob.Objective.obj4 = norm(x - [1;1])^2;
sol = solve(prob,Solver="paretosearch");

Solving problem using paretosearch.

Pareto set found that satisfies the constraints.

Optimization completed because the relative change in the distance of the Pareto set
is less than 'options.ParetoSetChangeTolerance' and constraints are satisfied to within
'options.ConstraintTolerance'.

Create a Pareto plot of the first three objectives;

paretoplot(sol)

15 Functions

15-420

Create a Pareto plot of the last three objectives.

paretoplot(sol,["obj2" "obj3" "obj4"])

 paretoplot

15-421

Pareto Plot of Unnamed Multiobjective Function, Problem-Based

Create and solve a multiobjective optimization problem with four objectives. The objective function
returns a four-element vector.

x = optimvar("x",2,LowerBound=-2,UpperBound=4);
prob = optimproblem;
obj = [norm(x)^2,norm(x - [1;0])^2,norm(x - [0;1])^2,norm(x - [1;1])^2];
prob.Objective = obj;
sol = solve(prob,Solver="paretosearch");

Solving problem using paretosearch.

Pareto set found that satisfies the constraints.

Optimization completed because the relative change in the distance of the Pareto set
is less than 'options.ParetoSetChangeTolerance' and constraints are satisfied to within
'options.ConstraintTolerance'.

Create a Pareto plot of the first three objectives;

paretoplot(sol)

15 Functions

15-422

Create a Pareto plot of the last three objectives.

paretoplot(sol,[2 3 4])

 paretoplot

15-423

Edit Pareto Plot

Create and solve a multiobjective optimization problem using optimization variables.

x = optimvar("x",LowerBound=-1,UpperBound=2);
prob = optimproblem;
prob.Objective.obj1 = x^2;
prob.Objective.obj2 = (x-1)^2;
[sol,fval] = solve(prob,Solver="paretosearch");

Solving problem using paretosearch.

Pareto set found that satisfies the constraints.

Optimization completed because the relative change in the volume of the Pareto set
is less than 'options.ParetoSetChangeTolerance' and constraints are satisfied to within
'options.ConstraintTolerance'.

Plot the Pareto front. To enable editing, obtain a handle to the plot.

h = paretoplot(sol);

15 Functions

15-424

Change the markers from blue 'o' to red 'x'. To obtain an undistorted view, set the axes to have
equal lengths.

h.Marker = "x";
h.MarkerEdgeColor = "r";
axis equal

 paretoplot

15-425

For a complete list of editable properties, see Scatter Properties.

Input Arguments
val — Optimization values
OptimizationValues object

Optimization values, specified as an OptimizationValues object. Typically, vals is the solution to
a multiobjective problem, the sol output of solve.

paretoplot can plot either two or three objectives. If you have more than three objectives,
paretoplot plots the first three. Specify the two or three objectives to plot using the objlabels or
objindex arguments.
Example: sol

objlabels — Objective function labels
string vector

Objective function labels, specified as a string vector of two or three entries. The entries are objective
function labels in the optimization problem.
Example: ["obj1" "obj2"]
Data Types: char | string

15 Functions

15-426

objindex — Objective function indices
positive integer vector

Objective function indices, specified as a positive integer vector. objindex must contain two or three
entries in the range from 1 through the number of objectives.
Example: [4 1 3]
Data Types: double

ax — Axes for plot
handle

Axes for plot, specified as a handle.

See Also
paretosearch | gamultiobj | solve

Topics
Scatter Properties
“Pareto Front for Multiobjective Optimization, Problem-Based” (Global Optimization Toolbox)

Introduced in R2022a

 paretoplot

15-427

prob2struct
Package: optim.problemdef

Convert optimization problem or equation problem to solver form

Syntax
problem = prob2struct(prob)
problem = prob2struct(prob,x0)
problem = prob2struct(___ ,Name,Value)

Description
Use prob2struct to convert an optimization problem or equation problem to solver form.

Tip For the full workflow, see “Problem-Based Optimization Workflow” on page 9-2 or “Problem-
Based Workflow for Solving Equations” on page 9-4.

problem = prob2struct(prob) returns an optimization problem structure suitable for a solver-
based solution. For nonlinear problems, prob2struct creates files for the objective function, and, if
necessary, for nonlinear constraint functions and supporting files.

problem = prob2struct(prob,x0) also converts the initial point structure x0 and includes it in
problem.

problem = prob2struct(___ ,Name,Value), for any input arguments, specifies additional
options using one or more name-value pair arguments. For example, for a nonlinear optimization
problem, problem = prob2struct(prob,'ObjectiveFunctionName','objfun1') specifies
that prob2struct creates an objective function file named objfun1.m in the current folder.

Examples

Convert Problem to Structure

Convert an optimization problem object to a problem structure.

Input the basic MILP problem from “Mixed-Integer Linear Programming Basics: Problem-Based” on
page 8-108.

ingots = optimvar('ingots',4,1,'Type','integer','LowerBound',0,'UpperBound',1);
alloys = optimvar('alloys',4,1,'LowerBound',0);

weightIngots = [5,3,4,6];
costIngots = weightIngots.*[350,330,310,280];
costAlloys = [500,450,400,100];
cost = costIngots*ingots + costAlloys*alloys;

steelprob = optimproblem;

15 Functions

15-428

steelprob.Objective = cost;

totalweight = weightIngots*ingots + sum(alloys);

carbonIngots = [5,4,5,3]/100;
molybIngots = [3,3,4,4,]/100;
carbonAlloys = [8,7,6,3]/100;
molybAlloys = [6,7,8,9]/100;

totalCarbon = (weightIngots.*carbonIngots)*ingots + carbonAlloys*alloys;
totalMolyb = (weightIngots.*molybIngots)*ingots + molybAlloys*alloys;

steelprob.Constraints.conswt = totalweight == 25;
steelprob.Constraints.conscarb = totalCarbon == 1.25;
steelprob.Constraints.consmolyb = totalMolyb == 1.25;

Convert the problem to an intlinprog problem structure.

problem = prob2struct(steelprob);

Examine the resulting linear equality constraint matrix and vector.

Aeq = problem.Aeq

Aeq =
 (1,1) 1.0000
 (2,1) 0.0800
 (3,1) 0.0600
 (1,2) 1.0000
 (2,2) 0.0700
 (3,2) 0.0700
 (1,3) 1.0000
 (2,3) 0.0600
 (3,3) 0.0800
 (1,4) 1.0000
 (2,4) 0.0300
 (3,4) 0.0900
 (1,5) 5.0000
 (2,5) 0.2500
 (3,5) 0.1500
 (1,6) 3.0000
 (2,6) 0.1200
 (3,6) 0.0900
 (1,7) 4.0000
 (2,7) 0.2000
 (3,7) 0.1600
 (1,8) 6.0000
 (2,8) 0.1800
 (3,8) 0.2400

beq = problem.beq

beq = 3×1

 25.0000
 1.2500
 1.2500

 prob2struct

15-429

Examine the bounds.

problem.lb

ans = 8×1

 0
 0
 0
 0
 0
 0
 0
 0

problem.ub

ans = 8×1

 Inf
 Inf
 Inf
 Inf
 1
 1
 1
 1

Solve the problem by calling intlinprog.

x = intlinprog(problem)

LP: Optimal objective value is 8125.600000.

Cut Generation: Applied 3 mir cuts.
 Lower bound is 8495.000000.
 Relative gap is 0.00%.

Optimal solution found.

Intlinprog stopped at the root node because the objective value is within a gap
tolerance of the optimal value, options.AbsoluteGapTolerance = 0 (the default
value). The intcon variables are integer within tolerance,
options.IntegerTolerance = 1e-05 (the default value).

x = 8×1

 7.2500
 0
 0.2500
 3.5000
 1.0000
 1.0000
 0
 1.0000

15 Functions

15-430

Convert Nonlinear Problem to Structure

Create a nonlinear problem in the problem-based framework.

x = optimvar('x',2);
fun = 100*(x(2) - x(1)^2)^2 + (1 - x(1))^2;
prob = optimproblem('Objective',fun);
mycon = dot(x,x) <= 4;
prob.Constraints.mycon = mycon;
x0.x = [-1;1.5];

Convert prob to an optimization problem structure. Name the generated objective function file
'rosenbrock' and the constraint function file 'circle2'.

problem = prob2struct(prob,x0,'ObjectiveFunctionName','rosenbrock',...
 'ConstraintFunctionName','circle2');

prob2struct creates nonlinear objective and constraint function files in the current folder. To create
these files in a different folder, use the 'FileLocation' name-value pair.

Solve the problem.

[x,fval] = fmincon(problem)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

x = 2×1

 1.0000
 1.0000

fval = 4.6238e-11

Input Arguments
prob — Optimization problem or equation problem
OptimizationProblem object | EquationProblem object

Optimization problem or equation problem, specified as an OptimizationProblem object or an
EquationProblem object. Create an optimization problem by using optimproblem; create an
equation problem by using eqnproblem.

Warning The problem-based approach does not support complex values in an objective function,
nonlinear equalities, or nonlinear inequalities. If a function calculation has a complex value, even as
an intermediate value, the final result can be incorrect.

 prob2struct

15-431

Example: prob = optimproblem; prob.Objective = obj; prob.Constraints.cons1 =
cons1;

Example: prob = eqnproblem; prob.Equations = eqs;

x0 — Initial point
structure | vector of OptimizationValues objects

Initial point, specified as a structure with field names equal to the variable names in prob.

For some Global Optimization Toolbox solvers, x0 can be a vector of OptimizationValues objects
representing multiple initial points. Create the points using the optimvalues function. These solvers
are:

• ga, gamultiobj, paretosearch and particleswarm. These solvers accept multiple starting
points as members of the initial population.

• MultiStart. This solver accepts multiple initial points for a local solver such as fmincon.
• surrogateopt. This solver accepts multiple initial points to help create an initial surrogate.

For an example using x0 with named index variables, see “Create Initial Point for Optimization with
Named Index Variables” on page 9-47.
Example: If prob has variables named x and y: x0.x = [3,2,17]; x0.y = [pi/3,2*pi/3].
Data Types: struct

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: problem = prob2struct(prob,'FileLocation','C:\Documents\myproblem')

ConstraintDerivative — Indication to use automatic differentiation for constraint
functions
'auto' (default) | 'auto-forward' | 'auto-reverse' | 'finite-differences'

Indication to use automatic differentiation (AD) for nonlinear constraint functions, specified as the
comma-separated pair consisting of 'ConstraintDerivative' and 'auto' (use AD if possible),
'auto-forward' (use forward AD if possible), 'auto-reverse' (use reverse AD if possible), or
'finite-differences' (do not use AD). Choices including auto cause the resulting constraint
function file to use gradient information when solving the problem provided that the constraint
functions are supported, as described in “Supported Operations for Optimization Variables and
Expressions” on page 9-43. For an example, see “Supply Derivatives in Problem-Based Workflow” on
page 6-26

Note To use automatic derivatives in a problem converted by prob2struct, pass options specifying
these derivatives.

options = optimoptions('fmincon','SpecifyObjectiveGradient',true,...
 'SpecifyConstraintGradient',true);
problem.options = options;

15 Functions

15-432

Example: 'finite-differences'
Data Types: char | string

ConstraintFunctionName — Name of nonlinear constraint function file
'generatedConstraints' (default) | file name

Name of the nonlinear constraint function file created by prob2struct for an optimization problem,
specified as the comma-separated pair consisting of 'ConstraintFunctionName' and a file name.
This argument applies to fmincon or fminunc problems; see problem. Do not include the file
extension .m in the file name. prob2struct appends the file extension when it creates the file.

If you do not specify ConstraintFunctionName, then prob2struct overwrites
'generatedConstraints.m'. If you do not specify FileLocation, then prob2struct creates the
file in the current folder.

The returned problem structure refers to this function file.
Example: "mynlcons"
Data Types: char | string

EquationFunctionName — Name of equation function file
'generatedEquation' (default) | file name

Name of the nonlinear equation function file created by prob2struct for an equation problem,
specified as the comma-separated pair consisting of 'EquationFunctionName' and a file name.
This argument applies to fsolve, fzero, or lsqnonlin equations; see problem. Do not include the
file extension .m in the file name. prob2struct appends the file extension when it creates the file.

If you do not specify EquationFunctionName, then prob2struct overwrites
'generatedEquation.m'. If you do not specify FileLocation, then prob2struct creates the file
in the current folder.

The returned problem structure refers to this function file.
Example: "myequation"
Data Types: char | string

FileLocation — Location for generated files
current folder (default) | path to a writable folder

Location for generated files (objective function, constraint function, and other subfunction files),
specified as the comma-separated pair consisting of 'FileLocation' and a path to a writable
folder. All the generated files are stored in this folder; multiple folders are not supported.
Example: 'C:Documents\MATLAB\myproject'
Data Types: char | string

ObjectiveDerivative — Indication to use automatic differentiation for objective function
'auto' (default) | 'auto-forward' | 'auto-reverse' | 'finite-differences'

Indication to use automatic differentiation (AD) for nonlinear objective function, specified as the
comma-separated pair consisting of 'ObjectiveDerivative' and 'auto' (use AD if possible),
'auto-forward' (use forward AD if possible), 'auto-reverse' (use reverse AD if possible), or
'finite-differences' (do not use AD). Choices including auto cause the resulting objective

 prob2struct

15-433

function file to include derivative information when solving the problem provided that the objective
function is supported, as described in “Supported Operations for Optimization Variables and
Expressions” on page 9-43. For an example, see “Supply Derivatives in Problem-Based Workflow” on
page 6-26.

Note To use automatic derivatives in a problem converted by prob2struct, pass options specifying
these derivatives.

options = optimoptions('fmincon','SpecifyObjectiveGradient',true,...
 'SpecifyConstraintGradient',true);
problem.options = options;

Example: 'finite-differences'
Data Types: char | string

ObjectiveFunctionName — Name of objective function file
'generatedObjective' (default) | file name

Name of the objective function file created by prob2struct for an optimization problem, specified as
the comma-separated pair consisting of 'ObjectiveFunctionName' and a file name. This argument
applies to fmincon or fminunc problems; see problem. Do not include the file extension .m in the
file name. prob2struct appends the file extension when it creates the file.

If you do not specify ObjectiveFunctionName, then prob2struct overwrites
'generatedObjective.m'. If you do not specify FileLocation, then prob2struct creates the
file in the current folder.

The returned problem structure refers to this function file.
Example: "myobj"
Data Types: char | string

Solver — Optimization solver
'intlinprog' | 'linprog' | 'lsqlin' | 'lsqcurvefit' | 'lsqnonlin' | 'lsqnonneg' |
'quadprog' | 'fminunc' | 'fmincon' | 'fzero' | 'fsolve' | 'coneprog' | 'ga' |
'gamultiobj' | 'paretosearch' | 'patternsearch' | 'particleswarm' | 'surrogateopt' |
'simulannealbnd'

Optimization solver, specified as the name of a listed solver. For optimization problems, this table
contains the available solvers for each problem type, including solvers from Global Optimization
Toolbox. Details for equation problems appear below the optimization solver details.

For converting nonlinear problems with integer constraints using prob2struct, the resulting
problem structure can depend on the chosen solver. If you do not have a Global Optimization Toolbox
license, you must specify the solver. See “Integer Constraints in Nonlinear Problem-Based
Optimization” on page 6-46.

The default solver for each optimization problem type is listed here.

15 Functions

15-434

Problem Type Default Solver
Linear Programming (LP) linprog
Mixed-Integer Linear Programming (MILP) intlinprog
Quadratic Programming (QP) quadprog
Second-Order Cone Programming (SOCP) coneprog
Linear Least Squares lsqlin
Nonlinear Least Squares lsqnonlin
Nonlinear Programming (NLP) fminunc for problems with no constraints,

otherwise fmincon
Mixed-Integer Nonlinear Programming (MINLP) ga
Multiobjective gamultiobj

In this table, means the solver is available for the problem type, x means the solver is not
available.

Problem
Type

LP MILP QP SOCP Linear
Least
Squares

Nonlinea
r Least
Squares

NLP MINLP

Solver
linprog x x x x x x x
intlinp
rog

x x x x x x

quadpro
g

x x x x

conepro
g

x x x x x x

lsqlin x x x x x x x
lsqnonn
eg

x x x x x x x

lsqnonl
in

x x x x x x

fminunc x x x
fmincon x x
pattern
search

x x

ga

particl
eswarm

x x x

simulan
nealbnd

x x x

 prob2struct

15-435

Problem
Type

LP MILP QP SOCP Linear
Least
Squares

Nonlinea
r Least
Squares

NLP MINLP

surroga
teopt
gamulti
obj
paretos
earch

x x

Note If you choose lsqcurvefit as the solver for a least-squares problem, solve uses lsqnonlin.
The lsqcurvefit and lsqnonlin solvers are identical for solve.

Caution For maximization problems (prob.ObjectiveSense is "max" or "maximize"), do not
specify a least-squares solver (one with a name beginning lsq). If you do, solve throws an error,
because these solvers cannot maximize.

For equation solving, this table contains the available solvers for each problem type. In the table,

• * indicates the default solver for the problem type.
• Y indicates an available solver.
• N indicates an unavailable solver.

Supported Solvers for Equations
Equation Type lsqlin lsqnonneg fzero fsolve lsqnonlin
Linear * N Y (scalar

only)
Y Y

Linear plus bounds * Y N N Y
Scalar nonlinear N N * Y Y
Nonlinear system N N N * Y
Nonlinear system plus bounds N N N N *

Example: 'intlinprog'
Data Types: char | string

Output Arguments
problem — Problem structure
fmincon problem structure | fminunc problem structure | fsolve problem structure | intlinprog
problem structure | linprog problem structure | lsqlin problem structure | lsqnonlin problem
structure | quadprog problem structure | ga problem structure

Problem structure, returned as an fmincon problem structure, fminunc problem structure,
fsolve problem structure, intlinprog problem structure, linprog problem structure, lsqlin
problem structure, lsqnonlin problem structure, quadprog problem structure, or ga problem
structure.

15 Functions

15-436

The following table gives the resulting default problem type for optimization problems. You can also
obtain nondefault problem types. For example, for nonlinear bound-constrained problems, you can
select most Global Optimization Toolbox solvers by using the solver argument.

Optimization Objective and Constraint Types (Linear
Constraints Include Bounds)

Resulting Problem Type

Linear objective and constraint functions.

At least one problem variable has the 'integer' type.

intlinprog

Linear objective and constraint functions.

No problem variable has the 'integer' type.

linprog

Linear constraint functions.

The objective function is a constant plus a sum of squares of
linear expressions.

lsqlin

Bound constraints.

The objective function is a constant plus a sum of squares of
general nonlinear expressions.

lsqnonlin

Linear constraint functions.

General quadratic objective function.

quadprog

General nonlinear objective function.

No constraints.

fminunc

General nonlinear objective function, and there is at least one
constraint of any type.

Or, there is at least one general nonlinear constraint function.

fmincon

Nonlinear objective function or constraint function, and there
is at least one integer variable.

ga

The following table gives the resulting problem type for equation solving problems.

Equation Types Resulting Problem Type
Linear system with or without bounds lsqlin
Scalar (single) nonlinear equation fzero
Nonlinear system without constraints fsolve
Nonlinear system with bounds lsqnonlin

Note For nonlinear problems, prob2struct creates function files for the objective and nonlinear
constraint functions. For objective and constraint functions that call supporting functions,
prob2struct also creates supporting function files and stores them in the FileLocation folder. To
access extra parameters in generated functions, see “Obtain Generated Function Details” on page 6-
34.

 prob2struct

15-437

For linear and quadratic optimization problems, the problem structure includes an additional field,
f0, that represents an additive constant for the objective function. If you solve the problem structure
using the specified solver, the returned objective function value does not include the f0 value. If you
solve prob using the solve function, the returned objective function value includes the f0 value.

If the ObjectiveSense of prob is 'max' or 'maximize', then problem uses the negative of the
objective function in prob because solvers minimize. To maximize, they minimize the negative of the
original objective function. In this case, the reported optimal function value from the solver is the
negative of the value in the original problem. See “Maximizing an Objective” on page 2-30. You
cannot use lsqlin for a maximization problem.

Tips
• If you call prob2struct multiple times in the same MATLAB session for nonlinear problems, use

the ObjectiveFunctionName or EquationFunctionName argument and, if appropriate, the
ConstraintFunctionName argument. Specifying unique names ensures that the resulting
problem structures refer to the correct objective and constraint functions. Otherwise, subsequent
calls to prob2struct can cause the generated nonlinear function files to overwrite existing files.

• To avoid causing an infinite recursion, do not call prob2struct inside an objective or constraint
function.

• When calling prob2struct in parallel for nonlinear problems, ensure that the resulting objective
and constraint function files have unique names. Doing so avoids each pass of the loop writing to
the same file or files.

Algorithms
Conversion to Solver Form

The basis for the problem structure is an implicit ordering of all problem variables into a single
vector. The order of the problem variables is the same as the order of the Variables property in
prob. See OptimizationProblem. You can also find the order by using varindex.

For example, suppose that the problem variables are in this order:

• x — a 3-by-2-by-4 array
• y — a 3-by-2 array

In this case, the implicit variable order is the same as if the problem variable is vars =
[x(:);y(:)].

The first 24 elements of vars are equivalent to x(:), and the next six elements are equivalent to
y(:), for a total of 30 elements. The lower and upper bounds correspond to this variable ordering,
and each linear constraint matrix has 30 columns.

For problems with general nonlinear objective or constraint functions, prob2struct creates function
files in the current folder or in the folder specified by FileLocation. The returned problem
structure refers to these function files.

Automatic Differentiation

Automatic differentiation (AD) applies to the solve and prob2struct functions under the following
conditions:

15 Functions

15-438

• The objective and constraint functions are supported, as described in “Supported Operations for
Optimization Variables and Expressions” on page 9-43. They do not require use of the
fcn2optimexpr function.

• The solver called by solve is fmincon, fminunc, fsolve, or lsqnonlin.
• For optimization problems, the 'ObjectiveDerivative' and 'ConstraintDerivative'

name-value pair arguments for solve or prob2struct are set to 'auto' (default), 'auto-
forward', or 'auto-reverse'.

• For equation problems, the 'EquationDerivative' option is set to 'auto' (default), 'auto-
forward', or 'auto-reverse'.

When AD Applies All Constraint Functions
Supported

One or More Constraints Not
Supported

Objective Function
Supported

AD used for objective and
constraints

AD used for objective only

Objective Function Not
Supported

AD used for constraints only AD not used

When these conditions are not satisfied, solve estimates gradients by finite differences, and
prob2struct does not create gradients in its generated function files.

Solvers choose the following type of AD by default:

• For a general nonlinear objective function, fmincon defaults to reverse AD for the objective
function. fmincon defaults to reverse AD for the nonlinear constraint function when the number
of nonlinear constraints is less than the number of variables. Otherwise, fmincon defaults to
forward AD for the nonlinear constraint function.

• For a general nonlinear objective function, fminunc defaults to reverse AD.
• For a least-squares objective function, fmincon and fminunc default to forward AD for the

objective function. For the definition of a problem-based least-squares objective function, see
“Write Objective Function for Problem-Based Least Squares” on page 11-96.

• lsqnonlin defaults to forward AD when the number of elements in the objective vector is greater
than or equal to the number of variables. Otherwise, lsqnonlin defaults to reverse AD.

• fsolve defaults to forward AD when the number of equations is greater than or equal to the
number of variables. Otherwise, fsolve defaults to reverse AD.

Note To use automatic derivatives in a problem converted by prob2struct, pass options specifying
these derivatives.

options = optimoptions('fmincon','SpecifyObjectiveGradient',true,...
 'SpecifyConstraintGradient',true);
problem.options = options;

Currently, AD works only for first derivatives; it does not apply to second or higher derivatives. So, for
example, if you want to use an analytic Hessian to speed your optimization, you cannot use solve
directly, and must instead use the approach described in “Supply Derivatives in Problem-Based
Workflow” on page 6-26.

 prob2struct

15-439

Compatibility Considerations
Options Name-Value Has Been Removed
Errors starting in R2021a

The Options name-value pair has been removed. To modify options, edit the resulting problem
structure. For example,

problem.options = optimoptions('fmincon',...
 'Display','iter','MaxFunctionEvaluations',5e4);
% Or, to set just one option:
problem.options.MaxFunctionEvaluations = 5e4;

The Options name-value pair was removed because it can cause ambiguity in the presence of
automatic differentiation.

See Also
OptimizationProblem | varindex | EquationProblem

Topics
“Problem-Based Optimization Workflow” on page 9-2
“Supply Derivatives in Problem-Based Workflow” on page 6-26
“Obtain Generated Function Details” on page 6-34
“Output Function for Problem-Based Optimization” on page 6-37

Introduced in R2017b

15 Functions

15-440

quadprog
Quadratic programming

Syntax
x = quadprog(H,f)
x = quadprog(H,f,A,b)
x = quadprog(H,f,A,b,Aeq,beq)
x = quadprog(H,f,A,b,Aeq,beq,lb,ub)
x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0)
x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options)
x = quadprog(problem)
[x,fval] = quadprog(___)
[x,fval,exitflag,output] = quadprog(___)
[x,fval,exitflag,output,lambda] = quadprog(___)

[wsout,fval,exitflag,output,lambda] = quadprog(H,f,A,b,Aeq,beq,lb,ub,ws)

Description
Solver for quadratic objective functions with linear constraints.

quadprog finds a minimum for a problem specified by

min
x

1
2xTHx + f Tx such that

A ⋅ x ≤ b,
Aeq ⋅ x = beq,
lb ≤ x ≤ ub .

H, A, and Aeq are matrices, and f, b, beq, lb, ub, and x are vectors.

You can pass f, lb, and ub as vectors or matrices; see “Matrix Arguments” on page 2-31.

Note quadprog applies only to the solver-based approach. For a discussion of the two optimization
approaches, see “First Choose Problem-Based or Solver-Based Approach” on page 1-3.

x = quadprog(H,f) returns a vector x that minimizes 1/2*x'*H*x + f'*x. The input H must be
positive definite for the problem to have a finite minimum. If H is positive definite, then the solution x
= H\(-f).

x = quadprog(H,f,A,b) minimizes 1/2*x'*H*x + f'*x subject to the restrictions A*x ≤ b.
The input A is a matrix of doubles, and b is a vector of doubles.

x = quadprog(H,f,A,b,Aeq,beq) solves the preceding problem subject to the additional
restrictions Aeq*x = beq. Aeq is a matrix of doubles, and beq is a vector of doubles. If no
inequalities exist, set A = [] and b = [].

x = quadprog(H,f,A,b,Aeq,beq,lb,ub) solves the preceding problem subject to the additional
restrictions lb ≤ x ≤ ub. The inputs lb and ub are vectors of doubles, and the restrictions hold for
each x component. If no equalities exist, set Aeq = [] and beq = [].

 quadprog

15-441

Note If the specified input bounds for a problem are inconsistent, the output x is x0 and the output
fval is [].

quadprog resets components of x0 that violate the bounds lb ≤ x ≤ ub to the interior of the box
defined by the bounds. quadprog does not change components that respect the bounds.

x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0) solves the preceding problem starting from the
vector x0. If no bounds exist, set lb = [] and ub = []. Some quadprog algorithms ignore x0; see
x0.

Note x0 is a required argument for the 'active-set' algorithm.

x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options) solves the preceding problem using the
optimization options specified in options. Use optimoptions to create options. If you do not
want to give an initial point, set x0 = [].

x = quadprog(problem) returns the minimum for problem, a structure described in problem.
Create the problem structure using dot notation or the struct function. Alternatively, create a
problem structure from an OptimizationProblem object by using prob2struct.

[x,fval] = quadprog(___), for any input variables, also returns fval, the value of the objective
function at x:

fval = 0.5*x'*H*x + f'*x

[x,fval,exitflag,output] = quadprog(___) also returns exitflag, an integer that
describes the exit condition of quadprog, and output, a structure that contains information about
the optimization.

[x,fval,exitflag,output,lambda] = quadprog(___) also returns lambda, a structure
whose fields contain the Lagrange multipliers at the solution x.

[wsout,fval,exitflag,output,lambda] = quadprog(H,f,A,b,Aeq,beq,lb,ub,ws) starts
quadprog from the data in the warm start object ws, using the options in ws. The returned argument
wsout contains the solution point in wsout.X. By using wsout as the initial warm start object in a
subsequent solver call, quadprog can work faster.

Examples

Quadratic Program with Linear Constraints

Find the minimum of

f (x) = 1
2x1

2 + x2
2− x1x2− 2x1− 6x2

subject to the constraints

x1 + x2 ≤ 2
−x1 + 2x2 ≤ 2
2x1 + x2 ≤ 3 .

15 Functions

15-442

In quadprog syntax, this problem is to minimize

f (x) = 1
2xTHx + f Tx,

where

H =
1 −1
−1 2

f =
−2
−6

,

subject to the linear constraints.

To solve this problem, first enter the coefficient matrices.

H = [1 -1; -1 2];
f = [-2; -6];
A = [1 1; -1 2; 2 1];
b = [2; 2; 3];

Call quadprog.

[x,fval,exitflag,output,lambda] = ...
 quadprog(H,f,A,b);

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

Examine the final point, function value, and exit flag.

x,fval,exitflag

x = 2×1

 0.6667
 1.3333

fval = -8.2222

exitflag = 1

An exit flag of 1 means the result is a local minimum. Because H is a positive definite matrix, this
problem is convex, so the minimum is a global minimum.

Confirm that H is positive definite by checking its eigenvalues.

eig(H)

ans = 2×1

 0.3820
 2.6180

 quadprog

15-443

Quadratic Program with Linear Equality Constraint

Find the minimum of

f (x) = 1
2x1

2 + x2
2− x1x2− 2x1− 6x2

subject to the constraint

x1 + x2 = 0 .

In quadprog syntax, this problem is to minimize

f (x) = 1
2xTHx + f Tx,

where

H =
1 −1
−1 2

f =
−2
−6

,

subject to the linear constraint.

To solve this problem, first enter the coefficient matrices.

H = [1 -1; -1 2];
f = [-2; -6];
Aeq = [1 1];
beq = 0;

Call quadprog, entering [] for the inputs A and b.

[x,fval,exitflag,output,lambda] = ...
 quadprog(H,f,[],[],Aeq,beq);

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

Examine the final point, function value, and exit flag.

x,fval,exitflag

x = 2×1

 -0.8000
 0.8000

fval = -1.6000

15 Functions

15-444

exitflag = 1

An exit flag of 1 means the result is a local minimum. Because H is a positive definite matrix, this
problem is convex, so the minimum is a global minimum.

Confirm that H is positive definite by checking its eigenvalues.

eig(H)

ans = 2×1

 0.3820
 2.6180

Quadratic Minimization with Linear Constraints and Bounds

Find the x that minimizes the quadratic expression

1
2xTHx + f Tx

where

H =
1 −1 1
−1 2 −2
1 −2 4

, f =
2
−3
1

,

subject to the constraints

0 ≤ x ≤ 1, ∑x = 1/2.

To solve this problem, first enter the coefficients.

H = [1,-1,1
 -1,2,-2
 1,-2,4];
f = [2;-3;1];
lb = zeros(3,1);
ub = ones(size(lb));
Aeq = ones(1,3);
beq = 1/2;

Call quadprog, entering [] for the inputs A and b.

x = quadprog(H,f,[],[],Aeq,beq,lb,ub)

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

x = 3×1

 quadprog

15-445

 0.0000
 0.5000
 0.0000

Quadratic Minimization with Nondefault Options

Set options to monitor the progress of quadprog.

options = optimoptions('quadprog','Display','iter');

Define a problem with a quadratic objective and linear inequality constraints.

H = [1 -1; -1 2];
f = [-2; -6];
A = [1 1; -1 2; 2 1];
b = [2; 2; 3];

To help write the quadprog function call, set the unnecessary inputs to [].

Aeq = [];
beq = [];
lb = [];
ub = [];
x0 = [];

Call quadprog to solve the problem.

x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options)

 Iter Fval Primal Infeas Dual Infeas Complementarity
 0 -8.884885e+00 3.214286e+00 1.071429e-01 1.000000e+00
 1 -8.331868e+00 1.321041e-01 4.403472e-03 1.910489e-01
 2 -8.212804e+00 1.676295e-03 5.587652e-05 1.009601e-02
 3 -8.222204e+00 8.381476e-07 2.793826e-08 1.809485e-05
 4 -8.222222e+00 3.064216e-14 1.352696e-12 7.525735e-13

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

x = 2×1

 0.6667
 1.3333

Quadratic Problem from prob2struct

Create a problem structure using a “Problem-Based Optimization Workflow” on page 9-2. Create an
optimization problem equivalent to “Quadratic Program with Linear Constraints” on page 15-442.

15 Functions

15-446

x = optimvar('x',2);
objec = x(1)^2/2 + x(2)^2 - x(1)*x(2) - 2*x(1) - 6*x(2);
prob = optimproblem('Objective',objec);
prob.Constraints.cons1 = sum(x) <= 2;
prob.Constraints.cons2 = -x(1) + 2*x(2) <= 2;
prob.Constraints.cons3 = 2*x(1) + x(2) <= 3;

Convert prob to a problem structure.

problem = prob2struct(prob);

Solve the problem using quadprog.

[x,fval] = quadprog(problem)

Warning: Your Hessian is not symmetric. Resetting H=(H+H')/2.

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

x = 2×1

 0.6667
 1.3333

fval = -8.2222

Return quadprog Objective Function Value

Solve a quadratic program and return both the solution and the objective function value.

H = [1,-1,1
 -1,2,-2
 1,-2,4];
f = [-7;-12;-15];
A = [1,1,1];
b = 3;
[x,fval] = quadprog(H,f,A,b)

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

x = 3×1

 -3.5714
 2.9286
 3.6429

fval = -47.1786

 quadprog

15-447

Check that the returned objective function value matches the value computed from the quadprog
objective function definition.

fval2 = 1/2*x'*H*x + f'*x

fval2 = -47.1786

Examine quadprog Optimization Process

To see the optimization process for quadprog, set options to show an iterative display and return
four outputs. The problem is to minimize

1
2xTHx + f Tx

subject to

0 ≤ x ≤ 1,

where

H =

2 1 −1

1 3 1
2

−1 1
2 5

, f =
4
−7
12

.

Enter the problem coefficients.

H = [2 1 -1
 1 3 1/2
 -1 1/2 5];
f = [4;-7;12];
lb = zeros(3,1);
ub = ones(3,1);

Set the options to display iterative progress of the solver.

options = optimoptions('quadprog','Display','iter');

Call quadprog with four outputs.

[x fval,exitflag,output] = quadprog(H,f,[],[],[],[],lb,ub,[],options)

 Iter Fval Primal Infeas Dual Infeas Complementarity
 0 2.691769e+01 1.582123e+00 1.712849e+01 1.680447e+00
 1 -3.889430e+00 0.000000e+00 8.564246e-03 9.971731e-01
 2 -5.451769e+00 0.000000e+00 4.282123e-06 2.710131e-02
 3 -5.499997e+00 0.000000e+00 1.221903e-10 6.939689e-07
 4 -5.500000e+00 0.000000e+00 5.842173e-14 3.469847e-10

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

15 Functions

15-448

x = 3×1

 0.0000
 1.0000
 0.0000

fval = -5.5000

exitflag = 1

output = struct with fields:
 message: 'Minimum found that satisfies the constraints....'
 algorithm: 'interior-point-convex'
 firstorderopt: 1.5921e-09
 constrviolation: 0
 iterations: 4
 linearsolver: 'dense'
 cgiterations: []

Return quadprog Lagrange Multipliers

Solve a quadratic programming problem and return the Lagrange multipliers.

H = [1,-1,1
 -1,2,-2
 1,-2,4];
f = [-7;-12;-15];
A = [1,1,1];
b = 3;
lb = zeros(3,1);
[x,fval,exitflag,output,lambda] = quadprog(H,f,A,b,[],[],lb);

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

Examine the Lagrange multiplier structure lambda.

disp(lambda)

 ineqlin: 12.0000
 eqlin: [0x1 double]
 lower: [3x1 double]
 upper: [3x1 double]

The linear inequality constraint has an associated Lagrange multiplier of 12.

Display the multipliers associated with the lower bound.

disp(lambda.lower)

 quadprog

15-449

 5.0000
 0.0000
 0.0000

Only the first component of lambda.lower has a nonzero multiplier. This generally means that only
the first component of x is at the lower bound of zero. Confirm by displaying the components of x.

disp(x)

 0.0000
 1.5000
 1.5000

Return Warm Start Object

To speed subsequent quadprog calls, create a warm start object.

options = optimoptions('quadprog','Algorithm','active-set');
x0 = [1 2 3];
ws = optimwarmstart(x0,options);

Solve a quadratic program using ws.

H = [1,-1,1
 -1,2,-2
 1,-2,4];
f = [-7;-12;-15];
A = [1,1,1];
b = 3;
lb = zeros(3,1);
tic
[ws,fval,exitflag,output,lambda] = quadprog(H,f,A,b,[],[],lb,[],ws);
toc

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.
Elapsed time is 0.021717 seconds.

Change the objective function and solve the problem again.

f = [-10;-15;-20];

tic
[ws,fval,exitflag,output,lambda] = quadprog(H,f,A,b,[],[],lb,[],ws);
toc

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,

15 Functions

15-450

and constraints are satisfied to within the value of the constraint tolerance.
Elapsed time is 0.018485 seconds.

Input Arguments
H — Quadratic objective term
symmetric real matrix

Quadratic objective term, specified as a symmetric real matrix. H represents the quadratic in the
expression 1/2*x'*H*x + f'*x. If H is not symmetric, quadprog issues a warning and uses the
symmetrized version (H + H')/2 instead.

If the quadratic matrix H is sparse, then by default, the 'interior-point-convex' algorithm uses
a slightly different algorithm than when H is dense. Generally, the sparse algorithm is faster on large,
sparse problems, and the dense algorithm is faster on dense or small problems. For more information,
see the LinearSolver option description and “interior-point-convex quadprog Algorithm” on page
10-2.
Example: [2,1;1,3]
Data Types: double

f — Linear objective term
real vector

Linear objective term, specified as a real vector. f represents the linear term in the expression
1/2*x'*H*x + f'*x.
Example: [1;3;2]
Data Types: double

A — Linear inequality constraints
real matrix

Linear inequality constraints, specified as a real matrix. A is an M-by-N matrix, where M is the number
of inequalities, and N is the number of variables (number of elements in x0). For large problems, pass
A as a sparse matrix.

A encodes the M linear inequalities

A*x <= b,

where x is the column vector of N variables x(:), and b is a column vector with M elements.

For example, consider these inequalities:

x1 + 2x2 ≤ 10
3x1 + 4x2 ≤ 20
5x1 + 6x2 ≤ 30,

Specify the inequalities by entering the following constraints.

A = [1,2;3,4;5,6];
b = [10;20;30];

Example: To specify that the x components sum to 1 or less, use A = ones(1,N) and b = 1.

 quadprog

15-451

Data Types: double

b — Linear inequality constraints
real vector

Linear inequality constraints, specified as a real vector. b is an M-element vector related to the A
matrix. If you pass b as a row vector, solvers internally convert b to the column vector b(:). For
large problems, pass b as a sparse vector.

b encodes the M linear inequalities

A*x <= b,

where x is the column vector of N variables x(:), and A is a matrix of size M-by-N.

For example, consider these inequalities:

x1 + 2x2 ≤ 10
3x1 + 4x2 ≤ 20
5x1 + 6x2 ≤ 30.

Specify the inequalities by entering the following constraints.

A = [1,2;3,4;5,6];
b = [10;20;30];

Example: To specify that the x components sum to 1 or less, use A = ones(1,N) and b = 1.
Data Types: double

Aeq — Linear equality constraints
real matrix

Linear equality constraints, specified as a real matrix. Aeq is an Me-by-N matrix, where Me is the
number of equalities, and N is the number of variables (number of elements in x0). For large
problems, pass Aeq as a sparse matrix.

Aeq encodes the Me linear equalities

Aeq*x = beq,

where x is the column vector of N variables x(:), and beq is a column vector with Me elements.

For example, consider these inequalities:

x1 + 2x2 + 3x3 = 10
2x1 + 4x2 + x3 = 20,

Specify the inequalities by entering the following constraints.

Aeq = [1,2,3;2,4,1];
beq = [10;20];

Example: To specify that the x components sum to 1, use Aeq = ones(1,N) and beq = 1.
Data Types: double

15 Functions

15-452

beq — Linear equality constraints
real vector

Linear equality constraints, specified as a real vector. beq is an Me-element vector related to the Aeq
matrix. If you pass beq as a row vector, solvers internally convert beq to the column vector beq(:).
For large problems, pass beq as a sparse vector.

beq encodes the Me linear equalities

Aeq*x = beq,

where x is the column vector of N variables x(:), and Aeq is a matrix of size Me-by-N.

For example, consider these equalities:

x1 + 2x2 + 3x3 = 10
2x1 + 4x2 + x3 = 20.

Specify the equalities by entering the following constraints.

Aeq = [1,2,3;2,4,1];
beq = [10;20];

Example: To specify that the x components sum to 1, use Aeq = ones(1,N) and beq = 1.
Data Types: double

lb — Lower bounds
real vector | real array

Lower bounds, specified as a real vector or real array. If the number of elements in x0 is equal to the
number of elements in lb, then lb specifies that

x(i) >= lb(i) for all i.

If numel(lb) < numel(x0), then lb specifies that

x(i) >= lb(i) for 1 <= i <= numel(lb).

If lb has fewer elements than x0, solvers issue a warning.
Example: To specify that all x components are positive, use lb = zeros(size(x0)).
Data Types: double

ub — Upper bounds
real vector | real array

Upper bounds, specified as a real vector or real array. If the number of elements in x0 is equal to the
number of elements in ub, then ub specifies that

x(i) <= ub(i) for all i.

If numel(ub) < numel(x0), then ub specifies that

x(i) <= ub(i) for 1 <= i <= numel(ub).

If ub has fewer elements than x0, solvers issue a warning.

 quadprog

15-453

Example: To specify that all x components are less than 1, use ub = ones(size(x0)).
Data Types: double

x0 — Initial point
real vector

Initial point, specified as a real vector. The length of x0 is the number of rows or columns of H.

x0 applies to the 'trust-region-reflective' algorithm when the problem has only bound
constraints. x0 also applies to the 'active-set' algorithm.

Note x0 is a required argument for the 'active-set' algorithm.

If you do not specify x0, quadprog sets all components of x0 to a point in the interior of the box
defined by the bounds. quadprog ignores x0 for the 'interior-point-convex' algorithm and for
the 'trust-region-reflective' algorithm with equality constraints.
Example: [1;2;1]
Data Types: double

options — Optimization options
output of optimoptions | structure such as optimset returns

Optimization options, specified as the output of optimoptions or a structure such as optimset
returns.

Some options are absent from the optimoptions display. These options appear in italics in the
following table. For details, see “View Options” on page 2-66.

15 Functions

15-454

All Algorithms

Algorithm Choose the algorithm:

• 'interior-point-convex' (default)
• 'trust-region-reflective'
• 'active-set'

The 'interior-point-convex' algorithm handles only convex
problems. The 'trust-region-reflective' algorithm handles
problems with only bounds or only linear equality constraints, but not
both. The 'active-set' algorithm handles indefinite problems
provided that the projection of H onto the nullspace of Aeq is positive
semidefinite. For details, see “Choosing the Algorithm” on page 2-6.

Diagnostics Display diagnostic information about the function to be minimized or
solved. The choices are 'on' or 'off' (default).

Display Level of display (see “Iterative Display” on page 3-14):

• 'off' or 'none' displays no output.
• 'final' displays only the final output (default).

The 'interior-point-convex' and 'active-set' algorithms allow
additional values:

• 'iter' specifies an iterative display.
• 'iter-detailed' specifies an iterative display with a detailed exit

message.
• 'final-detailed' displays only the final output with a detailed exit

message.
MaxIterations Maximum number of iterations allowed; a positive integer.

• For a 'trust-region-reflective' equality-constrained problem,
the default value is 2*(numberOfVariables –
numberOfEqualities).

• 'active-set' has a default of 10*(numberOfVariables +
numberOfConstraints).

• For all other algorithms and problems, the default value is 200.

For optimset, the option name is MaxIter. See “Current and Legacy
Option Names” on page 14-23.

 quadprog

15-455

OptimalityTolerance Termination tolerance on the first-order optimality; a positive scalar.

• For a 'trust-region-reflective' equality-constrained problem,
the default value is 1e-6.

• For a 'trust-region-reflective' bound-constrained problem,
the default value is 100*eps, about 2.2204e-14.

• For the 'interior-point-convex' and 'active-set'
algorithms, the default value is 1e-8.

See “Tolerances and Stopping Criteria” on page 2-68.

For optimset, the option name is TolFun. See “Current and Legacy
Option Names” on page 14-23.

StepTolerance Termination tolerance on x; a positive scalar.

• For 'trust-region-reflective', the default value is 100*eps,
about 2.2204e-14.

• For 'interior-point-convex', the default value is 1e-12.
• For 'active-set', the default value is 1e-8.

For optimset, the option name is TolX. See “Current and Legacy
Option Names” on page 14-23.

15 Functions

15-456

'trust-region-reflective' Algorithm Only

FunctionTolerance Termination tolerance on the function value; a positive scalar. The
default value depends on the problem type: bound-constrained
problems use 100*eps, and linear equality-constrained problems use
1e-6. See “Tolerances and Stopping Criteria” on page 2-68.

For optimset, the option name is TolFun. See “Current and Legacy
Option Names” on page 14-23.

HessianMultiplyFcn Hessian multiply function, specified as a function handle. For large-
scale structured problems, this function computes the Hessian matrix
product H*Y without actually forming H. The function has the form

W = hmfun(Hinfo,Y)

where Hinfo (and potentially some additional parameters) contain the
matrices used to compute H*Y.

See “Quadratic Minimization with Dense, Structured Hessian” on page
10-26 for an example that uses this option.

For optimset, the option name is HessMult. See “Current and
Legacy Option Names” on page 14-23.

MaxPCGIter Maximum number of PCG (preconditioned conjugate gradient)
iterations; a positive scalar. The default is
max(1,floor(numberOfVariables/2)) for bound-constrained
problems. For equality-constrained problems, quadprog ignores
MaxPCGIter and uses MaxIterations to limit the number of PCG
iterations. For more information, see “Preconditioned Conjugate
Gradient Method” on page 10-9.

PrecondBandWidth Upper bandwidth of the preconditioner for PCG; a nonnegative integer.
By default, quadprog uses diagonal preconditioning (upper bandwidth
0). For some problems, increasing the bandwidth reduces the number
of PCG iterations. Setting PrecondBandWidth to Inf uses a direct
factorization (Cholesky) rather than the conjugate gradients (CG). The
direct factorization is computationally more expensive than CG, but
produces a better quality step toward the solution.

SubproblemAlgorithm Determines how the iteration step is calculated. The default, 'cg',
takes a faster but less accurate step than 'factorization'. See
“trust-region-reflective quadprog Algorithm” on page 10-7.

TolPCG Termination tolerance on the PCG iteration; a positive scalar. The
default is 0.1.

TypicalX Typical x values. The number of elements in TypicalX equals the
number of elements in x0, the starting point. The default value is
ones(numberOfVariables,1). quadprog uses TypicalX internally
for scaling. TypicalX has an effect only when x has unbounded
components, and when a TypicalX value for an unbounded
component exceeds 1.

 quadprog

15-457

'interior-point-convex' Algorithm Only

ConstraintTolerance Tolerance on the constraint violation; a positive scalar. The default is
1e-8.

For optimset, the option name is TolCon. See “Current and Legacy
Option Names” on page 14-23.

LinearSolver Type of internal linear solver in the algorithm:

• 'auto' (default) — Use 'sparse' if the H matrix is sparse and
'dense' otherwise.

• 'sparse' — Use sparse linear algebra. See “Sparse Matrices”.
• 'dense' — Use dense linear algebra.

'active-set' Algorithm Only

ConstraintTolerance Tolerance on the constraint violation; a positive scalar. The default
value is 1e-8.

For optimset, the option name is TolCon. See “Current and Legacy
Option Names” on page 14-23.

ObjectiveLimit A tolerance (stopping criterion) that is a scalar. If the objective
function value goes below ObjectiveLimit and the current point is
feasible, the iterations halt because the problem is unbounded,
presumably. The default value is -1e20.

problem — Problem structure
structure

Problem structure, specified as a structure with these fields:

H Symmetric matrix in 1/2*x'*H*x
f Vector in linear term f'*x
Aineq Matrix in linear inequality constraints Aineq*x ≤ bineq
bineq Vector in linear inequality constraints Aineq*x ≤ bineq
Aeq Matrix in linear equality constraints Aeq*x = beq
beq Vector in linear equality constraints Aeq*x = beq
lb Vector of lower bounds
ub Vector of upper bounds
x0 Initial point for x
solver 'quadprog'
options Options created using optimoptions or optimset

The required fields are H, f, solver, and options. When solving, quadprog ignores any fields in
problem other than those listed.

Note You cannot use warm start with the problem argument.

15 Functions

15-458

Data Types: struct

ws — Warm start object
object created using optimwarmstart

Warm start object, specified as an object created using optimwarmstart. The warm start object
contains the start point and options, and optional data for memory size in code generation. See
“Warm Start Best Practices” on page 10-71.
Example: ws = optimwarmstart(x0,options)

Output Arguments
x — Solution
real vector

Solution, returned as a real vector. x is the vector that minimizes 1/2*x'*H*x + f'*x subject to all
bounds and linear constraints. x can be a local minimum for nonconvex problems. For convex
problems, x is a global minimum. For more information, see “Local vs. Global Optima” on page 4-22.

wsout — Solution warm start object
QuadprogWarmStart object

Solution warm start object, returned as a QuadprogWarmStart object. The solution point is
wsout.X.

You can use wsout as the input warm start object in a subsequent quadprog call.

fval — Objective function value at solution
real scalar

Objective function value at the solution, returned as a real scalar. fval is the value of
1/2*x'*H*x + f'*x at the solution x.

exitflag — Reason quadprog stopped
integer

Reason quadprog stopped, returned as an integer described in this table.

All Algorithms
1 Function converged to the solution x.
0 Number of iterations exceeded options.MaxIterations.
-2 Problem is infeasible. Or, for 'interior-point-convex', the step

size was smaller than options.StepTolerance, but constraints
were not satisfied.

-3 Problem is unbounded.
'interior-point-convex' Algorithm
2 Step size was smaller than options.StepTolerance, constraints

were satisfied.
-6 Nonconvex problem detected.
-8 Unable to compute a step direction.

 quadprog

15-459

'trust-region-reflective' Algorithm
4 Local minimum found; minimum is not unique.
3 Change in the objective function value was smaller than

options.FunctionTolerance.
-4 Current search direction was not a direction of descent. No further

progress could be made.
'active-set' Algorithm
-6 Nonconvex problem detected; projection of H onto the nullspace of

Aeq is not positive semidefinite.

Note Occasionally, the 'active-set' algorithm halts with exit flag 0 when the problem is, in fact,
unbounded. Setting a higher iteration limit also results in exit flag 0.

output — Information about optimization process
structure

Information about the optimization process, returned as a structure with these fields:

iterations Number of iterations taken
algorithm Optimization algorithm used
cgiterations Total number of PCG iterations ('trust-region-

reflective' algorithm only)
constrviolation Maximum of constraint functions
firstorderopt Measure of first-order optimality
linearsolver Type of internal linear solver, 'dense' or 'sparse'

('interior-point-convex' algorithm only)
message Exit message

lambda — Lagrange multipliers at solution
structure

Lagrange multipliers at the solution, returned as a structure with these fields:

lower Lower bounds lb
upper Upper bounds ub
ineqlin Linear inequalities
eqlin Linear equalities

For details, see “Lagrange Multiplier Structures” on page 3-22.

Algorithms
'interior-point-convex'

The 'interior-point-convex' algorithm attempts to follow a path that is strictly inside the
constraints. It uses a presolve module to remove redundancies and to simplify the problem by solving
for components that are straightforward.

15 Functions

15-460

The algorithm has different implementations for a sparse Hessian matrix H and for a dense matrix.
Generally, the sparse implementation is faster on large, sparse problems, and the dense
implementation is faster on dense or small problems. For more information, see “interior-point-
convex quadprog Algorithm” on page 10-2.

'trust-region-reflective'

The 'trust-region-reflective' algorithm is a subspace trust-region method based on the
interior-reflective Newton method described in [1]. Each iteration involves the approximate solution
of a large linear system using the method of preconditioned conjugate gradients (PCG). For more
information, see “trust-region-reflective quadprog Algorithm” on page 10-7.

'active-set'

The 'active-set' algorithm is a projection method, similar to the one described in [2]. The
algorithm is not large-scale; see “Large-Scale vs. Medium-Scale Algorithms” on page 2-10. For more
information, see “active-set quadprog Algorithm” on page 10-11.

Warm Start

A warm start object maintains a list of active constraints from the previous solved problem. The
solver carries over as much active constraint information as possible to solve the current problem. If
the previous problem is too different from the current one, no active set information is reused. In this
case, the solver effectively executes a cold start in order to rebuild the list of active constraints.

Alternative Functionality
App

The Optimize Live Editor task provides a visual interface for quadprog.

References
[1] Coleman, T. F., and Y. Li. “A Reflective Newton Method for Minimizing a Quadratic Function

Subject to Bounds on Some of the Variables.” SIAM Journal on Optimization. Vol. 6, Number
4, 1996, pp. 1040–1058.

[2] Gill, P. E., W. Murray, and M. H. Wright. Practical Optimization. London: Academic Press, 1981.

[3] Gould, N., and P. L. Toint. “Preprocessing for quadratic programming.” Mathematical
Programming. Series B, Vol. 100, 2004, pp. 95–132.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• quadprog supports code generation using either the codegen function or the MATLAB Coder
app. You must have a MATLAB Coder license to generate code.

• The target hardware must support standard double-precision floating-point computations. You
cannot generate code for single-precision or fixed-point computations.

 quadprog

15-461

• Code generation targets do not use the same math kernel libraries as MATLAB solvers. Therefore,
code generation solutions can vary from solver solutions, especially for poorly conditioned
problems.

• quadprog does not support the problem argument for code generation.

[x,fval] = quadprog(problem) % Not supported

• All quadprog input matrices such as A, Aeq, lb, and ub must be full, not sparse. You can convert
sparse matrices to full by using the full function.

• The lb and ub arguments must have the same number of entries as the number of columns in H or
must be empty [].

• For advanced code optimization involving embedded processors, you also need an Embedded
Coder license.

• You must include options for quadprog and specify them using optimoptions. The options must
include the Algorithm option, set to 'active-set'.

options = optimoptions('quadprog','Algorithm','active-set');
[x,fval,exitflag] = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options);

• Code generation supports these options:

• Algorithm — Must be 'active-set'
• ConstraintTolerance
• MaxIterations
• ObjectiveLimit
• OptimalityTolerance
• StepTolerance

• Generated code has limited error checking for options. The recommended way to update an option
is to use optimoptions, not dot notation.

opts = optimoptions('quadprog','Algorithm','active-set');
opts = optimoptions(opts,'MaxIterations',1e4); % Recommended
opts.MaxIterations = 1e4; % Not recommended

• Do not load options from a file. Doing so can cause code generation to fail. Instead, create options
in your code.

• If you specify an option that is not supported, the option is typically ignored during code
generation. For reliable results, specify only supported options.

For an example, see “Generate Code for quadprog” on page 10-62.

See Also
linprog | lsqlin | optimoptions | prob2struct | Optimize | optimwarmstart

Topics
“Solver-Based Optimization Problem Setup”
“Optimization Results”
“Quadratic Programming and Cone Programming”
“Warm Start Best Practices” on page 10-71
“Mixed-Integer Quadratic Programming Portfolio Optimization: Solver-Based” on page 8-82

15 Functions

15-462

Introduced before R2006a

 quadprog

15-463

resetoptions
Reset options

Syntax
options2 = resetoptions(options,optionname)
options2 = resetoptions(options,multioptions)

Description
options2 = resetoptions(options,optionname) resets the specified option back to its default
value.

Tip If you want only one set of options, use options as the output argument instead of options2.

options2 = resetoptions(options,multioptions) resets multiple options back to their
default values.

Examples

Reset One Option

Create options with some nondefault settings. Examine the MaxIterations setting.

options = optimoptions('fmincon','Algorithm','sqp','MaxIterations',2e4,...
 'SpecifyObjectiveGradient',true);
options.MaxIterations

ans =

 20000

Reset the MaxIterations option to its default value.

options2 = resetoptions(options,'MaxIterations');
options2.MaxIterations

ans =

 400

The default value of the MaxIterations option is 400 for the 'sqp' algorithm.

15 Functions

15-464

Reset Multiple Options

Create options with some nondefault settings. Examine the MaxIterations setting.

options = optimoptions('fmincon','Algorithm','sqp','MaxIterations',2e4,...
 'SpecifyObjectiveGradient',true);
options.MaxIterations

ans =

 20000

Reset the MaxIterations and Algorithm options to their default values. Examine the
MaxIterations setting.

multiopts = {'MaxIterations','Algorithm'};
options2 = resetoptions(options,multiopts);
options2.MaxIterations

ans =

 1000

The default value of the MaxIterations option is 1000 for the default 'interior-point'
algorithm.

Input Arguments
options — Optimization options
object as created by optimoptions

Optimization options, specified as an object as created by optimoptions.
Example:
optimoptions('fmincon','Algorithm','sqp','SpecifyObjectiveGradient',true)

optionname — Option name
name in single quote marks

Option names, specified as a name in single quote marks. The allowable option names for each solver
are listed in the options section of the function reference page.
Example: 'Algorithm'
Data Types: char

multioptions — Multiple options
cell array of names

Multiple options, specified as a cell array of names.
Example: {'Algorithm','OptimalityTolerance'}
Data Types: cell

 resetoptions

15-465

Output Arguments
options2 — Optimization options
object as created by optimoptions

Optimization options, returned as an object as created by optimoptions.

See Also
optimoptions

Topics
“Set Options”

Introduced in R2016a

15 Functions

15-466

secondordercone
Create second-order cone constraint

Syntax
socConstraint = secondordercone(A,b,d,gamma)

Description
The secondordercone function creates a second-order cone constraint representing the inequality

A ⋅ x− b ≤ dT ⋅ x− γ

from the input matrices A, b, d, and gamma.

socConstraint = secondordercone(A,b,d,gamma) creates a second-order cone constraint
object socConstraint.

Solve problems with second-order cone constraints by using the coneprog function. To represent
multiple cone constraints, pass an array of these constraints to coneprog as shown in the example
“Several Cone Constraints” on page 15-468.

Examples

Single Cone Constraint

To set up a problem with a second-order cone constraint, create a second-order cone constraint
object.

A = diag([1,1/2,0]);
b = zeros(3,1);
d = [0;0;1];
gamma = 0;
socConstraints = secondordercone(A,b,d,gamma);

Create an objective function vector.

f = [-1,-2,0];

The problem has no linear constraints. Create empty matrices for these constraints.

Aineq = [];
bineq = [];
Aeq = [];
beq = [];

Set upper and lower bounds on x(3).

lb = [-Inf,-Inf,0];
ub = [Inf,Inf,2];

 secondordercone

15-467

Solve the problem by using the coneprog function.

[x,fval] = coneprog(f,socConstraints,Aineq,bineq,Aeq,beq,lb,ub)

Optimal solution found.

x = 3×1

 0.4851
 3.8806
 2.0000

fval = -8.2462

The solution component x(3) is at its upper bound. The cone constraint is active at the solution:

norm(A*x-b) - d'*x % Near 0 when the constraint is active

ans = -2.5677e-08

Several Cone Constraints

To set up a problem with several second-order cone constraints, create an array of constraint objects.
To save time and memory, create the highest-index constraint first.

A = diag([1,2,0]);
b = zeros(3,1);
d = [0;0;1];
gamma = -1;
socConstraints(3) = secondordercone(A,b,d,gamma);

A = diag([3,0,1]);
d = [0;1;0];
socConstraints(2) = secondordercone(A,b,d,gamma);

A = diag([0;1/2;1/2]);
d = [1;0;0];
socConstraints(1) = secondordercone(A,b,d,gamma);

Create the linear objective function vector.

f = [-1;-2;-4];

Solve the problem by using the coneprog function.

[x,fval] = coneprog(f,socConstraints)

Optimal solution found.

x = 3×1

 0.4238
 1.6477
 2.3225

15 Functions

15-468

fval = -13.0089

Input Arguments
A — Linear factor of cone
real matrix

Linear factor of the cone, specified as a real matrix. The number of columns in A must equal the
number of elements in d, and the number of rows in A must equal the number of elements in b.
Example: diag([1,1/2,0])
Data Types: double

b — Center of cone
real vector

Center of the cone, specified as a real vector. The number of elements in b must equal the number of
rows in A.
Example: zeros(3,1)
Data Types: double

d — Linear bound
real vector

Linear bound, specified as a real vector. The number of elements in d must equal the number of
columns in A.
Example: [0;0;1]
Data Types: double

gamma — Bound
real scalar

Bound, specified as a real scalar. Smaller values of gamma correspond to looser constraints.
Example: -1
Data Types: double

Output Arguments
socConstraint — Second-order cone constraint
SecondOrderConeConstraint object

Second-order cone constraint, returned as a SecondOrderConeConstraint object. Use this object
as a constraint for the coneprog solver. If you have multiple cone constraints, pass a vector of
constraints to coneprog; see “Several Cone Constraints” on page 15-468.

See Also
coneprog | SecondOrderConeConstraint

 secondordercone

15-469

Topics
“Quadratic Programming and Cone Programming”

Introduced in R2020b

15 Functions

15-470

SecondOrderConeConstraint
Second-order cone constraint object

Description
SecondOrderConeConstraint represents the second-order cone constraint

A ⋅ x− b ≤ dT ⋅ x− γ

• The A matrix represents the linear factor of the cone.
• The b vector represents the center of the cone.
• The d vector represents a linear bound.
• The γ scalar represents a bound.

Solve problems with second-order cone constraints by using the coneprog function.

Creation
Create a SecondOrderConeConstraint object by using the secondordercone function.

Properties
A — Linear factor of cone
real matrix

Linear factor of the cone, specified as a real matrix.
Data Types: double

b — Center of cone
real vector

Center of the cone, specified as a real vector.
Data Types: double

d — Linear bound
real vector

Linear bound, specified as a real vector.
Data Types: double

gamma — Bound
real scalar

Bound, specified as a real scalar. Smaller values of gamma correspond to looser constraints.
Data Types: double

 SecondOrderConeConstraint

15-471

Object Functions

Examples

Single Cone Constraint

To set up a problem with a second-order cone constraint, create a second-order cone constraint
object.

A = diag([1,1/2,0]);
b = zeros(3,1);
d = [0;0;1];
gamma = 0;
socConstraints = secondordercone(A,b,d,gamma);

Create an objective function vector.

f = [-1,-2,0];

The problem has no linear constraints. Create empty matrices for these constraints.

Aineq = [];
bineq = [];
Aeq = [];
beq = [];

Set upper and lower bounds on x(3).

lb = [-Inf,-Inf,0];
ub = [Inf,Inf,2];

Solve the problem by using the coneprog function.

[x,fval] = coneprog(f,socConstraints,Aineq,bineq,Aeq,beq,lb,ub)

Optimal solution found.

x = 3×1

 0.4851
 3.8806
 2.0000

fval = -8.2462

The solution component x(3) is at its upper bound. The cone constraint is active at the solution:

norm(A*x-b) - d'*x % Near 0 when the constraint is active

ans = -2.5677e-08

15 Functions

15-472

Several Cone Constraints

To set up a problem with several second-order cone constraints, create an array of constraint objects.
To save time and memory, create the highest-index constraint first.

A = diag([1,2,0]);
b = zeros(3,1);
d = [0;0;1];
gamma = -1;
socConstraints(3) = secondordercone(A,b,d,gamma);

A = diag([3,0,1]);
d = [0;1;0];
socConstraints(2) = secondordercone(A,b,d,gamma);

A = diag([0;1/2;1/2]);
d = [1;0;0];
socConstraints(1) = secondordercone(A,b,d,gamma);

Create the linear objective function vector.

f = [-1;-2;-4];

Solve the problem by using the coneprog function.

[x,fval] = coneprog(f,socConstraints)

Optimal solution found.

x = 3×1

 0.4238
 1.6477
 2.3225

fval = -13.0089

See Also
secondordercone | coneprog

Topics
“Quadratic Programming and Cone Programming”

Introduced in R2020b

 SecondOrderConeConstraint

15-473

show
Package: optim.problemdef

Display information about optimization object

Syntax
show(obj)

Description
Use show to display information about an optimization object.

Tip For the full workflow, see “Problem-Based Optimization Workflow” on page 9-2 or “Problem-
Based Workflow for Solving Equations” on page 9-4.

show(obj) displays information about obj at the command line. If the object display is large,
consider using write instead to save the information in a text file.

Examples

Examine Problem-Based Setup

Examine the various stages of problem construction for optimizing the Rosenbrock function confined
to the unit disk (see “Solve a Constrained Nonlinear Problem, Problem-Based” on page 1-5).

Create a 2-D optimization variable x. Show the variable.

x = optimvar('x',2);
show(x)

 [x(1)]
 [x(2)]

Create an expression for the objective function. Show the expression.

obj = 100*(x(2) - x(1)^2)^2 + (1 - x(1))^2;
show(obj)

 ((100 .* (x(2) - x(1).^2).^2) + (1 - x(1)).^2)

Create an expression for the constraint. Show the constraint.

cons = x(1)^2 + x(2)^2 <= 1;
show(cons)

 (x(1).^2 + x(2).^2) <= 1

Create an optimization problem that has obj as the objective function and cons as the constraint.
Show the problem.

15 Functions

15-474

prob = optimproblem("Objective",obj,"Constraints",cons);
show(prob)

 OptimizationProblem :

 Solve for:
 x

 minimize :
 ((100 .* (x(2) - x(1).^2).^2) + (1 - x(1)).^2)

 subject to :
 (x(1).^2 + x(2).^2) <= 1

Finally, create an initial point [0 0] and solve the problem starting at the initial point.

x0.x = [0 0];
[sol,fval,exitflag] = solve(prob,x0)

Solving problem using fmincon.

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

sol = struct with fields:
 x: [2x1 double]

fval = 0.0457

exitflag =
 OptimalSolution

Examine the solution point.

sol.x

ans = 2×1

 0.7864
 0.6177

Input Arguments
obj — Optimization object
OptimizationProblem object | EquationProblem object | OptimizationExpression object |
OptimizationVariable object | OptimizationConstraint object | OptimizationEquality
object | OptimizationInequality object

Optimization object, specified as one of the following:

 show

15-475

• OptimizationProblem object — show(obj) displays the variables for the solution, objective
function, constraints, and variable bounds.

• EquationProblem object — show(obj) displays the variables for the solution, equations for the
solution, and variable bounds.

• OptimizationExpression object — show(obj) displays the optimization expression.
• OptimizationVariable object — show(obj) displays the optimization variables. This display

does not indicate variable types or bounds; it shows only the variable dimensions and index names
(if any).

• OptimizationConstraint object — show(obj) displays the constraint expression.
• OptimizationEquality object — show(obj) displays the equality expression.
• OptimizationInequality object — show(obj) displays the inequality expression.

See Also
write | showbounds

Topics
“Problem-Based Optimization Workflow” on page 9-2

Introduced in R2019b

15 Functions

15-476

showbounds
Package: optim.problemdef

Display variable bounds

Syntax
showbounds(var)

Description
Use showbounds to display the bounds on optimization variables.

Tip For the full workflow, see “Problem-Based Optimization Workflow” on page 9-2 or “Problem-
Based Workflow for Solving Equations” on page 9-4.

showbounds(var) displays the bounds for var.

Examples

Display Optimization Variable Bounds

Show bounds for various optimization variables.

Create a continuous optimization variable array and display its bounds.

x = optimvar('x',2,2);
showbounds(x)

 x is unbounded.

Set lower bounds of 0 on all elements of x, and set upper bounds on the first row.

x.LowerBound = 0;
x.UpperBound(1,:) = [3,5];
showbounds(x)

 0 <= x(1, 1) <= 3
 0 <= x(2, 1)
 0 <= x(1, 2) <= 5
 0 <= x(2, 2)

Create a binary optimization variable array and display its bounds.

binvar = optimvar('binvar',2,2,'Type','integer',...
 'LowerBound',0,'UpperBound',1);
showbounds(binvar)

 0 <= binvar(1, 1) <= 1
 0 <= binvar(2, 1) <= 1

 showbounds

15-477

 0 <= binvar(1, 2) <= 1
 0 <= binvar(2, 2) <= 1

Create a large optimization variable that has few bounded elements, and display the variable bounds.

bigvar = optimvar('bigvar',100,10,50);
bigvar.LowerBound(55,4,3) = -20;
bigvar.LowerBound(20,5,30) = -40;
bigvar.UpperBound(35,3,35) = -200;
showbounds(bigvar)

 -20 <= bigvar(55, 4, 3)
 -40 <= bigvar(20, 5, 30)
 bigvar(35, 3, 35) <= -200

Input Arguments
var — Optimization variable
OptimizationVariable object

Optimization variable, specified as an OptimizationVariable object. Create var using optimvar.
Example: var = optimvar('var',4,6)

Tips
• For a variable that has many bounds, use writebounds to generate a text file containing the

bound information.

See Also
OptimizationVariable | optimvar | writebounds

Topics
“Problem-Based Optimization Setup”
“Problem-Based Optimization Workflow” on page 9-2

Introduced in R2017b

15 Functions

15-478

showconstr
Package: optim.problemdef

(Not recommended) Display optimization constraint

Syntax
showconstr(constr)

Description
showconstr is not recommended. Use show instead.

showconstr(constr) displays the optimization constraint constr at the MATLAB Command
Window.

Examples

Display Optimization Constraint

Display an array of optimization constraints.

x = optimvar('x',3,2);
constr = sum(x,2) <= [1;3;2];
showconstr(constr)

(1, 1)

 x(1, 1) + x(1, 2) <= 1

(2, 1)

 x(2, 1) + x(2, 2) <= 3

(3, 1)

 x(3, 1) + x(3, 2) <= 2

Input Arguments
constr — Optimization constraint
OptimizationEquality object | OptimizationInequality object | OptimizationConstraint
object

Optimization constraint, specified as an OptimizationEquality object,
OptimizationInequality object, or OptimizationConstraint object. constr can represent a
single constraint or an array of constraints.
Example: constr = x + y <= 1 is a single constraint when x and y are scalar variables.

 showconstr

15-479

Example: constr = sum(x) == 1 is an array of constraints when x is an array of two or more
dimensions.

Tips
• For a large or complicated constraint, use writeconstr to generate a text file containing the

constraint information.

Compatibility Considerations
showconstr is not recommended
Not recommended starting in R2019b

The showconstr function is not recommended. Instead, use show. The show function replaces
showconstr and many other problem-based functions.

There are no plans to remove showconstr at this time.

See Also
OptimizationConstraint | show | write

Topics
“Problem-Based Optimization Setup”
“Problem-Based Optimization Workflow” on page 9-2

Introduced in R2017b

15 Functions

15-480

showexpr
Package: optim.problemdef

(Not recommended) Display optimization expression

Syntax
showexpr(expr)

Description
showexpr is not recommended. Use show instead.

showexpr(expr) displays the optimization expression expr at the MATLAB Command Window.

Examples

Display Optimization Expression

Create an optimization variable and an expression.

x = optimvar('x',3,3);
A = magic(3);
expr = sum(sum(A.*x));

Display the expression.

showexpr(expr)

 8*x(1, 1) + 3*x(2, 1) + 4*x(3, 1) + x(1, 2) + 5*x(2, 2) + 9*x(3, 2)
+ 6*x(1, 3) + 7*x(2, 3) + 2*x(3, 3)

Input Arguments
expr — Optimization expression
OptimizationExpression object

Optimization expression, specified as an OptimizationExpression object.
Example: sum(sum(x))

Tips
• For an expression that has many terms, use writeexpr to generate a text file containing the

expression information.

 showexpr

15-481

Compatibility Considerations
showexpr is not recommended
Not recommended starting in R2019b

The showexpr function is not recommended. Instead, use show. The show function replaces
showexpr and many other problem-based functions.

There are no plans to remove showexpr at this time.

See Also
OptimizationExpression | show | write

Topics
“Problem-Based Optimization Setup”
“Problem-Based Optimization Workflow” on page 9-2

Introduced in R2017b

15 Functions

15-482

showproblem
Package: optim.problemdef

(Not recommended) Display optimization problem

Syntax
showproblem(prob)

Description
showproblem is not recommended. Use show instead.

showproblem(prob) displays the objective function, constraints, and bounds of prob.

Examples

Display Optimization Problem

Create an optimization problem, including an objective function and constraints, and display the
problem.

Create the problem in “Mixed-Integer Linear Programming Basics: Problem-Based” on page 8-108.

steelprob = optimproblem;
ingots = optimvar('ingots',4,1,'Type','integer','LowerBound',0,'UpperBound',1);
alloys = optimvar('alloys',4,1,'LowerBound',0);
weightIngots = [5,3,4,6];
costIngots = weightIngots.*[350,330,310,280];
costAlloys = [500,450,400,100];
cost = costIngots*ingots + costAlloys*alloys;
steelprob.Objective = cost;
totalweight = weightIngots*ingots + sum(alloys);
carbonIngots = [5,4,5,3]/100;
carbonAlloys = [8,7,6,3]/100;
totalCarbon = (weightIngots.*carbonIngots)*ingots + carbonAlloys*alloys;
molybIngots = [3,3,4,4,]/100;
molybAlloys = [6,7,8,9]/100;
totalMolyb = (weightIngots.*molybIngots)*ingots + molybAlloys*alloys;
steelprob.Constraints.conswt = totalweight == 25;
steelprob.Constraints.conscarb = totalCarbon == 1.25;
steelprob.Constraints.consmolyb = totalMolyb == 1.25;

Display the problem.

showproblem(steelprob)

 OptimizationProblem :

 Solve for:
 alloys, ingots

 showproblem

15-483

 where:
 ingots integer

 minimize :
 1750*ingots(1) + 990*ingots(2) + 1240*ingots(3) + 1680*ingots(4)
 + 500*alloys(1) + 450*alloys(2) + 400*alloys(3) + 100*alloys(4)

 subject to conswt:
 5*ingots(1) + 3*ingots(2) + 4*ingots(3) + 6*ingots(4) + alloys(1)
 + alloys(2) + alloys(3) + alloys(4) == 25

 subject to conscarb:
 0.25*ingots(1) + 0.12*ingots(2) + 0.2*ingots(3) + 0.18*ingots(4)
 + 0.08*alloys(1) + 0.07*alloys(2) + 0.06*alloys(3) + 0.03*alloys(4) == 1.25

 subject to consmolyb:
 0.15*ingots(1) + 0.09*ingots(2) + 0.16*ingots(3) + 0.24*ingots(4)
 + 0.06*alloys(1) + 0.07*alloys(2) + 0.08*alloys(3) + 0.09*alloys(4) == 1.25

 variable bounds:
 0 <= alloys(1)
 0 <= alloys(2)
 0 <= alloys(3)
 0 <= alloys(4)

 0 <= ingots(1) <= 1
 0 <= ingots(2) <= 1
 0 <= ingots(3) <= 1
 0 <= ingots(4) <= 1

Input Arguments
prob — Optimization problem or equation problem
OptimizationProblem object | EquationProblem object

Optimization problem or equation problem, specified as an OptimizationProblem object or an
EquationProblem object. Create an optimization problem by using optimproblem; create an
equation problem by using eqnproblem.

Warning The problem-based approach does not support complex values in an objective function,
nonlinear equalities, or nonlinear inequalities. If a function calculation has a complex value, even as
an intermediate value, the final result can be incorrect.

Example: prob = optimproblem; prob.Objective = obj; prob.Constraints.cons1 =
cons1;

Example: prob = eqnproblem; prob.Equations = eqs;

Tips
• showproblem is equivalent to calling all of the following:

15 Functions

15-484

• showexpr(prob.Objective)
• showconstr on each constraint in prob.Constraints
• showbounds on all the variables in prob

• For a problem that has many bounds or constraints, use writeproblem to generate a text file
containing the objective, constraint, and bound information.

Compatibility Considerations
showproblem is not recommended
Not recommended starting in R2019b

The showproblem function is not recommended. Instead, use show. The show function replaces
showproblem and many other problem-based functions.

There are no plans to remove showproblem at this time.

See Also
showbounds | OptimizationProblem | show | write

Topics
“Problem-Based Optimization Setup”
“Problem-Based Optimization Workflow” on page 9-2

Introduced in R2017b

 showproblem

15-485

showvar
Package: optim.problemdef

(Not recommended) Display optimization variable

Syntax
showvar(var)

Description
showvar is not recommended. Use show instead.

showvar(var) displays the optimization variable var at the Command Window.

Examples

Display Optimization Variable

Create an optimization variable and display it.

var = optimvar('var',8,3,'Type','integer');
showvar(var)

 [var(1, 1) var(1, 2) var(1, 3)]
 [var(2, 1) var(2, 2) var(2, 3)]
 [var(3, 1) var(3, 2) var(3, 3)]
 [var(4, 1) var(4, 2) var(4, 3)]
 [var(5, 1) var(5, 2) var(5, 3)]
 [var(6, 1) var(6, 2) var(6, 3)]
 [var(7, 1) var(7, 2) var(7, 3)]
 [var(8, 1) var(8, 2) var(8, 3)]

Input Arguments
var — Optimization variable
OptimizationVariable object

Optimization variable, specified as an OptimizationVariable object. Create var using optimvar.
Example: var = optimvar('var',4,6)

Compatibility Considerations
showvar is not recommended
Not recommended starting in R2019b

The showvar function is not recommended. Instead, use show. The show function replaces showvar
and many other problem-based functions.

15 Functions

15-486

There are no plans to remove showvar at this time.

See Also
optimvar | OptimizationVariable | show | write

Topics
“Problem-Based Optimization Workflow” on page 9-2

Introduced in R2017b

 showvar

15-487

solve
Package: optim.problemdef

Solve optimization problem or equation problem

Syntax
sol = solve(prob)
sol = solve(prob,x0)
sol = solve(prob,x0,ms)
sol = solve(___ ,Name,Value)
[sol,fval] = solve(___)
[sol,fval,exitflag,output,lambda] = solve(___)

Description
Use solve to find the solution of an optimization problem or equation problem.

Tip For the full workflow, see “Problem-Based Optimization Workflow” on page 9-2 or “Problem-
Based Workflow for Solving Equations” on page 9-4.

sol = solve(prob) solves the optimization problem or equation problem prob.

sol = solve(prob,x0) solves prob starting from the point or set of values x0.

sol = solve(prob,x0,ms) solves prob using the ms multiple-start solver. Use this syntax to
search for a better solution than you obtain when not using the ms argument.

sol = solve(___ ,Name,Value) modifies the solution process using one or more name-value pair
arguments in addition to the input arguments in previous syntaxes.

[sol,fval] = solve(___) also returns the objective function value at the solution using any of
the input arguments in previous syntaxes.

[sol,fval,exitflag,output,lambda] = solve(___) also returns an exit flag describing the
exit condition, an output structure containing additional information about the solution process,
and, for non-integer optimization problems, a Lagrange multiplier structure.

Examples

Solve Linear Programming Problem

Solve a linear programming problem defined by an optimization problem.

x = optimvar('x');
y = optimvar('y');
prob = optimproblem;

15 Functions

15-488

prob.Objective = -x - y/3;
prob.Constraints.cons1 = x + y <= 2;
prob.Constraints.cons2 = x + y/4 <= 1;
prob.Constraints.cons3 = x - y <= 2;
prob.Constraints.cons4 = x/4 + y >= -1;
prob.Constraints.cons5 = x + y >= 1;
prob.Constraints.cons6 = -x + y <= 2;

sol = solve(prob)

Solving problem using linprog.

Optimal solution found.

sol = struct with fields:
 x: 0.6667
 y: 1.3333

Solve Nonlinear Programming Problem Using Problem-Based Approach

Find a minimum of the peaks function, which is included in MATLAB®, in the region x2 + y2 ≤ 4. To
do so, create optimization variables x and y.

x = optimvar('x');
y = optimvar('y');

Create an optimization problem having peaks as the objective function.

prob = optimproblem("Objective",peaks(x,y));

Include the constraint as an inequality in the optimization variables.

prob.Constraints = x^2 + y^2 <= 4;

Set the initial point for x to 1 and y to –1, and solve the problem.

x0.x = 1;
x0.y = -1;
sol = solve(prob,x0)

Solving problem using fmincon.

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

sol = struct with fields:
 x: 0.2283
 y: -1.6255

Unsupported Functions Require fcn2optimexpr

If your objective or nonlinear constraint functions are not entirely composed of elementary functions,
you must convert the functions to optimization expressions using fcn2optimexpr. See “Convert

 solve

15-489

Nonlinear Function to Optimization Expression” on page 6-8 and “Supported Operations for
Optimization Variables and Expressions” on page 9-43.

To convert the present example:

convpeaks = fcn2optimexpr(@peaks,x,y);
prob.Objective = convpeaks;
sol2 = solve(prob,x0)

Solving problem using fmincon.

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

sol2 = struct with fields:
 x: 0.2283
 y: -1.6255

Copyright 2018–2020 The MathWorks, Inc.

Solve Mixed-Integer Linear Program Starting from Initial Point

Compare the number of steps to solve an integer programming problem both with and without an
initial feasible point. The problem has eight integer variables and four linear equality constraints, and
all variables are restricted to be positive.

prob = optimproblem;
x = optimvar('x',8,1,'LowerBound',0,'Type','integer');

Create four linear equality constraints and include them in the problem.

Aeq = [22 13 26 33 21 3 14 26
 39 16 22 28 26 30 23 24
 18 14 29 27 30 38 26 26
 41 26 28 36 18 38 16 26];
beq = [7872
 10466
 11322
 12058];
cons = Aeq*x == beq;
prob.Constraints.cons = cons;

Create an objective function and include it in the problem.

f = [2 10 13 17 7 5 7 3];
prob.Objective = f*x;

Solve the problem without using an initial point, and examine the display to see the number of
branch-and-bound nodes.

[x1,fval1,exitflag1,output1] = solve(prob);

Solving problem using intlinprog.
LP: Optimal objective value is 1554.047531.

15 Functions

15-490

Cut Generation: Applied 8 strong CG cuts.
 Lower bound is 1591.000000.

Branch and Bound:

 nodes total num int integer relative
explored time (s) solution fval gap (%)
 10000 1.09 0 - -
 18025 1.74 1 2.906000e+03 4.509804e+01
 21857 2.21 2 2.073000e+03 2.270974e+01
 23544 2.38 3 1.854000e+03 1.180593e+01
 24097 2.44 3 1.854000e+03 1.617251e+00
 24293 2.46 3 1.854000e+03 0.000000e+00

Optimal solution found.

Intlinprog stopped because the objective value is within a gap tolerance of the
optimal value, options.AbsoluteGapTolerance = 0 (the default value). The intcon
variables are integer within tolerance, options.IntegerTolerance = 1e-05 (the
default value).

For comparison, find the solution using an initial feasible point.

x0.x = [8 62 23 103 53 84 46 34]';
[x2,fval2,exitflag2,output2] = solve(prob,x0);

Solving problem using intlinprog.
LP: Optimal objective value is 1554.047531.

Cut Generation: Applied 8 strong CG cuts.
 Lower bound is 1591.000000.
 Relative gap is 59.20%.

Branch and Bound:

 nodes total num int integer relative
explored time (s) solution fval gap (%)
 3627 0.48 2 2.154000e+03 2.593968e+01
 5844 0.73 3 1.854000e+03 1.180593e+01
 6204 0.76 3 1.854000e+03 1.455526e+00
 6400 0.78 3 1.854000e+03 0.000000e+00

Optimal solution found.

Intlinprog stopped because the objective value is within a gap tolerance of the
optimal value, options.AbsoluteGapTolerance = 0 (the default value). The intcon
variables are integer within tolerance, options.IntegerTolerance = 1e-05 (the
default value).

fprintf('Without an initial point, solve took %d steps.\nWith an initial point, solve took %d steps.',output1.numnodes,output2.numnodes)

Without an initial point, solve took 24293 steps.
With an initial point, solve took 6400 steps.

Giving an initial point does not always improve the problem. For this problem, using an initial point
saves time and computational steps. However, for some problems, an initial point can cause solve to
take more steps.

 solve

15-491

Specify Starting Points and Values for surrogateopt, Problem-Based

For some solvers, you can pass the objective and constraint function values, if any, to solve in the x0
argument. This can save time in the solver. Pass a vector of OptimizationValues objects. Create
this vector using the optimvalues function.

The solvers that can use the objective function values are:

• ga
• gamultiobj
• paretosearch
• surrogateopt

The solvers that can use nonlinear constraint function values are:

• paretosearch
• surrogateopt

For example, minimize the peaks function using surrogateopt, starting with values from a grid of
initial points. Create a grid from -10 to 10 in the x variable, and –5/2 to 5/2 in the y variable with
spacing 1/2. Compute the objective function values at the initial points.

x = optimvar("x",LowerBound=-10,UpperBound=10);
y = optimvar("y",LowerBound=-5/2,UpperBound=5/2);
prob = optimproblem("Objective",peaks(x,y));
xval = -10:10;
yval = (-5:5)/2;
[x0x,x0y] = meshgrid(xval,yval);
peaksvals = peaks(x0x,x0y);

Pass the values in the x0 argument by using optimvalues. This saves time for solve, as solve
does not need to compute the values. Pass the values as row vectors.

x0 = optimvalues(prob,'x',x0x(:)','y',x0y(:)',...
 "Objective",peaksvals(:)');

Solve the problem using surrogateopt with the initial values.

[sol,fval,eflag,output] = solve(prob,x0,Solver="surrogateopt")

Solving problem using surrogateopt.

15 Functions

15-492

surrogateopt stopped because it exceeded the function evaluation limit set by
'options.MaxFunctionEvaluations'.

sol = struct with fields:
 x: 0.2283
 y: -1.6256

fval = -6.5511

eflag =
 SolverLimitExceeded

output = struct with fields:
 elapsedtime: 20.1797
 funccount: 200
 constrviolation: 0
 ineq: [1x1 struct]
 rngstate: [1x1 struct]
 message: 'surrogateopt stopped because it exceeded the function evaluation limit set by ...'
 solver: 'surrogateopt'

 solve

15-493

Minimize Nonlinear Function Using Multiple-Start Solver, Problem-Based

Find a local minimum of the peaks function on the range −5 ≤ x, y ≤ 5 starting from the point [–
1,2].

x = optimvar("x",LowerBound=-5,UpperBound=5);
y = optimvar("y",LowerBound=-5,UpperBound=5);
x0.x = -1;
x0.y = 2;
prob = optimproblem(Objective=peaks(x,y));
opts = optimoptions("fmincon",Display="none");
[sol,fval] = solve(prob,x0,Options=opts)

sol = struct with fields:
 x: -3.3867
 y: 3.6341

fval = 1.1224e-07

Try to find a better solution by using the GlobalSearch solver. This solver runs fmincon multiple
times, which potentially yields a better solution.

ms = GlobalSearch;
[sol2,fval2] = solve(prob,x0,ms)

Solving problem using GlobalSearch.

GlobalSearch stopped because it analyzed all the trial points.

All 15 local solver runs converged with a positive local solver exit flag.

sol2 = struct with fields:
 x: 0.2283
 y: -1.6255

fval2 = -6.5511

GlobalSearch finds a solution with a better (lower) objective function value. The exit message
shows that fmincon, the local solver, runs 15 times. The returned solution has an objective function
value of about –6.5511, which is lower than the value at the first solution, 1.1224e–07.

Solve Integer Programming Problem with Nondefault Options

Solve the problem

min
x
−3x1− 2x2− x3 subject to

x3 binary
x1, x2 ≥ 0
x1 + x2 + x3 ≤ 7
4x1 + 2x2 + x3 = 12

without showing iterative display.

15 Functions

15-494

x = optimvar('x',2,1,'LowerBound',0);
x3 = optimvar('x3','Type','integer','LowerBound',0,'UpperBound',1);
prob = optimproblem;
prob.Objective = -3*x(1) - 2*x(2) - x3;
prob.Constraints.cons1 = x(1) + x(2) + x3 <= 7;
prob.Constraints.cons2 = 4*x(1) + 2*x(2) + x3 == 12;

options = optimoptions('intlinprog','Display','off');

sol = solve(prob,'Options',options)

sol = struct with fields:
 x: [2x1 double]
 x3: 1

Examine the solution.

sol.x

ans = 2×1

 0
 5.5000

sol.x3

ans = 1

Use intlinprog to Solve a Linear Program

Force solve to use intlinprog as the solver for a linear programming problem.

x = optimvar('x');
y = optimvar('y');
prob = optimproblem;
prob.Objective = -x - y/3;
prob.Constraints.cons1 = x + y <= 2;
prob.Constraints.cons2 = x + y/4 <= 1;
prob.Constraints.cons3 = x - y <= 2;
prob.Constraints.cons4 = x/4 + y >= -1;
prob.Constraints.cons5 = x + y >= 1;
prob.Constraints.cons6 = -x + y <= 2;

sol = solve(prob,'Solver', 'intlinprog')

Solving problem using intlinprog.
LP: Optimal objective value is -1.111111.

Optimal solution found.

No integer variables specified. Intlinprog solved the linear problem.

sol = struct with fields:
 x: 0.6667

 solve

15-495

 y: 1.3333

Return All Outputs

Solve the mixed-integer linear programming problem described in “Solve Integer Programming
Problem with Nondefault Options” on page 15-494 and examine all of the output data.

x = optimvar('x',2,1,'LowerBound',0);
x3 = optimvar('x3','Type','integer','LowerBound',0,'UpperBound',1);
prob = optimproblem;
prob.Objective = -3*x(1) - 2*x(2) - x3;
prob.Constraints.cons1 = x(1) + x(2) + x3 <= 7;
prob.Constraints.cons2 = 4*x(1) + 2*x(2) + x3 == 12;

[sol,fval,exitflag,output] = solve(prob)

Solving problem using intlinprog.
LP: Optimal objective value is -12.000000.

Optimal solution found.

Intlinprog stopped at the root node because the objective value is within a gap
tolerance of the optimal value, options.AbsoluteGapTolerance = 0 (the default
value). The intcon variables are integer within tolerance,
options.IntegerTolerance = 1e-05 (the default value).

sol = struct with fields:
 x: [2x1 double]
 x3: 1

fval = -12

exitflag =
 OptimalSolution

output = struct with fields:
 relativegap: 0
 absolutegap: 0
 numfeaspoints: 1
 numnodes: 0
 constrviolation: 0
 message: 'Optimal solution found....'
 solver: 'intlinprog'

For a problem without any integer constraints, you can also obtain a nonempty Lagrange multiplier
structure as the fifth output.

15 Functions

15-496

View Solution with Index Variables

Create and solve an optimization problem using named index variables. The problem is to maximize
the profit-weighted flow of fruit to various airports, subject to constraints on the weighted flows.

rng(0) % For reproducibility
p = optimproblem('ObjectiveSense', 'maximize');
flow = optimvar('flow', ...
 {'apples', 'oranges', 'bananas', 'berries'}, {'NYC', 'BOS', 'LAX'}, ...
 'LowerBound',0,'Type','integer');
p.Objective = sum(sum(rand(4,3).*flow));
p.Constraints.NYC = rand(1,4)*flow(:,'NYC') <= 10;
p.Constraints.BOS = rand(1,4)*flow(:,'BOS') <= 12;
p.Constraints.LAX = rand(1,4)*flow(:,'LAX') <= 35;
sol = solve(p);

Solving problem using intlinprog.
LP: Optimal objective value is -1027.472366.

Heuristics: Found 1 solution using ZI round.
 Upper bound is -1027.233133.
 Relative gap is 0.00%.

Optimal solution found.

Intlinprog stopped at the root node because the objective value is within a gap
tolerance of the optimal value, options.AbsoluteGapTolerance = 0 (the default
value). The intcon variables are integer within tolerance,
options.IntegerTolerance = 1e-05 (the default value).

Find the optimal flow of oranges and berries to New York and Los Angeles.

[idxFruit,idxAirports] = findindex(flow, {'oranges','berries'}, {'NYC', 'LAX'})

idxFruit = 1×2

 2 4

idxAirports = 1×2

 1 3

orangeBerries = sol.flow(idxFruit, idxAirports)

orangeBerries = 2×2

 0 980.0000
 70.0000 0

This display means that no oranges are going to NYC, 70 berries are going to NYC, 980 oranges are
going to LAX, and no berries are going to LAX.

List the optimal flow of the following:

Fruit Airports

 solve

15-497

----- --------

Berries NYC

Apples BOS

Oranges LAX

idx = findindex(flow, {'berries', 'apples', 'oranges'}, {'NYC', 'BOS', 'LAX'})

idx = 1×3

 4 5 10

optimalFlow = sol.flow(idx)

optimalFlow = 1×3

 70.0000 28.0000 980.0000

This display means that 70 berries are going to NYC, 28 apples are going to BOS, and 980 oranges are
going to LAX.

Solve Nonlinear System of Equations, Problem-Based

To solve the nonlinear system of equations

exp(− exp(− (x1 + x2))) = x2 1 + x1
2

x1cos(x2) + x2sin(x1) = 1
2

using the problem-based approach, first define x as a two-element optimization variable.

x = optimvar('x',2);

Create the first equation as an optimization equality expression.

eq1 = exp(-exp(-(x(1) + x(2)))) == x(2)*(1 + x(1)^2);

Similarly, create the second equation as an optimization equality expression.

eq2 = x(1)*cos(x(2)) + x(2)*sin(x(1)) == 1/2;

Create an equation problem, and place the equations in the problem.

prob = eqnproblem;
prob.Equations.eq1 = eq1;
prob.Equations.eq2 = eq2;

Review the problem.

show(prob)

15 Functions

15-498

 EquationProblem :

 Solve for:
 x

 eq1:
 exp((-exp((-(x(1) + x(2)))))) == (x(2) .* (1 + x(1).^2))

 eq2:
 ((x(1) .* cos(x(2))) + (x(2) .* sin(x(1)))) == 0.5

Solve the problem starting from the point [0,0]. For the problem-based approach, specify the initial
point as a structure, with the variable names as the fields of the structure. For this problem, there is
only one variable, x.

x0.x = [0 0];
[sol,fval,exitflag] = solve(prob,x0)

Solving problem using fsolve.

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.

sol = struct with fields:
 x: [2x1 double]

fval = struct with fields:
 eq1: -2.4070e-07
 eq2: -3.8255e-08

exitflag =
 EquationSolved

View the solution point.

disp(sol.x)

 0.3532
 0.6061

Unsupported Functions Require fcn2optimexpr

If your equation functions are not composed of elementary functions, you must convert the functions
to optimization expressions using fcn2optimexpr. For the present example:

ls1 = fcn2optimexpr(@(x)exp(-exp(-(x(1)+x(2)))),x);
eq1 = ls1 == x(2)*(1 + x(1)^2);
ls2 = fcn2optimexpr(@(x)x(1)*cos(x(2))+x(2)*sin(x(1)),x);
eq2 = ls2 == 1/2;

 solve

15-499

See “Supported Operations for Optimization Variables and Expressions” on page 9-43 and “Convert
Nonlinear Function to Optimization Expression” on page 6-8.

Input Arguments
prob — Optimization problem or equation problem
OptimizationProblem object | EquationProblem object

Optimization problem or equation problem, specified as an OptimizationProblem object or an
EquationProblem object. Create an optimization problem by using optimproblem; create an
equation problem by using eqnproblem.

Warning The problem-based approach does not support complex values in an objective function,
nonlinear equalities, or nonlinear inequalities. If a function calculation has a complex value, even as
an intermediate value, the final result can be incorrect.

Example: prob = optimproblem; prob.Objective = obj; prob.Constraints.cons1 =
cons1;

Example: prob = eqnproblem; prob.Equations = eqs;

x0 — Initial point
structure | vector of OptimizationValues objects

Initial point, specified as a structure with field names equal to the variable names in prob.

For some Global Optimization Toolbox solvers, x0 can be a vector of OptimizationValues objects
representing multiple initial points. Create the points using the optimvalues function. These solvers
are:

• ga, gamultiobj, paretosearch and particleswarm. These solvers accept multiple starting
points as members of the initial population.

• MultiStart. This solver accepts multiple initial points for a local solver such as fmincon.
• surrogateopt. This solver accepts multiple initial points to help create an initial surrogate.

For an example using x0 with named index variables, see “Create Initial Point for Optimization with
Named Index Variables” on page 9-47.
Example: If prob has variables named x and y: x0.x = [3,2,17]; x0.y = [pi/3,2*pi/3].
Data Types: struct

ms — Multiple start solver
MultiStart object | GlobalSearch object

Multiple start solver, specified as a MultiStart object or a GlobalSearch object. Create ms using
the MultiStart or GlobalSearch commands.

Currently, GlobalSearch supports only the fmincon local solver, and MultiStart supports only
the fmincon, fminunc, and lsqnonlin local solvers.
Example: ms = MultiStart;
Example: ms = GlobalSearch(FunctionTolerance=1e-4);

15 Functions

15-500

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: solve(prob,'Options',opts)

MinNumStartPoints — Minimum number of start points for MultiStart
20 (default) | positive integer

Minimum number of start points for MultiStart, specified as a positive integer. This argument
applies only when you call solve using the ms argument. solve uses all of the values in x0 as start
points. If MinNumStartPoints is greater than the number of values in x0, then solve generates
more start points uniformly at random within the problem bounds. If a component is unbounded,
solve generates points using the default artificial bounds for MultiStart.
Example: solve(prob,x0,ms,MinNumStartPoints=50)
Data Types: double

Options — Optimization options
object created by optimoptions | options structure

Optimization options, specified as an object created by optimoptions or an options structure such
as created by optimset.

Internally, the solve function calls a relevant solver as detailed in the 'solver' argument
reference. Ensure that options is compatible with the solver. For example, intlinprog does not
allow options to be a structure, and lsqnonneg does not allow options to be an object.

For suggestions on options settings to improve an intlinprog solution or the speed of a solution,
see “Tuning Integer Linear Programming” on page 8-52. For linprog, the default 'dual-simplex'
algorithm is generally memory-efficient and speedy. Occasionally, linprog solves a large problem
faster when the Algorithm option is 'interior-point'. For suggestions on options settings to
improve a nonlinear problem's solution, see “Options in Common Use: Tuning and Troubleshooting”
on page 2-61 and “Improve Results”.
Example: options = optimoptions('intlinprog','Display','none')

Solver — Optimization solver
'intlinprog' | 'linprog' | 'lsqlin' | 'lsqcurvefit' | 'lsqnonlin' | 'lsqnonneg' |
'quadprog' | 'fminunc' | 'fmincon' | 'fzero' | 'fsolve' | 'coneprog' | 'ga' |
'gamultiobj' | 'paretosearch' | 'patternsearch' | 'particleswarm' | 'surrogateopt' |
'simulannealbnd'

Optimization solver, specified as the name of a listed solver. For optimization problems, this table
contains the available solvers for each problem type, including solvers from Global Optimization
Toolbox. Details for equation problems appear below the optimization solver details.

For converting nonlinear problems with integer constraints using prob2struct, the resulting
problem structure can depend on the chosen solver. If you do not have a Global Optimization Toolbox
license, you must specify the solver. See “Integer Constraints in Nonlinear Problem-Based
Optimization” on page 6-46.

 solve

15-501

The default solver for each optimization problem type is listed here.

Problem Type Default Solver
Linear Programming (LP) linprog
Mixed-Integer Linear Programming (MILP) intlinprog
Quadratic Programming (QP) quadprog
Second-Order Cone Programming (SOCP) coneprog
Linear Least Squares lsqlin
Nonlinear Least Squares lsqnonlin
Nonlinear Programming (NLP) fminunc for problems with no constraints,

otherwise fmincon
Mixed-Integer Nonlinear Programming (MINLP) ga
Multiobjective gamultiobj

In this table, means the solver is available for the problem type, x means the solver is not
available.

Problem
Type

LP MILP QP SOCP Linear
Least
Squares

Nonlinea
r Least
Squares

NLP MINLP

Solver
linprog x x x x x x x
intlinp
rog

x x x x x x

quadpro
g

x x x x

conepro
g

x x x x x x

lsqlin x x x x x x x
lsqnonn
eg

x x x x x x x

lsqnonl
in

x x x x x x

fminunc x x x
fmincon x x
pattern
search

x x

ga

particl
eswarm

x x x

simulan
nealbnd

x x x

15 Functions

15-502

Problem
Type

LP MILP QP SOCP Linear
Least
Squares

Nonlinea
r Least
Squares

NLP MINLP

surroga
teopt
gamulti
obj
paretos
earch

x x

Note If you choose lsqcurvefit as the solver for a least-squares problem, solve uses lsqnonlin.
The lsqcurvefit and lsqnonlin solvers are identical for solve.

Caution For maximization problems (prob.ObjectiveSense is "max" or "maximize"), do not
specify a least-squares solver (one with a name beginning lsq). If you do, solve throws an error,
because these solvers cannot maximize.

For equation solving, this table contains the available solvers for each problem type. In the table,

• * indicates the default solver for the problem type.
• Y indicates an available solver.
• N indicates an unavailable solver.

Supported Solvers for Equations

Equation Type lsqlin lsqnonneg fzero fsolve lsqnonlin
Linear * N Y (scalar

only)
Y Y

Linear plus bounds * Y N N Y
Scalar nonlinear N N * Y Y
Nonlinear system N N N * Y
Nonlinear system plus bounds N N N N *

Example: 'intlinprog'
Data Types: char | string

ObjectiveDerivative — Indication to use automatic differentiation for objective function
'auto' (default) | 'auto-forward' | 'auto-reverse' | 'finite-differences'

Indication to use automatic differentiation (AD) for nonlinear objective function, specified as 'auto'
(use AD if possible), 'auto-forward' (use forward AD if possible), 'auto-reverse' (use reverse
AD if possible), or 'finite-differences' (do not use AD). Choices including auto cause the
underlying solver to use gradient information when solving the problem provided that the objective
function is supported, as described in “Supported Operations for Optimization Variables and
Expressions” on page 9-43. For an example, see “Effect of Automatic Differentiation in Problem-Based
Optimization” on page 6-23.

 solve

15-503

Solvers choose the following type of AD by default:

• For a general nonlinear objective function, fmincon defaults to reverse AD for the objective
function. fmincon defaults to reverse AD for the nonlinear constraint function when the number
of nonlinear constraints is less than the number of variables. Otherwise, fmincon defaults to
forward AD for the nonlinear constraint function.

• For a general nonlinear objective function, fminunc defaults to reverse AD.
• For a least-squares objective function, fmincon and fminunc default to forward AD for the

objective function. For the definition of a problem-based least-squares objective function, see
“Write Objective Function for Problem-Based Least Squares” on page 11-96.

• lsqnonlin defaults to forward AD when the number of elements in the objective vector is greater
than or equal to the number of variables. Otherwise, lsqnonlin defaults to reverse AD.

• fsolve defaults to forward AD when the number of equations is greater than or equal to the
number of variables. Otherwise, fsolve defaults to reverse AD.

Example: 'finite-differences'
Data Types: char | string

ConstraintDerivative — Indication to use automatic differentiation for constraint
functions
'auto' (default) | 'auto-forward' | 'auto-reverse' | 'finite-differences'

Indication to use automatic differentiation (AD) for nonlinear constraint functions, specified as
'auto' (use AD if possible), 'auto-forward' (use forward AD if possible), 'auto-reverse' (use
reverse AD if possible), or 'finite-differences' (do not use AD). Choices including auto cause
the underlying solver to use gradient information when solving the problem provided that the
constraint functions are supported, as described in “Supported Operations for Optimization Variables
and Expressions” on page 9-43. For an example, see “Effect of Automatic Differentiation in Problem-
Based Optimization” on page 6-23.

Solvers choose the following type of AD by default:

• For a general nonlinear objective function, fmincon defaults to reverse AD for the objective
function. fmincon defaults to reverse AD for the nonlinear constraint function when the number
of nonlinear constraints is less than the number of variables. Otherwise, fmincon defaults to
forward AD for the nonlinear constraint function.

• For a general nonlinear objective function, fminunc defaults to reverse AD.
• For a least-squares objective function, fmincon and fminunc default to forward AD for the

objective function. For the definition of a problem-based least-squares objective function, see
“Write Objective Function for Problem-Based Least Squares” on page 11-96.

• lsqnonlin defaults to forward AD when the number of elements in the objective vector is greater
than or equal to the number of variables. Otherwise, lsqnonlin defaults to reverse AD.

• fsolve defaults to forward AD when the number of equations is greater than or equal to the
number of variables. Otherwise, fsolve defaults to reverse AD.

Example: 'finite-differences'
Data Types: char | string

EquationDerivative — Indication to use automatic differentiation for equations
'auto' (default) | 'auto-forward' | 'auto-reverse' | 'finite-differences'

15 Functions

15-504

Indication to use automatic differentiation (AD) for nonlinear constraint functions, specified as
'auto' (use AD if possible), 'auto-forward' (use forward AD if possible), 'auto-reverse' (use
reverse AD if possible), or 'finite-differences' (do not use AD). Choices including auto cause
the underlying solver to use gradient information when solving the problem provided that the
equation functions are supported, as described in “Supported Operations for Optimization Variables
and Expressions” on page 9-43. For an example, see “Effect of Automatic Differentiation in Problem-
Based Optimization” on page 6-23.

Solvers choose the following type of AD by default:

• For a general nonlinear objective function, fmincon defaults to reverse AD for the objective
function. fmincon defaults to reverse AD for the nonlinear constraint function when the number
of nonlinear constraints is less than the number of variables. Otherwise, fmincon defaults to
forward AD for the nonlinear constraint function.

• For a general nonlinear objective function, fminunc defaults to reverse AD.
• For a least-squares objective function, fmincon and fminunc default to forward AD for the

objective function. For the definition of a problem-based least-squares objective function, see
“Write Objective Function for Problem-Based Least Squares” on page 11-96.

• lsqnonlin defaults to forward AD when the number of elements in the objective vector is greater
than or equal to the number of variables. Otherwise, lsqnonlin defaults to reverse AD.

• fsolve defaults to forward AD when the number of equations is greater than or equal to the
number of variables. Otherwise, fsolve defaults to reverse AD.

Example: 'finite-differences'
Data Types: char | string

Output Arguments
sol — Solution
structure | OptimizationValues vector

Solution, returned as a structure or an OptimizationValues vector. sol is an
OptimizationValues vector when the problem is multiobjective. For single-objective problems, the
fields of the returned structure are the names of the optimization variables in the problem. See
optimvar.

fval — Objective function value at the solution
real number | real vector | real matrix | structure

Objective function value at the solution, returned as one of the following:

Problem Type Returned Value(s)
Optimize scalar objective function f(x) Real number f(sol)
Least squares Real number, the sum of squares of the residuals

at the solution
Solve equation If prob.Equations is a single entry: Real vector

of function values at the solution, meaning the
left side minus the right side of the equations

 solve

15-505

Problem Type Returned Value(s)
If prob.Equations has multiple named fields:
Structure with same names as prob.Equations,
where each field value is the left side minus the
right side of the named equations

Multiobjective Matrix with one row for each objective function
component, and one column for each solution
point.

Tip If you neglect to ask for fval for an objective defined as an optimization expression or equation
expression, you can calculate it using

fval = evaluate(prob.Objective,sol)

If the objective is defined as a structure with only one field,

fval = evaluate(prob.Objective.ObjectiveName,sol)

If the objective is a structure with multiple fields, write a loop.

fnames = fields(prob.Equations);
for i = 1:length(fnames)
 fval.(fnames{i}) = evaluate(prob.Equations.(fnames{i}),sol);
end

exitflag — Reason solver stopped
enumeration variable

Reason the solver stopped, returned as an enumeration variable. You can convert exitflag to its
numeric equivalent using double(exitflag), and to its string equivalent using
string(exitflag).

This table describes the exit flags for the intlinprog solver.

Exit Flag for intlinprog Numeric
Equivalent

Meaning

OptimalWithPoorFeasibili
ty

3 The solution is feasible with respect to the
relative ConstraintTolerance tolerance,
but is not feasible with respect to the absolute
tolerance.

IntegerFeasible 2 intlinprog stopped prematurely, and found
an integer feasible point.

OptimalSolution 1 The solver converged to a solution x.

15 Functions

15-506

Exit Flag for intlinprog Numeric
Equivalent

Meaning

SolverLimitExceeded 0 intlinprog exceeds one of the following
tolerances:

• LPMaxIterations
• MaxNodes
• MaxTime
• RootLPMaxIterations

See “Tolerances and Stopping Criteria” on
page 2-68. solve also returns this exit flag
when it runs out of memory at the root node.

OutputFcnStop -1 intlinprog stopped by an output function or
plot function.

NoFeasiblePointFound -2 No feasible point found.
Unbounded -3 The problem is unbounded.
FeasibilityLost -9 Solver lost feasibility.

Exitflags 3 and -9 relate to solutions that have large infeasibilities. These usually arise from linear
constraint matrices that have large condition number, or problems that have large solution
components. To correct these issues, try to scale the coefficient matrices, eliminate redundant linear
constraints, or give tighter bounds on the variables.

This table describes the exit flags for the linprog solver.

Exit Flag for linprog Numeric
Equivalent

Meaning

OptimalWithPoorFeasibili
ty

3 The solution is feasible with respect to the
relative ConstraintTolerance tolerance,
but is not feasible with respect to the absolute
tolerance.

OptimalSolution 1 The solver converged to a solution x.
SolverLimitExceeded 0 The number of iterations exceeds

options.MaxIterations.
NoFeasiblePointFound -2 No feasible point found.
Unbounded -3 The problem is unbounded.
FoundNaN -4 NaN value encountered during execution of the

algorithm.
PrimalDualInfeasible -5 Both primal and dual problems are infeasible.
DirectionTooSmall -7 The search direction is too small. No further

progress can be made.
FeasibilityLost -9 Solver lost feasibility.

Exitflags 3 and -9 relate to solutions that have large infeasibilities. These usually arise from linear
constraint matrices that have large condition number, or problems that have large solution

 solve

15-507

components. To correct these issues, try to scale the coefficient matrices, eliminate redundant linear
constraints, or give tighter bounds on the variables.

This table describes the exit flags for the lsqlin solver.

Exit Flag for lsqlin Numeric
Equivalent

Meaning

FunctionChangeBelowToler
ance

3 Change in the residual is smaller than the
specified tolerance
options.FunctionTolerance. (trust-
region-reflective algorithm)

StepSizeBelowTolerance 2 Step size smaller than
options.StepTolerance, constraints
satisfied. (interior-point algorithm)

OptimalSolution 1 The solver converged to a solution x.
SolverLimitExceeded 0 The number of iterations exceeds

options.MaxIterations.
NoFeasiblePointFound -2 For optimization problems, the problem is

infeasible. Or, for the interior-point
algorithm, step size smaller than
options.StepTolerance, but constraints
are not satisfied.

For equation problems, no solution found.
IllConditioned -4 Ill-conditioning prevents further optimization.
NoDescentDirectionFound -8 The search direction is too small. No further

progress can be made. (interior-point
algorithm)

This table describes the exit flags for the quadprog solver.

Exit Flag for quadprog Numeric
Equivalent

Meaning

LocalMinimumFound 4 Local minimum found; minimum is not unique.
FunctionChangeBelowToler
ance

3 Change in the objective function value is
smaller than the specified tolerance
options.FunctionTolerance. (trust-
region-reflective algorithm)

StepSizeBelowTolerance 2 Step size smaller than
options.StepTolerance, constraints
satisfied. (interior-point-convex
algorithm)

OptimalSolution 1 The solver converged to a solution x.
SolverLimitExceeded 0 The number of iterations exceeds

options.MaxIterations.

15 Functions

15-508

Exit Flag for quadprog Numeric
Equivalent

Meaning

NoFeasiblePointFound -2 The problem is infeasible. Or, for the
interior-point algorithm, step size smaller
than options.StepTolerance, but
constraints are not satisfied.

IllConditioned -4 Ill-conditioning prevents further optimization.
Nonconvex -6 Nonconvex problem detected. (interior-

point-convex algorithm)
NoDescentDirectionFound -8 Unable to compute a step direction.

(interior-point-convex algorithm)

This table describes the exit flags for the coneprog solver.

Exit Flag for coneprog Numeric
Equivalent

Meaning

OptimalSolution 1 The solver converged to a solution x.
SolverLimitExceeded 0 The number of iterations exceeds

options.MaxIterations, or the solution
time in seconds exceeded options.MaxTime.

NoFeasiblePointFound -2 The problem is infeasible.
Unbounded -3 The problem is unbounded.
DirectionTooSmall -7 The search direction became too small. No

further progress could be made.
Unstable -10 The problem is numerically unstable.

This table describes the exit flags for the lsqcurvefit or lsqnonlin solver.

Exit Flag for lsqnonlin Numeric
Equivalent

Meaning

SearchDirectionTooSmall 4 Magnitude of search direction was smaller
than options.StepTolerance.

FunctionChangeBelowToler
ance

3 Change in the residual was less than
options.FunctionTolerance.

StepSizeBelowTolerance 2 Step size smaller than
options.StepTolerance.

OptimalSolution 1 The solver converged to a solution x.
SolverLimitExceeded 0 Number of iterations exceeded

options.MaxIterations or number of
function evaluations exceeded
options.MaxFunctionEvaluations.

OutputFcnStop -1 Stopped by an output function or plot function.

 solve

15-509

Exit Flag for lsqnonlin Numeric
Equivalent

Meaning

NoFeasiblePointFound -2 For optimization problems, problem is
infeasible: the bounds lb and ub are
inconsistent.

For equation problems, no solution found.

This table describes the exit flags for the fminunc solver.

Exit Flag for fminunc Numeric
Equivalent

Meaning

NoDecreaseAlongSearchDir
ection

5 Predicted decrease in the objective function is
less than the options.FunctionTolerance
tolerance.

FunctionChangeBelowToler
ance

3 Change in the objective function value is less
than the options.FunctionTolerance
tolerance.

StepSizeBelowTolerance 2 Change in x is smaller than the
options.StepTolerance tolerance.

OptimalSolution 1 Magnitude of gradient is smaller than the
options.OptimalityTolerance tolerance.

SolverLimitExceeded 0 Number of iterations exceeds
options.MaxIterations or number of
function evaluations exceeds
options.MaxFunctionEvaluations.

OutputFcnStop -1 Stopped by an output function or plot function.
Unbounded -3 Objective function at current iteration is below

options.ObjectiveLimit.

This table describes the exit flags for the fmincon solver.

Exit Flag for fmincon Numeric
Equivalent

Meaning

NoDecreaseAlongSearchDir
ection

5 Magnitude of directional derivative in search
direction is less than
2*options.OptimalityTolerance and
maximum constraint violation is less than
options.ConstraintTolerance.

SearchDirectionTooSmall 4 Magnitude of the search direction is less than
2*options.StepTolerance and maximum
constraint violation is less than
options.ConstraintTolerance.

FunctionChangeBelowToler
ance

3 Change in the objective function value is less
than options.FunctionTolerance and
maximum constraint violation is less than
options.ConstraintTolerance.

15 Functions

15-510

Exit Flag for fmincon Numeric
Equivalent

Meaning

StepSizeBelowTolerance 2 Change in x is less than
options.StepTolerance and maximum
constraint violation is less than
options.ConstraintTolerance.

OptimalSolution 1 First-order optimality measure is less than
options.OptimalityTolerance, and
maximum constraint violation is less than
options.ConstraintTolerance.

SolverLimitExceeded 0 Number of iterations exceeds
options.MaxIterations or number of
function evaluations exceeds
options.MaxFunctionEvaluations.

OutputFcnStop -1 Stopped by an output function or plot function.
NoFeasiblePointFound -2 No feasible point found.
Unbounded -3 Objective function at current iteration is below

options.ObjectiveLimit and maximum
constraint violation is less than
options.ConstraintTolerance.

This table describes the exit flags for the fsolve solver.

Exit Flag for fsolve Numeric
Equivalent

Meaning

SearchDirectionTooSmall 4 Magnitude of the search direction is less than
options.StepTolerance, equation solved.

FunctionChangeBelowToler
ance

3 Change in the objective function value is less
than options.FunctionTolerance,
equation solved.

StepSizeBelowTolerance 2 Change in x is less than
options.StepTolerance, equation solved.

OptimalSolution 1 First-order optimality measure is less than
options.OptimalityTolerance, equation
solved.

SolverLimitExceeded 0 Number of iterations exceeds
options.MaxIterations or number of
function evaluations exceeds
options.MaxFunctionEvaluations.

OutputFcnStop -1 Stopped by an output function or plot function.
NoFeasiblePointFound -2 Converged to a point that is not a root.
TrustRegionRadiusTooSmal
l

-3 Equation not solved. Trust region radius
became too small (trust-region-dogleg
algorithm).

This table describes the exit flags for the fzero solver.

 solve

15-511

Exit Flag for fzero Numeric
Equivalent

Meaning

OptimalSolution 1 Equation solved.
OutputFcnStop -1 Stopped by an output function or plot function.
FoundNaNInfOrComplex -4 NaN, Inf, or complex value encountered

during search for an interval containing a sign
change.

SingularPoint -5 Might have converged to a singular point.
CannotDetectSignChange -6 Did not find two points with opposite signs of

function value.

This table describes the exit flags for the patternsearch solver.

Exit Flag for patternsearch Numeric
Equivalent

Meaning

SearchDirectionTooSmall 4 The magnitude of the step is smaller than
machine precision, and the constraint violation
is less than ConstraintTolerance.

FunctionChangeBelowToler
ance

3 The change in fval and the mesh size are
both less than the specified tolerance, and the
constraint violation is less than
ConstraintTolerance.

StepSizeBelowTolerance 2 Change in x and the mesh size are both
smaller than StepTolerance, and the
constraint violation is less than
ConstraintTolerance.

SolverConvergedSuccessfu
lly

1 Without nonlinear constraints — The
magnitude of the mesh size is less than the
specified tolerance, and the constraint
violation is less than ConstraintTolerance.
With nonlinear constraints — The
magnitude of the complementarity measure
(defined after this table) is less than
sqrt(ConstraintTolerance), the
subproblem is solved using a mesh finer than
MeshTolerance, and the constraint violation
is less than ConstraintTolerance.

SolverLimitExceeded 0 The maximum number of function evaluations
or iterations is reached.

OutputFcnStop -1 Stopped by an output function or plot function.
NoFeasiblePointFound -2 No feasible point found.

In the nonlinear constraint solver, the complementarity measure is the norm of the vector whose
elements are ciλi, where ci is the nonlinear inequality constraint violation, and λi is the corresponding
Lagrange multiplier.

This table describes the exit flags for the ga solver.

15 Functions

15-512

Exit Flag for ga Numeric
Equivalent

Meaning

MinimumFitnessLimitReach
ed

5 Minimum fitness limit FitnessLimit reached
and the constraint violation is less than
ConstraintTolerance.

SearchDirectionTooSmall 4 The magnitude of the step is smaller than
machine precision, and the constraint violation
is less than ConstraintTolerance.

FunctionChangeBelowToler
ance

3 Value of the fitness function did not change in
MaxStallGenerations generations and the
constraint violation is less than
ConstraintTolerance.

SolverConvergedSuccessfu
lly

1 Without nonlinear constraints — Average
cumulative change in value of the fitness
function over MaxStallGenerations
generations is less than
FunctionTolerance, and the constraint
violation is less than ConstraintTolerance.
With nonlinear constraints — Magnitude of
the complementarity measure (see
“Complementarity Measure” (Global
Optimization Toolbox)) is less than
sqrt(ConstraintTolerance), the
subproblem is solved using a tolerance less
than FunctionTolerance, and the constraint
violation is less than ConstraintTolerance.

SolverLimitExceeded 0 Maximum number of generations
MaxGenerations exceeded.

OutputFcnStop -1 Stopped by an output function or plot function.
NoFeasiblePointFound -2 No feasible point found.
StallTimeLimitExceeded -4 Stall time limit MaxStallTime exceeded.
TimeLimitExceeded -5 Time limit MaxTime exceeded.

This table describes the exit flags for the particleswarm solver.

Exit Flag for particleswarm Numeric
Equivalent

Meaning

SolverConvergedSuccessfu
lly

1 Relative change in the objective value over the
last options.MaxStallIterations
iterations is less than
options.FunctionTolerance.

SolverLimitExceeded 0 Number of iterations exceeded
options.MaxIterations.

OutputFcnStop -1 Iterations stopped by output function or plot
function.

 solve

15-513

Exit Flag for particleswarm Numeric
Equivalent

Meaning

NoFeasiblePointFound -2 Bounds are inconsistent: for some i,
lb(i) > ub(i).

Unbounded -3 Best objective function value is below
options.ObjectiveLimit.

StallTimeLimitExceeded -4 Best objective function value did not change
within options.MaxStallTime seconds.

TimeLimitExceeded -5 Run time exceeded options.MaxTime
seconds.

This table describes the exit flags for the simulannealbnd solver.

Exit Flag for simulannealbnd Numeric
Equivalent

Meaning

ObjectiveValueBelowLimit 5 Objective function value is less than
options.ObjectiveLimit.

SolverConvergedSuccessfu
lly

1 Average change in the value of the objective
function over
options.MaxStallIterations iterations is
less than options.FunctionTolerance.

SolverLimitExceeded 0 Maximum number of generations
MaxGenerations exceeded.

OutputFcnStop -1 Optimization terminated by an output function
or plot function.

NoFeasiblePointFound -2 No feasible point found.
TimeLimitExceeded -5 Time limit exceeded.

This table describes the exit flags for the surrogateopt solver.

Exit Flag for surrogateopt Numeric
Equivalent

Meaning

BoundsEqual 10 Problem has a unique feasible solution due to
one of the following:

• All upper bounds ub are equal to the lower
bounds lb.

• The linear equality constraints Aeq*x =
beq and the bounds have a unique solution
point.

surrogateopt returns the feasible point and
function value without performing any
optimization.

FeasiblePointFound 3 Feasible point found. Solver stopped because
too few new feasible points were found to
continue.

15 Functions

15-514

Exit Flag for surrogateopt Numeric
Equivalent

Meaning

ObjectiveLimitAttained 1 The objective function value is less than
options.ObjectiveLimit. This exit flag
takes precedence over exit flag 10 when both
apply.

SolverLimitExceeded 0 The number of function evaluations exceeds
options.MaxFunctionEvaluations or the
elapsed time exceeds options.MaxTime. If
the problem has nonlinear inequalities, the
solution is feasible.

OutputFcnStop -1 The optimization is terminated by an output
function or plot function.

NoFeasiblePointFound -2 No feasible point is found due to one of the
following:

• A lower bound lb(i) exceeds a
corresponding upper bound ub(i). Or one
or more ceil(lb(i)) exceeds a
corresponding floor(ub(i)) for i in
intcon. In this case, solve returns x =
[] and fval = [].

• lb = ub and the point lb is infeasible. In
this case, x = lb, and fval =
objconstr(x).Fval.

• The linear and, if present, integer
constraints are infeasible together with the
bounds. In this case, solve returns x =
[] and fval = [].

• The bounds, integer, and linear constraints
are feasible, but no feasible solution is
found with nonlinear constraints. In this
case, x is the point of least maximum
infeasibility of nonlinear constraints, and
fval = objconstr(x).Fval.

This table describes the exit flags for the MultiStart and GlobalSearch solvers.

Exit Flag for MultiStart or
GlobalSearch

Numeric
Equivalent

Meaning

LocalMinimumFoundSomeCon
verged

2 At least one local minimum found. Some runs
of the local solver converged.

LocalMinimumFoundAllConv
erged

1 At least one local minimum found. All runs of
the local solver converged.

SolverLimitExceeded 0 No local minimum found. Local solver called at
least once and at least one local solver call ran
out of iterations.

OutputFcnStop –1 Stopped by an output function or plot function.

 solve

15-515

Exit Flag for MultiStart or
GlobalSearch

Numeric
Equivalent

Meaning

NoFeasibleLocalMinimumFo
und

–2 No feasible local minimum found.

TimeLimitExceeded –5 MaxTime limit exceeded.
NoSolutionFound –8 No solution found. All runs had local solver

exit flag –2 or smaller, not all equal –2.
FailureInSuppliedFcn –10 Encountered failures in the objective or

nonlinear constraint functions.

This table describes the exit flags for the paretosearch solver.

Exit Flag for paretosearch Numeric
Equivalent

Meaning

SolverConvergedSuccessfu
lly

1 One of the following conditions is met:

• Mesh size of all incumbents is less than
options.MeshTolerance and constraints
(if any) are satisfied to within
options.ConstraintTolerance.

• Relative change in the spread of the Pareto
set is less than
options.ParetoSetChangeTolerance
and constraints (if any) are satisfied to
within options.ConstraintTolerance.

• Relative change in the volume of the Pareto
set is less than
options.ParetoSetChangeTolerance
and constraints (if any) are satisfied to
within options.ConstraintTolerance.

SolverLimitExceeded 0 Number of iterations exceeds
options.MaxIterations, or the number of
function evaluations exceeds
options.MaxFunctionEvaluations.

OutputFcnStop –1 Stopped by an output function or plot function.
NoFeasiblePointFound –2 Solver cannot find a point satisfying all the

constraints.
TimeLimitExceeded –5 Optimization time exceeds

options.MaxTime.

This table describes the exit flags for the gamultiobj solver.

15 Functions

15-516

Exit Flag for paretosearch Numeric
Equivalent

Meaning

SolverConvergedSuccessfu
lly

1 Geometric average of the relative change in
value of the spread over
options.MaxStallGenerations
generations is less than
options.FunctionTolerance, and the final
spread is less than the mean spread over the
past options.MaxStallGenerations
generations.

SolverLimitExceeded 0 Number of generations exceeds
options.MaxGenerations.

OutputFcnStop –1 Stopped by an output function or plot function.
NoFeasiblePointFound –2 Solver cannot find a point satisfying all the

constraints.
TimeLimitExceeded –5 Optimization time exceeds

options.MaxTime.

output — Information about optimization process
structure

Information about the optimization process, returned as a structure. The output structure contains
the fields in the relevant underlying solver output field, depending on which solver solve called:

• 'fmincon' output
• 'fminunc' output
• 'fsolve' output
• 'fzero' output
• 'intlinprog' output
• 'linprog' output
• 'lsqcurvefit' or 'lsqnonlin' output
• 'lsqlin' output
• 'lsqnonneg' output
• 'quadprog' output

• 'ga' output
• 'gamultiobj' output
• 'paretosearch' output
• 'particleswarm' output
• 'patternsearch' output
• 'simulannealbnd' output
• 'surrogateopt' output

• 'MultiStart' and 'GlobalSearch' return the output structure from the local solver. In
addition, the output structure contains the following fields:

 solve

15-517

• globalSolver — Either 'MultiStart' or 'GlobalSearch'.
• objectiveDerivative — Takes the values described at the end of this section.
• constraintDerivative — Takes the values described at the end of this section, or "auto"

when prob has no nonlinear constraint.
• solver — The local solver, such as 'fmincon'.
• local — Structure containing extra information about the optimization.

• sol — Local solutions, returned as a vector of OptimizationValues objects.
• x0 — Initial points for the local solver, returned as a cell array.
• exitflag — Exit flags of local solutions, returned as an integer vector.
• output — Structure array, with one row for each local solution. Each row is the local

output structure corresponding to one local solution.

solve includes the additional field Solver in the output structure to identify the solver used, such
as 'intlinprog'.

When Solver is a nonlinear Optimization Toolbox solver, solve includes one or two extra fields
describing the derivative estimation type. The objectivederivative and, if appropriate,
constraintderivative fields can take the following values:

• "reverse-AD" for reverse automatic differentiation
• "forward-AD" for forward automatic differentiation
• "finite-differences" for finite difference estimation
• "closed-form" for linear or quadratic functions

lambda — Lagrange multipliers at the solution
structure

Lagrange multipliers at the solution, returned as a structure.

Note solve does not return lambda for equation-solving problems.

For the intlinprog and fminunc solvers, lambda is empty, []. For the other solvers, lambda has
these fields:

• Variables – Contains fields for each problem variable. Each problem variable name is a
structure with two fields:

• Lower – Lagrange multipliers associated with the variable LowerBound property, returned as
an array of the same size as the variable. Nonzero entries mean that the solution is at the
lower bound. These multipliers are in the structure
lambda.Variables.variablename.Lower.

• Upper – Lagrange multipliers associated with the variable UpperBound property, returned as
an array of the same size as the variable. Nonzero entries mean that the solution is at the
upper bound. These multipliers are in the structure
lambda.Variables.variablename.Upper.

• Constraints – Contains a field for each problem constraint. Each problem constraint is in a
structure whose name is the constraint name, and whose value is a numeric array of the same size

15 Functions

15-518

as the constraint. Nonzero entries mean that the constraint is active at the solution. These
multipliers are in the structure lambda.Constraints.constraintname.

Note Elements of a constraint array all have the same comparison (<=, ==, or >=) and are all of
the same type (linear, quadratic, or nonlinear).

Algorithms
Conversion to Solver Form

Internally, the solve function solves optimization problems by calling a solver. For the default solver
for the problem and supported solvers for the problem, see the 'solver' argument.

Before solve can call a solver, the problems must be converted to solver form, either by solve or
some other associated functions or objects. This conversion entails, for example, linear constraints
having a matrix representation rather than an optimization variable expression.

The first step in the algorithm occurs as you place optimization expressions into the problem. An
OptimizationProblem object has an internal list of the variables used in its expressions. Each
variable has a linear index in the expression, and a size. Therefore, the problem variables have an
implied matrix form. The prob2struct function performs the conversion from problem form to
solver form. For an example, see “Convert Problem to Structure” on page 15-428.

For nonlinear optimization problems, solve uses automatic differentiation to compute the gradients
of the objective function and nonlinear constraint functions. These derivatives apply when the
objective and constraint functions are composed of “Supported Operations for Optimization Variables
and Expressions” on page 9-43 and do not use the fcn2optimexpr function. When automatic
differentiation does not apply, solvers estimate derivatives using finite differences. For details of
automatic differentiation, see “Automatic Differentiation Background” on page 9-37.

For the default and allowed solvers that solve calls, depending on the problem objective and
constraints, see 'solver'. You can override the default by using the 'solver' name-value pair
argument when calling solve.

For the algorithm that intlinprog uses to solve MILP problems, see “intlinprog Algorithm” on page
8-43. For the algorithms that linprog uses to solve linear programming problems, see “Linear
Programming Algorithms” on page 8-2. For the algorithms that quadprog uses to solve quadratic
programming problems, see “Quadratic Programming Algorithms” on page 10-2. For linear or
nonlinear least-squares solver algorithms, see “Least-Squares (Model Fitting) Algorithms” on page
11-2. For nonlinear solver algorithms, see “Unconstrained Nonlinear Optimization Algorithms” on
page 5-2 and “Constrained Nonlinear Optimization Algorithms” on page 5-19.

For nonlinear equation solving, solve internally represents each equation as the difference between
the left and right sides. Then solve attempts to minimize the sum of squares of the equation
components. For the algorithms for solving nonlinear systems of equations, see “Equation Solving
Algorithms” on page 12-2. When the problem also has bounds, solve calls lsqnonlin to minimize
the sum of squares of equation components. See “Least-Squares (Model Fitting) Algorithms” on page
11-2.

Note If your objective function is a sum of squares, and you want solve to recognize it as such,
write it as either norm(expr)^2 or sum(expr.^2), and not as expr'*expr or any other form. The

 solve

15-519

internal parser recognizes a sum of squares only when represented as a square of a norm or an
explicit sums of squares. For details, see “Write Objective Function for Problem-Based Least Squares”
on page 11-96. For an example, see “Nonnegative Linear Least Squares, Problem-Based” on page 11-
41.

Automatic Differentiation

Automatic differentiation (AD) applies to the solve and prob2struct functions under the following
conditions:

• The objective and constraint functions are supported, as described in “Supported Operations for
Optimization Variables and Expressions” on page 9-43. They do not require use of the
fcn2optimexpr function.

• The solver called by solve is fmincon, fminunc, fsolve, or lsqnonlin.
• For optimization problems, the 'ObjectiveDerivative' and 'ConstraintDerivative'

name-value pair arguments for solve or prob2struct are set to 'auto' (default), 'auto-
forward', or 'auto-reverse'.

• For equation problems, the 'EquationDerivative' option is set to 'auto' (default), 'auto-
forward', or 'auto-reverse'.

When AD Applies All Constraint Functions
Supported

One or More Constraints Not
Supported

Objective Function
Supported

AD used for objective and
constraints

AD used for objective only

Objective Function Not
Supported

AD used for constraints only AD not used

When these conditions are not satisfied, solve estimates gradients by finite differences, and
prob2struct does not create gradients in its generated function files.

Solvers choose the following type of AD by default:

• For a general nonlinear objective function, fmincon defaults to reverse AD for the objective
function. fmincon defaults to reverse AD for the nonlinear constraint function when the number
of nonlinear constraints is less than the number of variables. Otherwise, fmincon defaults to
forward AD for the nonlinear constraint function.

• For a general nonlinear objective function, fminunc defaults to reverse AD.
• For a least-squares objective function, fmincon and fminunc default to forward AD for the

objective function. For the definition of a problem-based least-squares objective function, see
“Write Objective Function for Problem-Based Least Squares” on page 11-96.

• lsqnonlin defaults to forward AD when the number of elements in the objective vector is greater
than or equal to the number of variables. Otherwise, lsqnonlin defaults to reverse AD.

• fsolve defaults to forward AD when the number of equations is greater than or equal to the
number of variables. Otherwise, fsolve defaults to reverse AD.

Note To use automatic derivatives in a problem converted by prob2struct, pass options specifying
these derivatives.

15 Functions

15-520

options = optimoptions('fmincon','SpecifyObjectiveGradient',true,...
 'SpecifyConstraintGradient',true);
problem.options = options;

Currently, AD works only for first derivatives; it does not apply to second or higher derivatives. So, for
example, if you want to use an analytic Hessian to speed your optimization, you cannot use solve
directly, and must instead use the approach described in “Supply Derivatives in Problem-Based
Workflow” on page 6-26.

Compatibility Considerations
solve(prob,solver), solve(prob,options), and solve(prob,solver,options) syntaxes
have been removed
Errors starting in R2018b

To choose options or the underlying solver for solve, use name-value pairs. For example,

sol = solve(prob,'options',opts,'solver','quadprog');

The previous syntaxes were not as flexible, standard, or extensible as name-value pairs.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

solve estimates derivatives in parallel for nonlinear solvers when the UseParallel option for the
solver is true. For example,

options = optimoptions('fminunc','UseParallel',true);
[sol,fval] = solve(prob,x0,'Options',options)

solve does not use parallel derivative estimation when all objective and nonlinear constraint
functions consist only of supported operations, as described in “Supported Operations for
Optimization Variables and Expressions” on page 9-43. In this case, solve uses automatic
differentiation for calculating derivatives. See “Automatic Differentiation” on page 15-520.

You can override automatic differentiation and use finite difference estimates in parallel by setting
the 'ObjectiveDerivative' and 'ConstraintDerivative' arguments to 'finite-
differences'.

When you specify a Global Optimization Toolbox solver that support parallel computation (ga,
particleswarm, patternsearch, and surrogateopt), solve compute in parallel when the
UseParallel option for the solver is true. For example,

options = optimoptions("patternsearch","UseParallel",true);
[sol,fval] = solve(prob,x0,"Options",options,"Solver","patternsearch")

See Also
evaluate | OptimizationProblem | EquationProblem | optimoptions | prob2struct |
fcn2optimexpr | optimvalues

 solve

15-521

Topics
“Problem-Based Optimization Workflow” on page 9-2
“Problem-Based Workflow for Solving Equations” on page 9-4
“Create Initial Point for Optimization with Named Index Variables” on page 9-47

Introduced in R2017b

15 Functions

15-522

varindex
Package: optim.problemdef

Map problem variables to solver-based variable index

Syntax
idx = varindex(prob)
idx = varindex(prob,varname)

Description
idx = varindex(prob) returns the linear indices of problem variables as a structure or an integer
vector. If you convert prob to a problem structure by using prob2struct, idx gives the variable
indices in the resulting problem structure that correspond to the variables in prob.

idx = varindex(prob,varname) returns the linear indices of elements of varname.

Examples

Obtain Problem Indices

Create an optimization problem.

x = optimvar('x',3);
y = optimvar('y',3,3);
prob = optimproblem('Objective',x'*y*x);

Convert the problem to a structure.

problem = prob2struct(prob);

Obtain the linear indices in problem of all prob variables.

idx = varindex(prob);
disp(idx.x)

 1 2 3

disp(idx.y)

 4 5 6 7 8 9 10 11 12

Obtain the y indices only.

idxy = varindex(prob,'y')

idxy = 1×9

 4 5 6 7 8 9 10 11 12

 varindex

15-523

Solve Problem Using Both Approaches

This example shows how to obtain most of the same information using either the problem-based
approach or the solver-based approach. First create a problem and solve it using the problem based
approach.

x = optimvar('x',3,1,'LowerBound',1,'UpperBound',1);
y = optimvar('y',3,3,'LowerBound',-1,'UpperBound',1);
prob = optimproblem('Objective',x'*y*x + [2 3 4]*x);
rng default
x0.x = rand(3, 1);
x0.y = rand(3, 3);
[solp,fvalp,exitflagp,outputp] = solve(prob,x0);

Solving problem using fmincon.

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

Next, convert the problem to solver-based form using prob2struct. To have the fmincon solver use
the automatic gradients in the problem, set the SpecifyObjectiveGradient option to true.

solverprob = prob2struct(prob,x0);
solverprob.options = optimoptions(solverprob.options,"SpecifyObjectiveGradient",true);

Solve the problem using fmincon.

[sols,fvals,exitflags,outputs] = fmincon(solverprob);

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,
and constraints are satisfied to within the value of the constraint tolerance.

To convert the fmincon solution to the structure form returned by solve, create appropriate
structures using varindex.

idx = varindex(prob);
sol.x = sols(idx.x);
sol.y = sols(idx.y);

The y index that varindex uses is a linear index. Reshape the variable sol.y to have the size of
x0.y.

sol.y = reshape(sol.y,size(x0.y));

Check that the two solution structures are identical.

isequal(sol,solp)

ans = logical
 1

15 Functions

15-524

The reason that the two approaches are not completely equivalent is that fmincon can return more
arguments such as Lagrange multipliers, whereas solve cannot.

Input Arguments
prob — Optimization problem or equation problem
OptimizationProblem object | EquationProblem object

Optimization problem or equation problem, specified as an OptimizationProblem object or an
EquationProblem object. Create an optimization problem by using optimproblem; create an
equation problem by using eqnproblem.

Warning The problem-based approach does not support complex values in an objective function,
nonlinear equalities, or nonlinear inequalities. If a function calculation has a complex value, even as
an intermediate value, the final result can be incorrect.

Example: prob = optimproblem; prob.Objective = obj; prob.Constraints.cons1 =
cons1;

Example: prob = eqnproblem; prob.Equations = eqs;

varname — Variable name
character vector | string

Variable name, specified as a character vector or string.
Example: 'x'
Data Types: char | string

Output Arguments
idx — Linear indices of problem variables
structure | integer vector

Linear indices of problem variables, returned as a structure or an integer vector. If you convert prob
to a problem structure by using prob2struct, idx gives the variable indices in the resulting
problem structure that correspond to the variables in prob.

• When you call idx = varindex(prob), the returned idx is a structure. The field names of the
structure are the variable names in prob. The value for each field is the integer vector of linear
indices to which the variables map in the associated solver-based problem variable.

• When you call idx = varindex(prob,varname), the returned idx is the vector of linear
indices to which the variable varname maps in the associated solver-based problem variable.

See “Obtain Problem Indices” on page 15-523.

See Also
OptimizationProblem | prob2struct | EquationProblem

 varindex

15-525

Topics
“Output Function for Problem-Based Optimization” on page 6-37
“Supply Derivatives in Problem-Based Workflow” on page 6-26

Introduced in R2019a

15 Functions

15-526

write
Package: optim.problemdef

Save optimization object description

Syntax
write(obj)
write(obj,filename)

Description
Use write to save the description of an optimization object.

Tip For the full workflow, see “Problem-Based Optimization Workflow” on page 9-2 or “Problem-
Based Workflow for Solving Equations” on page 9-4.

write(obj) saves a description of the optimization object obj in a file named obj.txt. Here, obj
is the workspace variable name of the optimization object. If write cannot construct the file name
from the expression, it writes the description to WriteOutput.txt instead. write overwrites any
existing file. If the object description is small, consider using show instead to display the description
at the command line.

write(obj,filename) saves a description of obj in a file named filename.

Examples

Save Expression Description

Create an optimization variable and an expression that uses the variable. Save a description of the
expression to a file.

x = optimvar('x',3,3);
A = magic(3);
var = sum(sum(A.*x));
write(var)

write creates a file named var.txt in the current folder. The file contains the following text:

 8*x(1, 1) + 3*x(2, 1) + 4*x(3, 1) + x(1, 2) + 5*x(2, 2) + 9*x(3, 2) + 6*x(1, 3) + 7*x(2, 3)
+ 2*x(3, 3)

Save the expression in a file named 'VarExpression.txt' in the current folder.

write(var,"VarExpression.txt")

 write

15-527

The VarExpression.txt file contains the same text as var.txt.

Input Arguments
obj — Optimization object
OptimizationProblem object | EquationProblem object | OptimizationExpression object |
OptimizationVariable object | OptimizationConstraint object | OptimizationEquality
object | OptimizationInequality object

Optimization object, specified as one of the following:

• OptimizationProblem object — write(obj) saves a file containing the variables for the
solution, objective function, constraints, and variable bounds.

• EquationProblem object — write(obj) saves a file containing the variables for the solution,
equations for the solution, and variable bounds.

• OptimizationExpression object — write(obj) saves a file containing the optimization
expression.

• OptimizationVariable object — write(obj) saves a file containing the optimization
variables. The saved description does not indicate variable types or bounds; it includes only the
variable dimensions and index names (if any).

• OptimizationConstraint object — write(obj) saves a file containing the constraint
expression.

• OptimizationEquality object — write(obj) saves a file containing the equality expression.
• OptimizationInequality object — write(obj) saves a file containing the inequality

expression.

filename — Path to file
string | character vector

Path to the file, specified as a string or character vector. The path is relative to the current folder. The
resulting file is a text file, so the file name typically has the extension .txt.
Example: "../Notes/steel_stuff.txt"
Data Types: char | string

See Also
show | writebounds

Topics
“Problem-Based Optimization Workflow” on page 9-2

Introduced in R2019b

15 Functions

15-528

writebounds
Package: optim.problemdef

Save description of variable bounds

Syntax
writebounds(var)
writebounds(var,filename)

Description
Use writebounds to save a description of the bounds on optimization variables.

Tip For the full workflow, see “Problem-Based Optimization Workflow” on page 9-2 or “Problem-
Based Workflow for Solving Equations” on page 9-4.

writebounds(var) saves a description of the variable bounds in a file named
variable_bounds.txt. Here, variable is the “Name” on page 15-0 property of var. The
writebounds function overwrites any existing file.

writebounds(var,filename) saves a description of the variable bounds in a file named
filename.

Examples

Save Description of Bounds

Create an optimization variable and save its bounds to a file.

x = optimvar('x',10,4,'LowerBound',randi(8,10,4),...
 'UpperBound',10+randi(7,10,4),'Type','integer');
writebounds(x,'BoundFile.txt')

The contents of BoundFile.txt:

 7 <= x(1, 1) <= 14
 8 <= x(2, 1) <= 13
 2 <= x(3, 1) <= 16
 8 <= x(4, 1) <= 16
 6 <= x(5, 1) <= 12
 1 <= x(6, 1) <= 14
 3 <= x(7, 1) <= 14
 5 <= x(8, 1) <= 15
 8 <= x(9, 1) <= 15
 8 <= x(10, 1) <= 16
 2 <= x(1, 2) <= 12
 8 <= x(2, 2) <= 15
 8 <= x(3, 2) <= 15

 writebounds

15-529

 4 <= x(4, 2) <= 12
 7 <= x(5, 2) <= 11
 2 <= x(6, 2) <= 14
 4 <= x(7, 2) <= 17
 8 <= x(8, 2) <= 13
 7 <= x(9, 2) <= 15
 8 <= x(10, 2) <= 12
 6 <= x(1, 3) <= 16
 1 <= x(2, 3) <= 12
 7 <= x(3, 3) <= 14
 8 <= x(4, 3) <= 15
 6 <= x(5, 3) <= 17
 7 <= x(6, 3) <= 17
 6 <= x(7, 3) <= 14
 4 <= x(8, 3) <= 11
 6 <= x(9, 3) <= 12
 2 <= x(10, 3) <= 12
 6 <= x(1, 4) <= 16
 1 <= x(2, 4) <= 12
 3 <= x(3, 4) <= 16
 1 <= x(4, 4) <= 12
 1 <= x(5, 4) <= 17
 7 <= x(6, 4) <= 13
 6 <= x(7, 4) <= 12
 3 <= x(8, 4) <= 12
 8 <= x(9, 4) <= 15
 1 <= x(10, 4) <= 14

Input Arguments
var — Optimization variable
OptimizationVariable object

Optimization variable, specified as an OptimizationVariable object. Create var using optimvar.
Example: var = optimvar('var',4,6)

filename — Path to file
string | character vector

Path to the file, specified as a string or character vector. The path is relative to the current folder. The
resulting file is a text file, so the file name typically has the extension .txt.
Example: "../Notes/steel_stuff.txt"
Data Types: char | string

Tips
• To obtain the writebounds information at the Command Window, use showbounds.

See Also
showbounds | OptimizationVariable

Topics
“Problem-Based Optimization Setup”

15 Functions

15-530

“Problem-Based Optimization Workflow” on page 9-2

Introduced in R2017b

 writebounds

15-531

writeconstr
Package: optim.problemdef

(Not recommended) Save optimization constraint description

Syntax
writeconstr(constr)
writeconstr(constr,filename)

Description
writeconstr is not recommended. Use write instead.

writeconstr(constr) saves a description of the optimization constraint constr in a file named
constr.txt. Here, constr is the workspace variable name of the constraint. If writeconstr
cannot construct the file name from the variable name, it writes the description to
WriteConstrOutput.txt instead. writeconstr overwrites any existing file.

writeconstr(constr,filename) saves a description of the optimization constraint constr in a
file named filename.

Examples

Save Constraint Description

Create an optimization constraint in terms of optimization variables, and save its description in a file.

x = optimvar('x',3,2);
cons = sum(x,2) <= [1;3;2];
writeconstr(cons,"TripleConstraint.txt")

The TripleConstraint.txt file contains the following text:

(1, 1)

 x(1, 1) + x(1, 2) <= 1

(2, 1)

 x(2, 1) + x(2, 2) <= 3

(3, 1)

15 Functions

15-532

 x(3, 1) + x(3, 2) <= 2

Input Arguments
constr — Optimization constraint
OptimizationEquality object | OptimizationInequality object | OptimizationConstraint
object

Optimization constraint, specified as an OptimizationEquality object,
OptimizationInequality object, or OptimizationConstraint object. constr can represent a
single constraint or an array of constraints.
Example: constr = x + y <= 1 is a single constraint when x and y are scalar variables.
Example: constr = sum(x) == 1 is an array of constraints when x is an array of two or more
dimensions.

filename — Path to file
string | character vector

Path to the file, specified as a string or character vector. The path is relative to the current folder. The
resulting file is a text file, so the file name typically has the extension .txt.
Example: "../Notes/steel_stuff.txt"
Data Types: char | string

Tips
• To obtain the writeconstr information at the MATLAB Command Window, use showconstr.

Compatibility Considerations
writeconstr is not recommended
Not recommended starting in R2019b

The writeconstr function is not recommended. Instead, use write. The write function replaces
writeconstr and many other problem-based functions.

There are no plans to remove writeconstr at this time.

See Also
OptimizationConstraint | show | write

Topics
“Problem-Based Optimization Setup”
“Problem-Based Optimization Workflow” on page 9-2

Introduced in R2017b

 writeconstr

15-533

writeexpr
Package: optim.problemdef

(Not recommended) Save optimization expression description

Syntax
writeexpr(expr)
writeexpr(expr,filename)

Description
writeexpr is not recommended. Use write instead.

writeexpr(expr) saves a description of the optimization expression expr in a file named
expr.txt. Here, expr is the workspace variable name of the expression. If writeexpr cannot
construct the file name from the expression, it writes the description to WriteExprOutput.txt
instead. writeexpr overwrites any existing file.

writeexpr(expr,filename) saves a description of the optimization expression expr in a file
named filename.

Examples

Save Expression Description

Create an optimization variable and an expression that uses the variable. Save a description of the
expression to a file.

x = optimvar('x',3,3);
A = magic(3);
var = sum(sum(A.*x));
writeexpr(var,"VarExpression.txt")

The VarExpression.txt file contains the following text:

 8*x(1, 1) + 3*x(2, 1) + 4*x(3, 1) + x(1, 2) + 5*x(2, 2) + 9*x(3, 2) + 6*x(1, 3) + 7*x(2, 3)
+ 2*x(3, 3)

Input Arguments
expr — Optimization expression
OptimizationExpression object

Optimization expression, specified as an OptimizationExpression object.
Example: sum(sum(x))

filename — Path to file
string | character vector

15 Functions

15-534

Path to the file, specified as a string or character vector. The path is relative to the current folder. The
resulting file is a text file, so the file name typically has the extension .txt.
Example: "../Notes/steel_stuff.txt"
Data Types: char | string

Tips
• To obtain the writeexpr information at the MATLAB Command Window, use showexpr.

Compatibility Considerations
writeexpr is not recommended
Not recommended starting in R2019b

The writeexpr function is not recommended. Instead, use write. The write function replaces
writeexpr and many other problem-based functions.

There are no plans to remove writeexpr at this time.

See Also
OptimizationExpression | show | write

Topics
“Problem-Based Optimization Setup”
“Problem-Based Optimization Workflow” on page 9-2

Introduced in R2017b

 writeexpr

15-535

writeproblem
Package: optim.problemdef

(Not recommended) Save optimization problem description

Syntax
writeproblem(prob)
writeproblem(prob,filename)

Description
writeproblem is not recommended. Use write instead.

writeproblem(prob) saves a description of the optimization problem prob in a file named
prob.txt. Here, prob is the workspace variable name of the problem. If writeproblem cannot
construct the file name from the problem name, it writes to WriteProblemOutput.txt. The
writeproblem function overwrites any existing file.

writeproblem(prob,filename) saves a description of the optimization problem prob in a file
named filename.

Examples

Save Problem Description

Create an optimization problem.

x = optimvar('x');
y = optimvar('y');
prob = optimproblem;
prob.Objective = -x - y/3;
prob.Constraints.cons1 = x + y <= 2;
prob.Constraints.cons2 = x + y/4 <= 1;
prob.Constraints.cons3 = x - y <= 2;
prob.Constraints.cons4 = x/4 + y >= -1;
prob.Constraints.cons5 = x + y >= 1;
prob.Constraints.cons6 = -x + y <= 2;

Save the problem description in a file in the current directory.

writeproblem(prob,'ProblemDescription.txt')

The contents of ProblemDescription.txt:

 minimize :
 -x - 0.33333*y

 subject to cons1:
 x + y <= 2

15 Functions

15-536

 subject to cons2:
 x + 0.25*y <= 1

 subject to cons3:
 x - y <= 2

 subject to cons4:
 0.25*x + y >= -1

 subject to cons5:
 x + y >= 1

 subject to cons6:
 -x + y <= 2

Input Arguments
prob — Optimization problem or equation problem
OptimizationProblem object | EquationProblem object

Optimization problem or equation problem, specified as an OptimizationProblem object or an
EquationProblem object. Create an optimization problem by using optimproblem; create an
equation problem by using eqnproblem.

Warning The problem-based approach does not support complex values in an objective function,
nonlinear equalities, or nonlinear inequalities. If a function calculation has a complex value, even as
an intermediate value, the final result can be incorrect.

Example: prob = optimproblem; prob.Objective = obj; prob.Constraints.cons1 =
cons1;

Example: prob = eqnproblem; prob.Equations = eqs;

filename — Path to file
string | character vector

Path to the file, specified as a string or character vector. The path is relative to the current folder. The
resulting file is a text file, so the file name typically has the extension .txt.
Example: "../Notes/steel_stuff.txt"
Data Types: char | string

Tips
• writeproblem is equivalent to calling all of the following:

• writeexpr(prob.Objective,filename)
• writeconstr on each constraint in prob.Constraints
• writebounds on all the variables in prob

• To obtain the writeproblem information at the Command Window, use showproblem.

 writeproblem

15-537

Compatibility Considerations
writeproblem is not recommended
Not recommended starting in R2019b

The writeproblem function is not recommended. Instead, use write. The write function replaces
writeproblem and many other problem-based functions.

There are no plans to remove writeproblem at this time.

See Also
writebounds | write | show | OptimizationProblem

Topics
“Problem-Based Optimization Setup”
“Problem-Based Optimization Workflow” on page 9-2

Introduced in R2017b

15 Functions

15-538

writevar
Package: optim.problemdef

(Not recommended) Save optimization variable description

Syntax
writevar(var)
writevar(var,filename)

Description
writevar is not recommended. Use write instead.

writevar(var) saves a description of the optimization variable in a file named variable.txt.
Here, variable is the “Name” on page 15-0 property of var. The writevar function overwrites
any existing file.

writevar(var,filename) saves a description of the optimization variable in a file named
filename.

Examples

Save Optimization Variable Description

Create an optimization variable and save its description in a file.

var = optimvar('var',8,3,'Type','integer');
writevar(var,"VariableDescription.txt")

The contents of VariableDescription.txt:

 [var(1, 1) var(1, 2) var(1, 3)]
 [var(2, 1) var(2, 2) var(2, 3)]
 [var(3, 1) var(3, 2) var(3, 3)]
 [var(4, 1) var(4, 2) var(4, 3)]
 [var(5, 1) var(5, 2) var(5, 3)]
 [var(6, 1) var(6, 2) var(6, 3)]
 [var(7, 1) var(7, 2) var(7, 3)]
 [var(8, 1) var(8, 2) var(8, 3)]

Input Arguments
var — Optimization variable
OptimizationVariable object

Optimization variable, specified as an OptimizationVariable object. Create var using optimvar.
Example: var = optimvar('var',4,6)

 writevar

15-539

filename — Path to file
string | character vector

Path to the file, specified as a string or character vector. The path is relative to the current folder. The
resulting file is a text file, so the file name typically has the extension .txt.
Example: "../Notes/steel_stuff.txt"
Data Types: char | string

Compatibility Considerations
writevar is not recommended
Not recommended starting in R2019b

The writevar function is not recommended. Instead, use write. The write function replaces
writevar and many other problem-based functions.

There are no plans to remove writevar at this time.

See Also
optimvar | OptimizationVariable | show | write

Topics
“Problem-Based Optimization Setup”
“Problem-Based Optimization Workflow” on page 9-2

Introduced in R2017b

15 Functions

15-540

	Acknowledgments
	Acknowledgments

	Getting Started
	Optimization Toolbox Product Description
	First Choose Problem-Based or Solver-Based Approach
	Solve a Constrained Nonlinear Problem, Problem-Based
	Solve a Constrained Nonlinear Problem, Solver-Based
	Typical Optimization Problem
	Problem Formulation: Rosenbrock's Function
	Define and Solve Problem Using Optimize Live Editor Task
	Define and Solve Problem at Command Line
	Interpret Result

	Set Up a Linear Program, Solver-Based
	Convert a Problem to Solver Form
	Model Description
	Solution Method
	Bibliography

	Set Up a Linear Program, Problem-Based
	Convert Problem to Solver Form
	Model Description
	First Solution Method: Create Optimization Variable for Each Problem Variable
	Second Solution Method: Create One Optimization Variable and Indices
	Bibliography

	Get Started with Solver-Based Optimize Live Editor Task
	Get Started with Problem-Based Optimize Live Editor Task
	Use Solver-Based Optimize Live Editor Task Effectively
	Organize the Task Effectively
	Place Optimization Variables in One Vector and Data in Other Variables
	Specify Problem Type to Obtain Recommended Solver
	Ways to Run the Task
	View Solver Progress
	View Equivalent Code

	Setting Up an Optimization
	Optimization Theory Overview
	Optimization Toolbox Solvers
	Optimization Decision Table
	Choosing the Algorithm
	fmincon Algorithms
	fsolve Algorithms
	fminunc Algorithms
	Least Squares Algorithms
	Linear Programming Algorithms
	Quadratic Programming Algorithms
	Large-Scale vs. Medium-Scale Algorithms
	Potential Inaccuracy with Interior-Point Algorithms

	Problems Handled by Optimization Toolbox Functions
	Complex Numbers in Optimization Toolbox Solvers
	Types of Objective Functions
	Writing Scalar Objective Functions
	Function Files
	Anonymous Function Objectives
	Including Gradients and Hessians

	Writing Vector and Matrix Objective Functions
	What Are Vector and Matrix Objective Functions?
	Jacobians of Vector Functions
	Jacobians of Matrix Functions
	Jacobians with Matrix-Valued Independent Variables

	Writing Objective Functions for Linear or Quadratic Problems
	Maximizing an Objective
	Matrix Arguments
	Types of Constraints
	Iterations Can Violate Constraints
	Intermediate Iterations can Violate Constraints
	Algorithms That Satisfy Bound Constraints
	Solvers and Algorithms That Can Violate Bound Constraints

	Bound Constraints
	Linear Constraints
	What Are Linear Constraints?
	Linear Inequality Constraints
	Linear Equality Constraints

	Nonlinear Constraints
	Including Gradients in Constraint Functions
	Anonymous Nonlinear Constraint Functions

	Or Instead of And Constraints
	How to Use All Types of Constraints
	Objective and Nonlinear Constraints in the Same Function
	Objective and Constraints Having a Common Function in Serial or Parallel, Problem-Based
	Passing Extra Parameters
	Extra Parameters, Fixed Variables, or Data
	Anonymous Functions
	Nested Functions
	Global Variables

	What Are Options?
	Options in Common Use: Tuning and Troubleshooting
	Set and Change Options
	Choose Between optimoptions and optimset
	View Options
	Tolerances and Stopping Criteria
	Tolerance Details
	Checking Validity of Gradients or Jacobians
	Check Gradient or Jacobian in Objective Function
	How to Check Derivatives
	Example: Checking Derivatives of Objective and Constraint Functions

	Bibliography

	Examining Results
	Current Point and Function Value
	Exit Flags and Exit Messages
	Exit Flags
	Exit Messages
	Enhanced Exit Messages
	Exit Message Options

	Iterations and Function Counts
	First-Order Optimality Measure
	What Is First-Order Optimality Measure?
	Stopping Rules Related to First-Order Optimality
	Unconstrained Optimality
	Constrained Optimality Theory
	Constrained Optimality in Solver Form

	Iterative Display
	Introduction
	Common Headings
	Function-Specific Headings

	Output Structures
	Lagrange Multiplier Structures
	Hessian Output
	fminunc Hessian
	fmincon Hessian

	Plot Functions
	Plot an Optimization During Execution
	Use a Plot Function

	Output Functions for Optimization Toolbox

	Steps to Take After Running a Solver
	Overview of Next Steps
	When the Solver Fails
	Too Many Iterations or Function Evaluations
	Converged to an Infeasible Point
	Problem Unbounded
	fsolve Could Not Solve Equation

	Solver Takes Too Long
	Enable Iterative Display
	Use Appropriate Tolerances
	Use a Plot Function
	Use 'lbfgs' HessianApproximation Option
	Enable CheckGradients
	Use Inf Instead of a Large, Arbitrary Bound
	Use an Output Function
	Try Different Algorithm Options
	Use a Sparse Solver or a Multiply Function
	Use Parallel Computing

	When the Solver Might Have Succeeded
	Final Point Equals Initial Point
	Local Minimum Possible

	When the Solver Succeeds
	What Can Be Wrong If The Solver Succeeds?
	1. Change the Initial Point
	2. Check Nearby Points
	3. Check your Objective and Constraint Functions

	Local vs. Global Optima
	Why the Solver Does Not Find the Smallest Minimum
	Searching for a Smaller Minimum
	Basins of Attraction

	Optimizing a Simulation or Ordinary Differential Equation
	What Is Optimizing a Simulation or ODE?
	Potential Problems and Solutions
	Bibliography

	Nonlinear algorithms and examples
	Unconstrained Nonlinear Optimization Algorithms
	Unconstrained Optimization Definition
	fminunc trust-region Algorithm
	fminunc quasi-newton Algorithm

	fminsearch Algorithm
	Unconstrained Minimization Using fminunc
	Minimization with Gradient and Hessian
	Minimization with Gradient and Hessian Sparsity Pattern
	Constrained Nonlinear Optimization Algorithms
	Constrained Optimization Definition
	fmincon Trust Region Reflective Algorithm
	fmincon Active Set Algorithm
	fmincon SQP Algorithm
	fmincon Interior Point Algorithm
	fminbnd Algorithm
	fseminf Problem Formulation and Algorithm

	Smooth Formulations of Nonsmooth Functions
	Tutorial for Optimization Toolbox
	Banana Function Minimization
	Minimizing an Expensive Optimization Problem Using Parallel Computing Toolbox
	Nonlinear Inequality Constraints
	Nonlinear Constraints with Gradients
	fmincon Interior-Point Algorithm with Analytic Hessian
	Linear or Quadratic Objective with Quadratic Constraints
	Nonlinear Equality and Inequality Constraints
	Optimize Live Editor Task with fmincon Solver
	Start Optimize Live Editor Task
	Enter Problem Data
	Run Solver and Examine Results

	Minimization with Bound Constraints and Banded Preconditioner
	Minimization with Linear Equality Constraints, Trust-Region Reflective Algorithm
	Minimization with Dense Structured Hessian, Linear Equalities
	Hessian Multiply Function for Lower Memory
	Step 1: Write a file brownvv.m that computes the objective function, the gradient, and the sparse part of the Hessian.
	Step 2: Write a function to compute Hessian-matrix products for H given a matrix Y.
	Step 3: Call a nonlinear minimization routine with a starting point and linear equality constraints.
	Preconditioning

	Calculate Gradients and Hessians Using Symbolic Math Toolbox
	Using Symbolic Mathematics with Optimization Toolbox Solvers
	Obtain Best Feasible Point
	Solve Nonlinear Problem with Many Variables
	Code Generation in fmincon Background
	What Is Code Generation?
	Code Generation Requirements
	Generated Code Not Multithreaded

	Code Generation for Optimization Basics
	Generate Code for fmincon
	Modify Example for Efficiency

	Static Memory Allocation for fmincon Code Generation
	Optimization Code Generation for Real-Time Applications
	Time Limits on Generated Code
	Match the Target Environment
	Set Coder Configuration
	Benchmark the Solver
	Set Initial Point
	Set Options Appropriately
	Global Minimum

	One-Dimensional Semi-Infinite Constraints
	Two-Dimensional Semi-Infinite Constraint
	Analyzing the Effect of Uncertainty Using Semi-Infinite Programming

	Nonlinear Problem-Based
	Rational Objective Function, Problem-Based
	Solve Constrained Nonlinear Optimization, Problem-Based
	Convert Nonlinear Function to Optimization Expression
	Constrained Electrostatic Nonlinear Optimization, Problem-Based
	Problem-Based Nonlinear Minimization with Linear Constraints
	Effect of Automatic Differentiation in Problem-Based Optimization
	Supply Derivatives in Problem-Based Workflow
	Why Include Derivatives?
	Automatic Differentiation Applied to Optimization
	Create Optimization Problem
	Convert Problem to Solver-Based Form
	Calculate Derivatives and Keep Track of Variables
	Edit the Objective and Constraint Files
	Run Problem With and Without Gradients
	Include Hessian

	Obtain Generated Function Details
	Output Function for Problem-Based Optimization
	Obtain Solution Using Feasibility Mode
	Integer Constraints in Nonlinear Problem-Based Optimization
	Solve Nonlinear Feasibility Problem, Problem-Based
	Feasibility Using Problem-Based Optimize Live Editor Task

	Multiobjective Algorithms and Examples
	Multiobjective Optimization Algorithms
	Multiobjective Optimization Definition
	Algorithms

	Compare fminimax and fminunc
	Using fminimax with a Simulink Model
	Signal Processing Using fgoalattain
	Step 1: Write a file filtmin.m
	Step 2: Invoke optimization routine

	Generate and Plot Pareto Front
	Multi-Objective Goal Attainment Optimization
	Minimax Optimization

	Linear Programming and Mixed-Integer Linear Programming
	Linear Programming Algorithms
	Linear Programming Definition
	Interior-Point linprog Algorithm
	Interior-Point-Legacy Linear Programming
	Dual-Simplex Algorithm

	Typical Linear Programming Problem
	Maximize Long-Term Investments Using Linear Programming: Solver-Based
	Maximize Long-Term Investments Using Linear Programming: Problem-Based
	Create Multiperiod Inventory Model in Problem-Based Framework
	Mixed-Integer Linear Programming Algorithms
	Mixed-Integer Linear Programming Definition
	intlinprog Algorithm

	Tuning Integer Linear Programming
	Change Options to Improve the Solution Process
	Some “Integer” Solutions Are Not Integers
	Large Components Not Integer Valued
	Large Coefficients Disallowed

	Mixed-Integer Linear Programming Basics: Solver-Based
	Factory, Warehouse, Sales Allocation Model: Solver-Based
	Traveling Salesman Problem: Solver-Based
	Optimal Dispatch of Power Generators: Solver-Based
	Mixed-Integer Quadratic Programming Portfolio Optimization: Solver-Based
	Solve Sudoku Puzzles Via Integer Programming: Solver-Based
	Office Assignments by Binary Integer Programming: Solver-Based
	Cutting Stock Problem: Solver-Based
	Mixed-Integer Linear Programming Basics: Problem-Based
	Factory, Warehouse, Sales Allocation Model: Problem-Based
	Traveling Salesman Problem: Problem-Based
	Optimal Dispatch of Power Generators: Problem-Based
	Office Assignments by Binary Integer Programming: Problem-Based
	Mixed-Integer Quadratic Programming Portfolio Optimization: Problem-Based
	Cutting Stock Problem: Problem-Based
	Solve Sudoku Puzzles Via Integer Programming: Problem-Based
	Minimize Makespan in Parallel Processing
	Investigate Linear Infeasibilities
	Integer and Logical Modeling
	Big-M Formulation
	Basic Problem: Reservoir Flows
	Express Logical Constraints Using Binary Variables
	Express Logical Constraints Using Real Functions and Binary Indicator Variables
	Combine Logical Constraints to Create New Formulas
	Example: Fixed Cost
	Example: OR Constraints
	Further Reading

	Problem-Based Optimization
	Problem-Based Optimization Workflow
	Problem-Based Workflow for Solving Equations
	Optimization Expressions
	What Are Optimization Expressions?
	Expressions for Objective Functions
	Expressions for Constraints and Equations
	Optimization Variables Have Handle Behavior

	Pass Extra Parameters in Problem-Based Approach
	Review or Modify Optimization Problems
	Review Problem Using show or write
	Change Default Solver or Options
	Correct a Misspecified Problem
	Duplicate Variable Name

	Named Index for Optimization Variables
	Create Named Indices
	Use Named Indices
	View Solution with Index Variables

	Examine Optimization Solution
	Obtain Numeric Solution
	Examine Solution Quality
	Infeasible Solution
	Solution Takes Too Long

	Create Efficient Optimization Problems
	Separate Optimization Model from Data
	Problem-Based Optimization Algorithms
	Variables with Duplicate Names Disallowed
	Expression Contains Inf or NaN
	Automatic Differentiation Background
	What Is Automatic Differentiation?
	Forward Mode
	Reverse Mode
	Automatic Differentiation in Optimization Toolbox

	Supported Operations for Optimization Variables and Expressions
	Notation for Supported Operations
	Operations Returning Optimization Expressions
	Operations Returning Optimization Variables
	Operations on Optimization Expressions
	Operations Returning Constraint Expressions
	Some Undocumented Operations Work on Optimization Variables and Expressions
	Unsupported Functions and Operations Require fcn2optimexpr

	Create Initial Point for Optimization with Named Index Variables
	Initialize Optimization Expressions
	Error in Expression
	Modify Function To Accept an Initial Array
	Rewrite Function to Initialize Expressions Appropriately
	Avoid fcn2optimexpr Conversion

	Use Problem-Based Optimize Live Editor Task Effectively
	How the Problem-Based Optimize Live Editor Task Works
	What Does Select task mode Do?
	Leave Autorun On in Define Problem Mode

	Quadratic Programming
	Quadratic Programming Algorithms
	Quadratic Programming Definition
	interior-point-convex quadprog Algorithm
	trust-region-reflective quadprog Algorithm
	active-set quadprog Algorithm

	Second-Order Cone Programming Algorithm
	Definition of Second-Order Cone Programming
	coneprog Algorithm

	Quadratic Minimization with Bound Constraints
	Quadratic Minimization with Dense, Structured Hessian
	Take advantage of a structured Hessian
	Step 1: Decide what part of H to pass to quadprog as the first argument.
	Step 2: Write a function to compute Hessian-matrix products for H.
	Step 3: Call a quadratic minimization routine with a starting point.
	Preconditioning

	Large Sparse Quadratic Program with Interior Point Algorithm
	Bound-Constrained Quadratic Programming, Solver-Based
	Quadratic Programming for Portfolio Optimization Problems, Solver-Based
	Quadratic Programming with Bound Constraints: Problem-Based
	Large Sparse Quadratic Program, Problem-Based
	Bound-Constrained Quadratic Programming, Problem-Based
	Quadratic Programming for Portfolio Optimization, Problem-Based
	Code Generation for quadprog Background
	What Is Code Generation?
	Code Generation Requirements
	Generated Code Not Multithreaded

	Generate Code for quadprog
	First Steps in quadprog Code Generation
	Modify Example for Efficiency

	Quadratic Programming with Many Linear Constraints
	Warm Start quadprog
	Warm Start Best Practices
	Use Warm Start in MATLAB
	Use Warm Start in Code Generation with Static Memory Management

	Convert Quadratic Constraints to Second-Order Cone Constraints
	Convert Quadratic Programming Problem to Second-Order Cone Program
	Write Constraints for Problem-Based Cone Programming
	Minimize Energy of Piecewise Linear Mass-Spring System Using Cone Programming, Solver-Based
	Minimize Energy of Piecewise Linear Mass-Spring System Using Cone Programming, Problem-Based
	Compare Speeds of coneprog Algorithms
	Discretized Optimal Trajectory, Problem-Based

	Least Squares
	Least-Squares (Model Fitting) Algorithms
	Least Squares Definition
	Linear Least Squares: Interior-Point or Active-Set
	Trust-Region-Reflective Least Squares
	Levenberg-Marquardt Method

	Nonlinear Data-Fitting
	lsqnonlin with a Simulink Model
	Nonlinear Least Squares Without and Including Jacobian
	Nonnegative Linear Least Squares, Solver-Based
	Optimize Live Editor Task with lsqlin Solver
	Set Up and Solve the Problem Using Optimize

	Jacobian Multiply Function with Linear Least Squares
	Large-Scale Constrained Linear Least-Squares, Solver-Based
	Shortest Distance to a Plane
	Nonnegative Linear Least Squares, Problem-Based
	Large-Scale Constrained Linear Least-Squares, Problem-Based
	Nonlinear Curve Fitting with lsqcurvefit
	Fit a Model to Complex-Valued Data
	Fit an Ordinary Differential Equation (ODE)
	Nonlinear Least-Squares, Problem-Based
	Fit ODE, Problem-Based
	Nonlinear Data-Fitting Using Several Problem-Based Approaches
	Write Objective Function for Problem-Based Least Squares
	Code Generation in Linear Least Squares: Background
	What Is Code Generation?
	Requirements for Code Generation
	Generated Code Not Multithreaded

	Generate Code for lsqlin
	Linear Least-Squares Problem to Solve
	Solve Using lsqlin
	Code Generation Steps

	Code Generation in Nonlinear Least Squares: Background
	What Is Code Generation?
	Requirements for Code Generation
	Generated Code Not Multithreaded

	Generate Code for lsqcurvefit or lsqnonlin
	Data and Model for Least Squares
	Solve Generating Code for lsqcurvefit
	Solve Generating Code for lsqnonlin

	Systems of Equations
	Equation Solving Algorithms
	Equation Solving Definition
	Trust-Region Algorithm
	Trust-Region-Dogleg Algorithm
	Levenberg-Marquardt Method
	fzero Algorithm
	\ Algorithm

	Solve Nonlinear System Without and Including Jacobian
	Large Sparse System of Nonlinear Equations with Jacobian
	Large System of Nonlinear Equations with Jacobian Sparsity Pattern
	Nonlinear Systems with Constraints
	Solve Nonlinear System of Equations, Problem-Based
	Solve Nonlinear System of Polynomials, Problem-Based
	Follow Equation Solution as a Parameter Changes
	Nonlinear System of Equations with Constraints, Problem-Based
	Code Generation in Nonlinear Equation Solving: Background
	What Is Code Generation?
	Requirements for Code Generation
	Generated Code Not Multithreaded

	Generate Code for fsolve
	Equation to Solve
	Code Generation Steps

	Parallel Computing for Optimization
	What Is Parallel Computing in Optimization Toolbox?
	Parallel Optimization Functionality
	Parallel Estimation of Gradients
	Nested Parallel Functions

	Using Parallel Computing in Optimization Toolbox
	Using Parallel Computing with Multicore Processors
	Using Parallel Computing with a Multiprocessor Network
	Testing Parallel Computations

	Minimizing an Expensive Optimization Problem Using Parallel Computing Toolbox
	Improving Performance with Parallel Computing
	Factors That Affect Speed
	Factors That Affect Results
	Searching for Global Optima

	Argument and Options Reference
	Function Input Arguments
	Function Output Arguments
	Optimization Options Reference
	Optimization Options
	Hidden Options

	Current and Legacy Option Names
	Output Function and Plot Function Syntax
	What Are Output Functions and Plot Functions?
	Structure of the Output Function or Plot Function
	Fields in optimValues
	States of the Algorithm
	Stop Flag

	intlinprog Output Function and Plot Function Syntax
	What Are Output Functions and Plot Functions?
	Custom Function Syntax
	optimValues Structure

	Functions
	coneprog
	EquationProblem
	eqnproblem
	evaluate
	fcn2optimexpr
	fgoalattain
	findindex
	fminbnd
	fmincon
	fminimax
	fminsearch
	fminunc
	fseminf
	fsolve
	fzero
	infeasibility
	intlinprog
	linprog
	lsqcurvefit
	lsqlin
	lsqnonlin
	lsqnonneg
	mpsread
	optimget
	optimconstr
	optimeq
	optimexpr
	optimineq
	OptimizationConstraint
	OptimizationEquality
	OptimizationExpression
	OptimizationInequality
	OptimizationProblem
	OptimizationValues
	OptimizationVariable
	Optimize
	optimoptions
	optimproblem
	optimset
	optimvalues
	optimvar
	optimwarmstart
	paretoplot
	prob2struct
	quadprog
	resetoptions
	secondordercone
	SecondOrderConeConstraint
	show
	showbounds
	showconstr
	showexpr
	showproblem
	showvar
	solve
	varindex
	write
	writebounds
	writeconstr
	writeexpr
	writeproblem
	writevar

